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ON STOCHASTIC INTEGRODIFFERENTIAL EQUATIONS

VIA NON-LINEAR INTEGRAL CONTRACTORS II

Miljana Jovanović and Svetlana Janković

Abstract

The present paper represents a continuation of paper [4], in which the ex-
istence and uniqueness problems for a general Ito–Volterra integrodifferential
equation are investigated by using the concept of a non-linear random integral
contractor. Since the Lipschitz condition and the random integral contractor
for the coefficients of the considered equation, in general, cannot be compared,
the notions of the modified Lipschitz condition and modified integral contrac-
tor are introduced on some function spaces, as well as the conditions of their
equivalence. Some existence and uniqueness theorems are also given.

1 Introduction and preliminary results

In the present paper, we continue the investigation from paper [4] treating the
existence and uniqueness of the solution to the following integrodifferential equation

dx(t) = F
(
t, x(t),

∫ t

0

f1(t, s, x(s)) ds,

∫ t

0

f2(t, s, x(s)) dw(s)
)
dt (1)

+G
(
t, x(t),

∫ t

0

g1(t, s, x(s)) ds,

∫ t

0

g2(t, s, x(s)) dw(s)
)
dw(t),

t ∈ [0, T ], x(0) = x0 a.s.,

where w = (w(t), t ≥ 0) is a scalar Brownian motion defined on a complete prob-
ability space (Ω,F ,P) with a natural filtration (Ft, t ≥ 0) of non-decreasing sub-
σ-algebras of F (Ft = σ{w(s), 0 ≤ s ≤ t}), x0 is a random variable independent
of w, the functions F : [0, T ] × R3 → R, G : [0, T ] × R3 → R, fi : J × R → R,
gi : J × R → R, i = 1, 2, where J = {(s, t) : 0 ≤ s ≤ t ≤ T}, are assumed to
be Borel measurable on their domains. Our study in [4] is based on the notion of
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a non-linear random integral contractor, which is a stochastic version of the well-
known concept of integral contractors first introduced by Altman [1, 2] for studying
some different classes of deterministic equations in Banach spaces. Kuo [5] was the
first who applied the Altman’s approach to stochastic differential equations of the
Ito type and this concept was appropriately extended to various stochastic integral
and integrodifferential equations (see references in [4], for instance). Let us also
highlight that in all these papers, except partly in [6], random integral contractors
are determined as the solutions to linear functional equations. In contrast to these
cases, the notion of the non-linear random integral contractor is introduced in [4],
to exceed the non-linearity of the Lebesgue and Ito integrals in Eq. (1) and to prove
the existence and uniqueness of its solution.

In order to continue our study, we briefly present some notions and known results
from paper [4] in the remainder of this section. Precisely, we introduce the concept
of a bounded random integral contractor and we consider the appropriate existence
and uniqueness problems for Eq. (1). In order to compare these results with the
classical existence-and-uniqueness theorem based on the global Lipschitz condition,
the notions of a modified Lipschitz condition and a modified random integral con-
tractor are defined in Section 2. Some relations between them and conditions for
their equivalence on some spaces of stochastic processes are investigated, as well as
alternative existence-and-uniqueness theorems.

First, let C be a collection of scalar stochastic processes, defined on [0, T ], con-
tinuous a.s. and adapted to the filtration (Ft, t ≥ 0). Let also L2([0, T ] × Ω) be a
collection of stochastic processes in C such that P

{ ∫ T

0
|x(t)|2dt < ∞}

= 1.
For each x ∈ C, let us denote that

(A1x)(t) :=
∫ t

0

f1(t, s, x(s)) ds, (A2x)(t) :=
∫ t

0

f2(t, s, x(s)) dw(s),

(B1x)(t) :=
∫ t

0

g1(t, s, x(s)) ds, (B2x)(t) :=
∫ t

0

g2(t, s, x(s)) dw(s),

F [x(t)] = F
(
t, x(t), (A1x)(t), (A2x)(t)

)
,

G[x(t)] = G
(
t, x(t), (B1x)(t), (B2x)(t)

)
,

and rewritten Eq. (1) in its integral form,

x(t) = x0 +
∫ t

0

F [x(s)] ds +
∫ t

0

G[x(s)] dw(s), t ∈ [0, T ]. (2)

Let Φ : [0, T ] × R3 → R, Γ : [0, T ] × R3 → R, Φi : J × R → R, Γi : J ×
R → R, i = 1, 2, be measurable mappings, bounded in the sense that there exist
positive constants α, β, αi, βi, i = 1, 2, such that for every (t, x, u, v) ∈ [0, T ] × R3,
(t, s, x) ∈ J ×R, y ∈ R,

|Φ(t, x, u, v) · y| ≤ α |y|, |Γ(t, x, u, v) · y| ≤ β |y|, (3)
|Φi(t, s, x) · y| ≤ αi |y|, |Γi(t, s, x) · y| ≤ βi |y|, i = 1, 2.
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Then, the following operators and notations are introduced: For every x, y ∈ C,

((Φ̃1x)y)(t) :=
∫ t

0

Φ1(t, s, x(s)) y(s) ds,

((Φ̃2x)y)(t) :=
∫ t

0

Φ2(t, s, x(s)) y(s) dw(s),

((Γ̃1x)y)(t) :=
∫ t

0

Γ1(t, s, x(s)) y(s) ds, (4)

((Γ̃2x)y)(t) :=
∫ t

0

Γ2(t, s, x(s)) y(s) dw(s).

Φ[x(t), y(t)] = Φ
(
t, x(t), ((Φ̃1x)y)(t), ((Φ̃2x)y)(t)

)
,

Γ[x(t), y(t)] = Γ
(
t, x(t), ((Γ̃1x)y)(t), ((Γ̃2x)y)(t)

)
.

Likewise, we can define the non-linear operator A: For every x, y ∈ C,

((Ax)y)(t) := y(t) +
∫ t

0

Φ[x(s), y(s)] y(s) ds (5)

+
∫ t

0

Γ[x(s), y(s)] y(s) dw(s), t ∈ [0, T ].

Since (Ax)y ∈ C, the following notions are introduced in [4].

Definition 1. Let there exist a positive constant K such that for every x, y ∈ C the
following inequalities hold almost surely:

∣∣F [x(t)− ((Ax)y)(t)]− F [x(t)] + Φ[x(t), y(t)] · y(t)
∣∣

≤ K
[||y||t +

∣∣(A1(x− (Ax)y))(t)− (A1x)(t) + ((Φ̃1x)y)(t)
∣∣

+
∣∣(A2(x− (Ax)y))(t)− (A2x)(t) + ((Φ̃2x)y)(t)

∣∣]
∣∣fi(t, s, x(s)− ((Ax)y)(s))− fi(t, s, x(s)) + Φi(t, s, x(s)) · y(s)

∣∣
≤ K ||y||s, i = 1, 2, (6)∣∣G[x(t)− ((Ax)y)(t)]−G[x(t)] + Γ[x(t), y(t)] · y(t)

∣∣
≤ K

[||y||t +
∣∣(B1(x− (Ax)y))(t)− (B1x)(t) + ((Γ̃1x)y)(t)

∣∣
+

∣∣(B2(x− (Ax)y))(t)− (B2x)(t) + ((Γ̃2x)y)(t)
∣∣],∣∣gi(t, s, x(s)− ((Ax)y)(s))− gi(t, s, x(s)) + Γi(t, s, x(s)) · y(s)

∣∣
≤ K ||y||s, i = 1, 2,

where ||y||t = sup
0≤s≤t

|y(s)|. Then, the set of functions {F, f1, f2, G, g1, g2} has a

bounded random integral contractor
{

I +
∫ t

0

Φ
(
s, x,

∫ s

0

Φ1 dr,

∫ s

0

Φ2 dw(r)
)
ds (7)

+
∫ t

0

Γ
(
s, x,

∫ s

0

Γ1 dr,

∫ s

0

Γ2 dw(r)
)
dw(s)

}
.
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Definition 2. A bounded random integral contractor (7) is said to be regular if the
equation

(Ax) y = z (8)

has a solution y in C for any x and z in C.
Definition 3. The functions F and G in Eq. (2) are said to be stochastically
closed if for any x and xn in C, such that xn → x and F [xn] → y, G[xn] → z
in L2([0, T ] × Ω), it follows that y = F [x] and z = G[x] almost surely, for every
t ∈ [0, T ].

The main results of paper [4] are the following existence-and-uniqueness theo-
rems.

Theorem 1. Let F and G be stochastically closed and
∫ T

0
|F [x0]|2dt < ∞,∫ T

0
|G[x0]|2dt < ∞ a.s. Let also the set of functions {F, f1, f2, G, g1, g2} has a

bounded random integral contractor (7). Then, Eq. (2) has a solution x in C.
Theorem 2. Let the functions F, f1, f2, G, g1, g2 satisfy the assumptions of Theo-
rem 1 and the bounded random integral contractor (7) is regular. Then, the solution
x to Eq. (2) in C is unique.

Remember that the classical existence-and-uniqueness theorem (see Murge and
Pachpatte [7, 8]) requires that E|x0|2 < ∞ and that the coefficients of Eq. (2)
satisfy the global Lipschitz and linear growth conditions: Let there exist a constant
L > 0 such that for all (t, s) ∈ J and (x, y, z), (x′, y′, z′) ∈ R3,

|F (t, x, y, z)− F (t, x′, y′, z′)| ≤ L
(|x− x′|+ |y − y′|+ |z − z′|), (9)

|fi(t, s, x)− fi(t, s, x′)| ≤ L|x− x′|, i = 1, 2

|F (t, x, y, z)| ≤ L
(
1 + |x|+ |y|+ |z|), (10)

|fi(t, s, x)| ≤ L
(
1 + |x|), i = 1, 2,

and analogously for G, g1, g2. Then, Eq. (2) has a unique a.s. continuous and
Ft-adapted solution x(t) satisfying E supt∈[0,T ] |x(t)|2 < ∞.

If F, f1, f2, G, g1, g2 satisfy the global Lipschitz condition (9), then F and G are
stochastically closed and the set {F, f1, f2, G, g1, g2} has a trivial integral contractor
(7) with Φ = Γ = Φi = Γi ≡ 0, i = 1, 2, and vice versa. In [4] is shown that the global
Lipschitz condition (9) implies the existence of a class of non-trivial bounded integral
contractors

{
I +

∫ t

0
Φ

(
s, x,

∫ s

0
Φ1x dr, 0

)
ds

}
, as well as that Eq. (2) could have a

regular bounded random integral contractor, although the Lipschitz condition, in
general, did not have to be valid.

2 Main results

Since we saw in Section 1 that the Lipschitz condition and the regular bounded
random integral contractor cannot, generally, be compared, it is reasonable to focus
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our analysis on conditions and function spaces which give some alternative existence
and uniqueness assertions, as well as to estabilish relations between them. To do
this, we will follow only partly the ideas from papers [3] and [9].

First, let us denote that L2(C) is a class of stochastic processes x ∈ C with the
norm

||x||2∗ : = E||x||2
T

< ∞.

Certainly,
(
L2(C), || · ||∗

)
is a Banach space.

The following assertion, closely connected with Theorem 1 and Theorem 2, has
an important role in our investigation.

Theorem 3. Let the conditions of Theorem 2 be valid and E|x0|2 < ∞. Then, Eq.
(2) has a unique solution x ∈ L2(C).

Proof. Since from Theorem 1 and Theorem 2 it follows that Eq. (2) has a unique
solution x ∈ C, it remains to prove that x ∈ L2(C).

Because of the regularity of the bounded random integral contractor, the oper-
ator equation

((Ax)y)(t) = x(t)− x0, t ∈ [0, T ], (11)

has a solution y ∈ C. Then, from (5) we find that

y(t) +
∫ t

0

Φ[x(s), y(s)] y(s) ds +
∫ t

0

Γ[x(s), y(s)] y(s) dw(s) = x(t)− x0. (12)

Substituting (2) to (12), it follows that

y(t) =
∫ t

0

(
F [x(s)]− Φ[x(s), y(s)] y(s)

)
ds

+
∫ t

0

(
G[x(s)]− Γ[x(s), y(s)] y(s)

)
dw(s),

so that

E sup
0≤s≤t

|y(s)|2 ≤ 2E sup
0≤s≤t

∣∣∣
∫ s

0

(
F [x(r)]− Φ[x(r), y(r)] y(r)

)
dr

∣∣∣
2

(13)

+ 2E sup
0≤s≤t

∣∣∣
∫ s

0

(
G[x(r)]− Γ[x(r), y(r)] y(r)

)
dw(r)

∣∣∣
2

.

However, (11) yields F [(x− (Ax)y)(t)] = F [x0] a.s. and [G(x− (Ax)y)(t)] = G[x0]
a.s., so that we come to the following estimate by using (6), the Hölder inequality,



86 Miljana Jovanović and Svetlana Janković

the Schwarz inequality and integration by parts,

E sup
0≤s≤t

∣∣∣
∫ s

0

(
F [x(r)]− Φ[x(r), y(r)] y(r)

)
dr

∣∣∣
2

= E sup
0≤s≤t

∣∣∣
∫ s

0

(
F [x(r)]− Φ[x(r), y(r)] y(r)− F [(x− (Ax)y)(r)] + F [x0]

)
dr

∣∣∣
2

≤ 2TK2

∫ t

0

E
[||y||s + |A1(x− (Ax)y)(s)−A1x(s) + ((Φ̃1x)y)(s)|

+|A2(x− (Ax)y)(s)−A2x(s) + ((Φ̃2x)y)(s)|]2 ds + 2T

∫ T

0

E|F [x0]|2 ds

≤ 6TK2

[ ∫ t

0

E||y||2s ds + K2

∫ t

0

s

∫ s

0

E||y||2r dr ds + K2

∫ t

0

∫ s

0

E||y||2r dr ds

]

+2T
∫ T

0

E|F [x0]|2 ds

≤ 6TK2
[
1 + K2(T 2/2 + T )

] ∫ t

0

E||y||2s ds + 2T

∫ T

0

E|F [x0]|2 ds.

Similarly, by applying Doob inequality to the Ito integral in (13), we observe that

E sup
0≤s≤t

∣∣∣
∫ s

0

(
G[x(r)]− Γ[x(r), y(r)] y(r)

)
dw(r)

∣∣∣
2

≤ 24K2
[
1 + K2(T 2/2 + T )

] ∫ t

0

E||y||2s ds + 8
∫ T

0

E|G[x0]|2 ds.

These estimates together with (13) yield

E||y||2t ≤ c1

∫ t

0

E||y||2s ds + c2, t ∈ [0, T ],

where c1 and c2 are generic constants. From now on, by applying the Gronwall-
Bellman lemma, we deduce that

E||y||2t < ∞, t ∈ [0, T ].

To prove that x ∈ L2(C), we will start form (12), then apply the boundedness
(3) of the mappings Φ, Γ,Γi, Φi, i = 1, 2 and use the foregoing estimate. Hence,
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||x||2∗ = E sup
0≤t≤T

|x(t)|2

≤ 4

[
E|x0|2 + E||y||2T + E sup

0≤s≤T

∣∣∣
∫ t

0

Φ[x(s), y(s)] y(s) ds
∣∣∣
2

+ E sup
0≤s≤T

∣∣∣
∫ t

0

Γ[x(s), y(s)] y(s) dw(s)
∣∣∣
2
]

≤ 4

[
E|x0|2 + E||y||2T + (α2T + 4β2)

∫ T

0

E||y||2t dt

]

< ∞,

which completes the proof.

Theorem 3 gives us a motivation to study, under various conditions, the existence
and uniqueness of the solution to Eq. (2) which belongs to L2(C). Because of that,
we introduce the following norm on the space L2(C) : For a fixed number λ > 0 and
for every x ∈ L2(C),

|||x|||2 : = sup
0≤t≤T

E
{||x||2t · e−2λt

}
.

Since
||x||2∗ · e−2λT ≤ |||x|||2 ≤ ||x||2∗,

the norms ||| · ||| and || · ||∗ are equivalent and, therefore, (L2(C), ||| · |||) is also a
Banach space. This norm enables us to prove the following assertion which is an
important tool to be used in the sequel.

Proposition 1. Let the mappings Φ, Γ, Φi,Γi, i = 1, 2, satisfy the conditions (3).
Then, Eq. (8) has a unique solution y ∈ L2(C) for every x, z ∈ L2(C). Moreover,
there exists a constant µ > 0, independent of x and z such that

E||y||2t ≤ µE||z||2t , t ∈ [0, T ]. (14)

Proof. Let us define an operator S : L2(C) → C in the following way: For fixed
x, z ∈ L2(C) and arbitrary y ∈ L2(C), let

(Sy)(t) : = z(t)−
∫ t

0

Φ[x(s), y(s)] y(s) ds (15)

−
∫ t

0

Γ[x(s), y(s)] y(s) dw(s), t ∈ [0, T ].

By using (3) we find for 0 ≤ t ≤ T that

E||Sy||2t ≤ 3
[
E||z(s)||2t + B

∫ t

0

E||y||2s ds

]
, (16)
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where B = α2T + 4β2. Since ||Sy||2∗ ≤ 3
[||z||2∗ + BT ||y||2∗

]
< ∞, we conclude that

Sy ∈ L2(C) and, therefore, S : L2(C) → L2(C).
The next step is to prove that there exists a constant λ > 0 such that the

operator S is a contraction.
Starting from (15), it follows for arbitrary y1, y2 ∈ L2(C) that

E||Sy1 − Sy2||2t ≤ 2B

∫ t

0

E||y1 − y2||2s ds, t ∈ [0, T ].

By using the norm ||| · |||, we observe for a number λ > 0 that

E||Sy1 − Sy2||2t ≤ 2B

∫ t

0

E sup
0≤r≤s

|y1(r)− y2(r)|2 · e−2λs · e2λs ds

≤ B

λ
|||y1 − y2|||2 · e2λt, t ∈ [0, T ].

If we choose λ > 4B + 1, we find that

|||Sy1 − Sy2|||2 ≤ B

λ
|||y1 − y2|||2 <

1
4
|||y1 − y2|||2

and, therefore, S is a contraction on L2(S). Obviously, what remains is to apply
the Banach fixed point theorem to conclude that Eq. (8) has a unique solution
y ∈ L2(C), which completes the proof of the first part of this lemma.

To prove the second part, we take Sy = y in (16) and obtain

E||y||2t ≤ 3
[
E||z||2t + B

∫ t

0

E||y||2s ds

]
, t ∈ [0, T ].

It is now easy to arrive at the desired relation (14) by applying the Gronwall–
Bellman lemma.

The following assertion holds straightforwardly.

Theorem 4. Let the conditions of Theorem 1 be valid and E|x0|2 < ∞. Then, Eq.
(2) has a unique solution x in L2(C).

Proof. Since the conditions of Proposition 1 are satisfied, it follows that there exists
a regular bounded random integral contractor (7) defined on L2(C) ⊂ C, so the proof
immediately holds by virtue of Theorem 3.

Since the Lipschitz condition and the bounded random integral contractor can-
not be compared on the space C, we introduce some modifications to these notions
on L2(C) and state conditions for their equivalence.

First, let us introduce the following version of the Lipschitz condition.
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Definition 4. Let there exist a constant L1 > 0 such that for all (t, s) ∈ J and
x, y, z, x′, y′, z′ ∈ L2(C), i = 1, 2,

E|F (t, x, y, z)− F (t, x′, y′, z′)|2 ≤ L1

[
E||x− x′||2t +E||y − y′||2t +E||z − z′||2t

]
,

E|fi(t, s, x)− fi(t, s, x′)|2 ≤ L1E||x− x′||2t , i = 1, 2, (17)

and analogously for G, g1, g2. Then, we say that the functions F, f1, f2, G, g1, g2

satisfy the modified Lipschitz condition on the space L2(C).
Obviously, if the functions F, f1, f2, G, g1, g2 satisfy the Lipschitz condition (9)

on L2(C), then they satisfy the modified Lipschitz condition (17), while the opposite
assertion is not valid. Moreover, by following the proofs of the classical existence-
and-uniqueness theorems, it is not difficult to conclude from paper [7], for example,
that they are valid under conditions (17) instead of (9).

The following relation between the bounded random integral contractor (7) and
the modified Lipschitz condition (17) holds on L2(C).
Proposition 2. Let the functions F, f1, f2, G, g1, g2 from Eq. (2) have a bounded
random integral contractor (7). Then, they satisfy the modified Lipcshitz condition
(17) on the space L2(C).
Proof. Let (7) be a bounded random integral contractor for the functions F, f1, f2,
G, g1, g2. Then, from Proposition 1 it follows for fixed x, z ∈ L2(C) that there
exists a unique solution y ∈ L2(C) of Eq. (8). On the basis of (6) and from the
boundedness (3) of the mappings Φ,Φ1,Φ2, we see that, almost surely,

∣∣F [(x− z)(t)]− F [x(t)]
∣∣2 (18)

≤ 2
∣∣F [(x− z)(t)]− F [x(t)] + Φ[x(t), y(t)] y(t)|2 + 2|Φ[x(t), y(t)] y(t)

∣∣2

≤ 2K2
[||y||t + |A1(x− z)(t)−A1x(t) + ((Φ̃1x)y)(t)|

+|A2(x− z)(t)−A2x(t) + ((Φ̃2x)y)(t)|]2 + 2α2||y||2t .
Hence, for all t ∈ [0, T ],

∣∣F [(x− z)(t)]− F [x(t)]
∣∣2

≤ 10K2

[
E||y||2t + E|A1(x− z)(t)−A1x(t)|2 + α2

1t

∫ t

0

E||y||2s ds

+E|A2(x− z)(t)−A2x(t)|2 + α2
2

∫ t

0

E||y||2s ds

]
+ 2α2||y||2t .

The application of the property (14) from Proposition 1 implies that
∣∣F (x− z)(t)− Fx(t)

∣∣2

≤ K̄
[
E||z||2t + E|A1(x− z)(t)−A1x(t)|2 + E|A2(x− z)(t)−A2x(t)|2],

where K̄ is a generic constant, which confirms that F satisfies the modified Lipschitz
condition (17). This fact can be analogously proved for other functions.
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In order to formulate the opposite assertion with respect to Proposition 2, we
introduce the notion of a modified bounded random integral contractor on L2(C).

Definition 5. Let there exist a constant K1 > 0 such that for all (t, s) ∈ J and
x, y ∈ L2(C),

E
∣∣F [(x− (Ax)y)(t)]− F [x(t)] + Φ[x(t), y(t)] y(t)

∣∣2 (19)

≤ K1

[
E||y||2t + E|A1(x− (Ax)y)(t)−A1x(t) + ((Φ̃1x)y)(t)|2

+E|A2(x− (Ax)y)(t)−A2x(t) + ((Φ̃2x)y)(t)|2],
E

∣∣fi(t, s, x(s)− ((Ax)y)(s))− fi(t, s, x(s)) + Φi(t, s, x(s))y(s)
∣∣2

≤ K1E||y||2s, i = 1, 2,

and analogously for G, g1, g2. Then, we say that the set of functions {F, f1, f2,
G, g1, g2} has a modified bounded random integral contractor on the space L2(C),

{
I +

∫ t

0

Φ
(
s, x,

∫ s

0

Φ1x dr,

∫ s

0

Φ2x dw(r)
)
ds (20)

+
∫ t

0

Γ
(
s, x,

∫ s

0

Γ1x dr,

∫ s

0

Γ2x dw(r)
)
dw(s)

}

E

.

Following the proofs of Theorem 1 and Theorem 2 (see paper [4]), it is easy
to see that they will be valid and, moreover, they will be shorter, if the set of
functions {F, f1, f2, G, g1, g2} has the modified bounded random integral contractor
(20) instead of the bounded random integral contractor. Likewise, the equivalence
between the modified Lipschitz condition (17) and the modified bounded random
integral contractor (20) can be proved.

Proposition 3. The functions F, f1, f2, G, g1, g2 satisfy the modified Lipschitz con-
dition (17) if and only if they have the modified bounded random integral contractor
(20).

Proof. Since x, y ∈ L2(C) implies that (Ax)y ∈ L2(C), we can start from (5) and
apply the same reasoning as for the operator S defined in (15). So, we observe that

E||(Ax)y||2t ≤ 3
[
E||y||2t + B

∫ t

0

E||y||2s ds

]

and, therefore,

E||(Ax)y||2t ≤ cE||y||2t , t ∈ [0, T ], (21)

where c is a generic constant.

Let F, f1, f2, G, g1, g2 satisfy the modified Lipschitz condition (17). By using
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(21) we find for every t ∈ [0, T ] and x, y ∈ L2(C) that

E
∣∣F [(x− (Ax)y)(t)]− F [x(t)] + Φ[x(t), y(t)] y(t)

∣∣2

≤ 2L1

[
E||(Ax)y||2t + E|A1(x− (Ax)y)(t)−A1x(t)|2

+E|A2(x− (Ax)y)(t)−A2x(t)|2] + 2α2E||y||2t
≤ K1

[
E||y||2t + E|A1(x− (Ax)y)(t)−A1x(t) + ((Φ̃1x)y)(t)|2

+E|A2(x− (Ax)y)(t)−A2x(t) + ((Φ̃2x)y)(t)|2],

where K1 is a constant. Hence, the proof of this part of Proposition 3 holds since
the other relations in (19) can be proved analogously.

Conversely, let us suppose that the set of functions {F, f1, f2, G, g1, g2} has the
modified bounded random integral contractor (20). From Proposition 1, it follows
for every x, z ∈ L2(C) that there exists y ∈ L2(C) which is a solution to the equation
(Ax)y = z, satisfying E||y||2t ≤ µE||z||2t for all t ∈ [0, T ]. These facts and the
procedure applied in the proof of Proposition 2 yield

∣∣F [(x− z)(t)]− F [x(t)]
∣∣2

≤ L1

[
E||z||2t + E|A1(x− z)(t)−A1x(t)|2 + E|A2(x− z)(t)−A2x(t)|2],

and similarly for the other functions. Therefore, the modified Lipschitz condition
(17) holds, which completes the proof.

We close our discussion by the convenient version of the classical existence-
and-uniqueness theorem discussed in Section 1. More precisely, the next theorem
summarizes the foregoing assertions.

Theorem 5. Let the functions F, f1, f2, G, g1, g2 satisfy the modified Lipschitz con-
dition (17) and E|x0|2 < ∞,

∫ T

0
|F [x0]|2 ds < ∞ a.s.,

∫ T

0
|G[x0]|2 ds < ∞ a.s.

Then, Eq. (2) has a unique solution x in L2(C).
Proof. Since the functions F, f1, f2, G, g1, g2 satisfy the modified Lipcshitz condition
(17), then F and G are stochastically closed in the sense of Definition 3. Hence,
the proof holds straightforwardly by virtue of Proposition 3 and Theorem 4.

Remark. The problems considered in this paper and in [4] could be consequently
extended to more general stochastic equations and stochastic integrodifferential
equations involving martingales and martingale measures instead of the Brownian
motion.
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