Faculty of Sciences and Mathematics, University of Niš, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat
Filomat 24:2 (2010), 101-110 DOI: 10.2298/FIL1002101J

LACUNARY SERIES IN MIXED NORM SPACES
 ON THE BALL AND THE POLYDISK

Miroljub Jevtić and Miroslav Pavlović

Abstract

We characterize lacunary series in mixed norm spaces on the unit ball \mathbb{B}^{n} in \mathbb{C}^{n} and on the unit polydisk \mathbb{D}^{n} in \mathbb{C}^{n}.

Introduction and main results

Let n be a positive integer. Two domains will be used in the paper: the open unit ball \mathbb{B}^{n} in \mathbb{C}^{n},

$$
\mathbb{B}^{n}=\left\{z \in \mathbb{C}^{n}:|z|<1\right\},
$$

and the open unit polydisk \mathbb{D}^{n} in \mathbb{C}^{n},

$$
\mathbb{D}^{n}=\left\{z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}:\left|z_{1}\right|<1, \ldots,\left|z_{n}\right|<1\right\}
$$

We write $\mathbb{D}=\mathbb{B}^{1}=\mathbb{D}^{1}$.
Denote by \mathbb{T}^{n} the Shilov boundary of \mathbb{D}^{n}, by $\partial \mathbb{B}^{n}$ the boundary of \mathbb{B}^{n}, by $d \sigma_{n}$ the normalized surface measure on $\partial \mathbb{B}^{n}$, and define the measure $d \mu_{n}$ on \mathbb{T}^{n} by

$$
d \mu_{n}\left(e^{i \theta_{1}}, \ldots, e^{i \theta_{n}}\right)=d \theta_{1} \cdots d \theta_{n} .
$$

Lacunary series on the unit ball \mathbb{B}^{n}

The mixed norm space $H^{p, q, \alpha}\left(\mathbb{B}^{n}\right), 0<p, q \leq \infty 0<\alpha<\infty$, consists of all functions f holomorphic in $\mathbb{B}^{n}, f \in H\left(\mathbb{B}^{n}\right)$, such that

$$
\|f\|_{p, q, \alpha}^{q}=\int_{0}^{1}(1-r)^{q \alpha-1} M_{p}(r, f)^{q} d r<\infty, \quad \text { if } \quad 0<q<\infty
$$

and

$$
\|f\|_{p, \infty, \alpha}=\sup _{0<r<1}(1-r)^{\alpha} M_{p}(r, f)<\infty .
$$

2010 Mathematics Subject Classifications. 32A36, 32A37.
Key words and Phrases. Integral means, Bergman spaces, mixed norm spaces.
Received: March 4, 2010
Communicated by Dragan S. Djordjević
The research was supported by a grant from MNS ON144010, Serbia.

Here, as usual,

$$
M_{p}(r, f)=\left(\int_{\partial \mathbb{B}^{n}}|f(r \xi)|^{p} d \sigma_{n}(\xi)\right)^{1 / p}, \quad 0<p<\infty
$$

and

$$
M_{\infty}(r, f)=\sup _{|\xi|=1}|f(r \xi)| .
$$

We write $\|f\|_{p}=\sup _{0<r<1} M_{p}(r, f)$.
Note that when $0<p=q<\infty$, then $H^{p, p,(\alpha+1) / p}\left(\mathbb{B}^{n}\right)$, where $\alpha>-1$, coincides, as a topological linear space, with the weighted Bergman space $A^{p, \alpha}\left(\mathbb{B}^{n}\right)$, consisting of those $f \in H\left(\mathbb{B}^{n}\right)$ for which

$$
\int_{\mathbb{B}^{n}}|f(z)|^{p}\left(1-|z|^{2}\right)^{\alpha} d V_{n}(z)<\infty
$$

where $d V_{n}$ is the normalized volume measure on \mathbb{B}_{n}.
We say that a holomorphic function f on \mathbb{B}^{n} has a lacunary expansion if its homogeneous expansion is of the form

$$
f(z)=\sum_{k=1}^{\infty} f_{m_{k}}(z)
$$

where m_{k} satisfies the condition

$$
\inf _{1 \leq k<\infty} \frac{m_{k+1}}{m_{k}}=\lambda>1
$$

The series $\sum_{k=1}^{\infty} f_{m_{k}}(z)$ as well as the sequence $\left\{m_{k}\right\}$ are then said to be lacunary.
In this paper we characterize holomorphic functions with lacunary expansions in mixed norm spaces $H^{p, q, \alpha}\left(\mathbb{B}^{n}\right)$. More precisely, we prove

THEOREM 1. Let $0<p, q \leq \infty, 0<\alpha<\infty$ and let $f(z)=\sum_{k=1}^{\infty} f_{m_{k}}(z)$ be a holomorphic function on \mathbb{B}^{n} with a lacunary expansion. Then $f \in H^{p, q, \alpha}\left(\mathbb{B}^{n}\right)$ if and only if

$$
\sum_{k=1}^{\infty} \frac{\left\|f_{m_{k}}\right\|_{p}^{q}}{m_{k}^{q \alpha}}<\infty \quad \text { if } \quad 0<q<\infty
$$

or

$$
\sup _{1 \leq k<\infty} m_{k}^{-\alpha}\left\|f_{m_{k}}\right\|_{p}<\infty, \quad \text { if } \quad q=\infty
$$

Lacunary series in $H^{p, q, \alpha}(\mathbb{D})$ are characterized in [MP]. (See also [JP]).
Our work was motivated by characterizations of lacunary series in weighted Bergman spaces $A^{p, \alpha}\left(\mathbb{B}^{n}\right)$, see $[\mathrm{Ch}]$, [YO], and [St]. Case $q=\infty$ of Theorem 1 also follows from [ZZ, Proposition 63]. We note that in [St] lacunary series in mixed norm spaces $H^{p, q, \alpha}\left(\mathbb{B}^{n}\right)$ are considered and some partial results have been obtained.

Lacunary series on the unit polydisk in \mathbb{C}^{n}

For any Lebesgue measurable function f in \mathbb{D}^{n}, we define

$$
M_{p}(r, f)=\left(\int_{\mathbb{T}^{n}}|f(r \xi)|^{p} d \mu_{n}(\xi)\right)^{1 / p}, \quad 0<p<\infty
$$

and

$$
M_{\infty}(r, f)=\sup _{\xi \in \mathbb{T}^{n}}|f(r \xi)|
$$

where $r=\left(r_{1}, \ldots, r_{n}\right)$.
If $0<p \leq \infty, 0<q<\infty$, and $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right), \alpha_{j}>0, j=1, \ldots, n$, let

$$
\|f\|_{p, q, \alpha}^{q}=\int_{I^{n}}\left(\prod_{j=1}^{n}\left(1-r_{j}\right)^{q \alpha_{j}-1} M_{p}(r, f)^{q}\right) d r
$$

where $I^{n}=[0,1)^{n}$ and $d r=d r_{1} \cdots d r_{n}$. The mixed norm space $H^{p, q, \alpha}\left(\mathbb{D}^{n}\right)$ is then defined to be the space of functions f holomorphic in $\mathbb{D}^{n}, f \in H\left(\mathbb{D}^{n}\right)$, such that $\|f\|_{p, q, \alpha}<\infty$.

The mixed norm space $H^{p, \infty, \alpha}\left(\mathbb{D}^{n}\right), 0<p \leq \infty, \alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right), \alpha_{1}>0, \ldots, \alpha_{n}>$ 0 , is the set of those functions $f \in H\left(\mathbb{D}^{n}\right)$ for which

$$
\|f\|_{p, \infty, \alpha}=\sup _{r \in I^{n}} \prod_{j=1}^{n}\left(1-r_{j}\right)^{\alpha_{j}} M_{p}(r, f)
$$

is finite.
Our second result is a characterization of lacunary series in mixed norm spaces $H^{p, q, \alpha}\left(\mathbb{D}^{n}\right)$.

Theorem 2. Let $0<p \leq \infty, 0<q \leq \infty, \alpha_{j}>0, j=1, \ldots, n$, and

$$
f(z)=\sum_{k_{1}, \ldots, k_{n} \geq 1} a_{k_{1}, \ldots, k_{n}} z_{1}^{m_{1, k_{1}}} \ldots z_{n}^{m_{n, k_{n}}}
$$

be a holomorphic function on \mathbb{D}^{n} such that there is $\lambda>1$ satisfying the condition

$$
m_{j, k_{j}+1} / m_{j, k_{j}} \geq \lambda \quad \text { for all } \quad k_{j} \in \mathbb{N}, j=1, \ldots n
$$

If $0<q<\infty$, then the following statements are equivalent:
(i) $f \in H^{p, q, \alpha}\left(\mathbb{D}^{n}\right)$;
(ii) $\sum_{k_{1}, \ldots, k_{n} \geq 1} \frac{\left|a_{k_{1}, \ldots, k_{n}}\right|^{q}}{\prod_{j=1}^{n} m_{j, k_{j}}^{q \alpha_{j}}}<\infty$.

If $q=\infty$, then the following statements are equivalent:
(iii) $f \in H^{p, \infty, \alpha}\left(\mathbb{D}^{n}\right)$;
(iv) $\sup _{k_{1}, \ldots, k_{n} \geq 1} \frac{\left|a_{k_{1}, . ., k_{n}}\right|}{\prod_{j=1}^{n} m_{j, k_{j}}^{\alpha_{j}}}<\infty$.

We note that the equivalence (iii) and (iv) also follows from [Av, Theorem 3]. The equivalence (i) \Longleftrightarrow (ii) for $0<p=q<\infty$ was proved in [St].

1 Preliminaries

In this section we gather several well-known lemmas that will be used in the proofs of our results.

Lemma 1. [P] Let $\alpha>-1,0<q<\infty$ and $I_{n}=\left\{k \in \mathbb{N}: 2^{n} \leq k<2^{n+1}\right\}$ for $n \geq 1, I_{0}=\{0,1\}$. If $\left\{a_{n}\right\}_{0}^{\infty}$ is a sequence of non-negative numbers such that the series $G(r)=\sum_{n=0}^{\infty} a_{n} r^{n}$ converges for every $r \in(0,1)$, then the following two conditions are equivalent and the corresponding quantities are "proportional":
(i) $\int_{0}^{1}(1-r)^{\alpha} G(r)^{q} d r<\infty$;
(ii) $\sum_{n=0}^{\infty} 2^{-n(\alpha+1)}\left(\sum_{k \in I_{n}} a_{k}\right)^{q}<\infty$.

In the case of the function $G(r)=\sup _{n \geq 0} a_{n} r^{n}$ in (i) the expression $\sum_{k \in I_{n}} a_{k}$ in (ii) should be replaced by $\sup _{k \in I_{n}} a_{k}$.

Lemma 2. If $\left\{n_{k}\right\}$ is a lacunary sequence of positive integers, that is $\inf _{k} \frac{n_{k+1}}{n_{k}}=$ $\lambda>1$, and $\left\{a_{k}\right\}$ is a sequence of nonnegative real numbers, then the following conditions are equivalent and the corresponding quantities are "proportional":
(i) $\int_{0}^{1}(1-r)^{\alpha}\left(\sum_{k=1}^{\infty} a_{k} r^{n_{k}}\right)^{q} d r<\infty$;
(ii) $\int_{0}^{1}(1-r)^{\alpha}\left(\sup _{k \geq 1} a_{k} r^{n_{k}}\right)^{q} d r<\infty$;
(iii) $\sum_{k=1}^{\infty} \frac{\left|a_{k}\right|^{q}}{n_{k}^{\alpha+1}}<\infty$.

Proof. By Lemma 1,

$$
\int_{0}^{1}(1-r)^{\alpha}\left(\sum_{k=1}^{\infty} a_{k} r^{n_{k}}\right)^{q} d r \cong \sum_{k=1}^{\infty} 2^{-k(\alpha+1)}\left(\sum_{n_{j} \in I_{k}} a_{j}\right)^{q} .
$$

Since $\frac{n_{j+1}}{n_{j}} \geq \lambda>1$, for all $j \in N$, the number of a_{j} when $n_{j} \in I_{k}$ is at most $\left[\log _{\lambda} 2\right]+2$. Using this and the fact that $n_{j} \cong 2^{k}$ when $n_{j} \in I_{k}$, we see that

$$
\sum_{k=1}^{\infty} 2^{-k(\alpha+1)}\left(\sum_{n_{j} \in I_{k}} a_{j}\right)^{q} \cong \sum_{k=1}^{\infty} \frac{a_{k}^{q}}{n_{k}^{\alpha+1}}
$$

Lemma 3. [$Z y, D u, P]$ Let $0<p<\infty$. If $\left\{n_{k}\right\}$ is an increasing sequence of positive integers satisfying $n_{k+1} / n_{k} \geq \lambda>1$ for all k, then there is a positive constant C depending only on p and λ such that

$$
C^{-1}\left(\sum_{k=1}^{\infty}\left|a_{k}\right|^{2}\right)^{1 / 2} \leq\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\sum_{k=1}^{\infty} a_{k} e^{i n_{k} \theta}\right|^{p} d \theta\right)^{1 / p} \leq C\left(\sum_{k=1}^{\infty}\left|a_{k}\right|^{2}\right)^{1 / 2}
$$

These Paley's inequalities were extended to the unit polydisk \mathbb{D}^{n} in $[\mathrm{Av}]$:
Lemma 4. Let $\left\{m_{j, k_{j}}\right\}_{j=1}^{\infty}, j=1, \ldots, n$, be arbitrary lacunary sequences and $f(z)$ be a holomorphic function in \mathbb{D}^{n} given by

$$
f(z)=\sum_{k_{1}, \ldots, k_{n} \geq 1} a_{k_{1}, \ldots, k_{n}} z_{1}^{m_{1, k_{1}}} \cdots z_{n}^{m_{n, k_{n}}}, \quad z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{D}^{n}
$$

Then for any $p, 0<p<\infty, f$ is in the Hardy space $H^{p}\left(\mathbb{D}^{n}\right)$, i.e. $\|f\|_{p}=$ $\sup _{r \in I^{n}} M_{p}(r, f)<\infty$, if and only if $\sum_{k_{1}, \ldots, k_{n} \geq 1}\left|a_{k_{1}, \ldots, k_{n}}\right|^{2}<\infty$. Moreover,

$$
C^{-1}| | f\left\|_{p} \leq\left(\sum_{k_{1}, \ldots, k_{n} \geq 1}\left|a_{k_{1}, \ldots, k_{n}}\right|^{2}\right)^{1 / 2} \leq C\right\| f \|_{p}
$$

where C is a constant independent of f.

2 Proof of Theorem 1

Let

$$
\sum_{k=1}^{\infty} \frac{\left\|f_{n_{k}}\right\|_{p}^{q}}{n_{k}^{q \alpha}}<\infty, \quad 0<p \leq \infty, \quad 0<q<\infty
$$

If $1 \leq p<\infty$, then by using Minkowski's inequality we obtain

$$
\begin{equation*}
M_{p}(r, f) \leq \sum_{k=1}^{\infty}\left\|f_{n_{k}}\right\|_{p} r^{n_{k}} \tag{1}
\end{equation*}
$$

If $p=\infty$, then

$$
\begin{equation*}
M_{\infty}(r, f) \leq \sum_{k=1}^{\infty}\left\|f_{n_{k}}\right\|_{\infty} r^{n_{k}} \tag{2}
\end{equation*}
$$

An application of Lemma 2 gives

$$
\begin{aligned}
\|f\|_{p, q, \alpha}^{q} & \leq \int_{0}^{1}(1-r)^{q \alpha-1}\left(\sum_{k=1}^{\infty}\left\|f_{n_{k}}\right\|_{p} r^{n_{k}}\right)^{q} d r \\
& \leq C \sum_{k=1}^{\infty} \frac{\left\|f_{n_{k}}\right\|_{p}^{q}}{n_{k}^{q \alpha}}
\end{aligned}
$$

If $0<p<1$, then

$$
\begin{equation*}
M_{p}^{p}(r, f) \leq \sum_{k=1}^{\infty}\left\|f_{n_{k}}\right\|_{p}^{p} r^{p n_{k}} \tag{3}
\end{equation*}
$$

Hence,

$$
\begin{aligned}
\|f\|_{p, q, \alpha}^{q} & \leq \int_{0}^{1}(1-r)^{q \alpha-1}\left(\sum_{k=1}^{\infty}\left\|f_{n_{k}}\right\|_{p}^{p} r^{p n_{k}}\right)^{q / p} d r \\
& \leq C \int_{0}^{1}(1-r)^{q \alpha-1}\left(\sum_{k=1}^{\infty}\left\|f_{n_{k}}\right\|_{p}^{p} r^{n_{k}}\right)^{q / p} d r \\
& \leq C \sum_{k=1}^{\infty} \frac{\left\|f_{n_{k}}\right\|_{p}^{q}}{n_{k}^{q \alpha}}
\end{aligned}
$$

by Lemma 2 .
If $\alpha>0$ and $\left\{n_{k}\right\}$ is a lacunary sequence of positive integers, then

$$
\sum_{k=1}^{\infty} n_{k}^{\alpha} r^{n_{k}}=O\left(\frac{1}{(1-r)^{\alpha}}\right), \quad \text { see }[\mathrm{Du}]
$$

Using this, (1), (2), and (3) we find that

$$
\|f\|_{p, \infty, \alpha}=\sup _{0<r<1}(1-r)^{\alpha} M_{p}(r, f) \leq C \sup _{k \geq 1} \frac{\left\|f_{n_{k}}\right\|_{p}}{n_{k}^{\alpha}}
$$

Conversely, let $\|f\|_{p, q, \alpha}<\infty$.
If $0<p<\infty$, then by using the slice integration formula [Ru2, Proposition 1.4.7] and Lemma 3 we find that

$$
\begin{aligned}
M_{p}(r, f) & =\left(\int_{\partial \mathbb{B}^{n}}\left|\sum_{k=1}^{\infty} f_{n_{k}}(r \xi)\right|^{p} d \sigma(\xi)\right)^{1 / p} \\
& =\left(\int_{\partial \mathbb{B}^{n}}\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\sum_{k=1}^{\infty} f_{n_{k}}(\xi) r^{n_{k}} e^{i n_{k} \theta}\right|^{p} d \theta\right) d \sigma(\xi)\right)^{1 / p} \\
& \cong\left(\int_{\partial \mathbb{B}^{n}}\left(\sum_{k=1}^{\infty}\left|f_{n_{k}}(\xi)\right|^{2} r^{2 n_{k}}\right)^{p / 2} d \sigma(\xi)\right)^{1 / p}
\end{aligned}
$$

and consequently

$$
M_{p}(r, f) \geq C\left\|f_{n_{k}}\right\|_{p} r^{n_{k}}, \quad \text { for all } \quad k \geq 1
$$

If $p=\infty$, also we have $M_{\infty}(r, f) \geq\left\|f_{n_{k}}\right\|_{\infty} r^{n_{k}}$, for all $k \geq 1$.
Thus, if $0<q<\infty$, then

$$
\begin{aligned}
\|f\|_{p, q, \alpha}^{q} & \geq C \int_{0}^{1}(1-r)^{q \alpha-1}\left(\sup _{k \geq 1}\left\|f_{n_{k}}\right\|_{p} r^{n_{k}}\right)^{q} d r \\
& \geq C \sum_{k=1}^{\infty} \frac{\left\|f_{n_{k}}\right\|_{p}^{q}}{n_{k}^{q \alpha}}
\end{aligned}
$$

by Lemma 2.
If $q=\infty$, then

$$
\begin{aligned}
\|f\|_{p, \infty, \alpha} & \geq \sup _{0<r<1}(1-r)^{\alpha} \sup _{k \geq 1}\left\|f_{n_{k}}\right\|_{p} r^{n_{k}} \\
& \geq \sup _{k \geq 1}\left\|f_{n_{k}}\right\|_{p} \frac{1}{n_{k}^{\alpha}}\left(1-\frac{1}{n_{k}}\right)^{n_{k}} \\
& \geq \frac{1}{e} \sup _{k \geq 1} \frac{\left\|f_{n_{k}}\right\|_{p}}{n_{k}^{\alpha}} .
\end{aligned}
$$

This finishes the proof of Theorem 1.

3 Proof of Theorem 2

In order to avoid too much calculations we will assume that $n=2$.
Proof of implications (ii) \Longrightarrow (i) and (iv) \Longrightarrow (iii)
Let $0<p \leq \infty, r=\left(r_{1}, r_{2}\right)$ and $\alpha=\left(\alpha_{1}, \alpha_{2}\right), \alpha_{1}>0, \alpha_{2}>0$. Then

$$
M_{p}(r, f) \leq \sum_{k_{1}, k_{2} \geq 1}\left|a_{k_{1}, k_{2}}\right| r_{1}^{m_{1, k_{1}}} r_{2}^{m_{2, k_{2}}}
$$

If $0<q<\infty$ then by applying Lemma 2 twice we obtain

$$
\begin{aligned}
\|f\|_{p, q, \alpha}^{q}= & \int_{0}^{1}\left(1-r_{2}\right)^{q \alpha_{2}-1} d r_{2} \int_{0}^{1}\left(1-r_{1}\right)^{q \alpha_{1}-1} M_{p}(r, f)^{q} d r_{1} \\
\leq & \int_{0}^{1}\left(1-r_{2}\right)^{q \alpha_{2}-1} d r_{2} \int_{0}^{1}\left(1-r_{1}\right)^{q \alpha_{1}-1} \\
& \times\left(\sum_{k_{1} \geq 1}\left(\sum_{k_{2} \geq 1}\left|a_{k_{1}, k_{2}}\right| r_{2}^{m_{2, k_{2}}}\right) r_{1}^{m_{1, k_{1}}}\right)^{q} d r_{1} \\
\leq & C \int_{0}^{1}\left(1-r_{2}\right)^{q \alpha_{2}-1}\left(\sum_{k_{1} \geq 1} \frac{1}{m_{1, k_{1}}^{q \alpha_{1}}}\left(\sum_{k_{2} \geq 1}\left|a_{k_{1}, k_{2}}\right| r_{2}^{m_{2, k_{2}}}\right)^{q}\right) d r_{2}
\end{aligned}
$$

$$
\begin{aligned}
& =C \sum_{k_{1} \geq 1} m_{1, k_{1}}^{-q \alpha_{1}} \int_{0}^{1}\left(1-r_{2}\right)^{q \alpha_{2}-1}\left(\sum_{k_{2} \geq 1}\left|a_{k_{1}, k_{2}}\right| r_{2}^{m_{2, k_{2}}}\right)^{q} d r_{2} \\
& \leq C \sum_{k_{1} \geq 1} \sum_{k_{2} \geq 1} m_{1, k_{1}}^{-q \alpha_{1}} m_{2, k_{2}}^{-q \alpha_{2}}\left|a_{k_{1}, k_{2}}\right|^{q}
\end{aligned}
$$

If $q=\infty$, then we have

$$
\begin{aligned}
\|f\|_{p, \infty, \alpha} & =\sup _{0<r_{1}<1} \sup _{0<r_{2}<1}\left(1-r_{1}\right)^{\alpha_{1}}\left(1-r_{2}\right)^{\alpha_{2}} M_{p}(r, f) \\
& \leq \sup _{0<r_{1}<1} \sup _{0<r_{2}<1}\left(1-r_{1}\right)^{\alpha_{1}}\left(1-r_{2}\right)^{\alpha_{2}} \sum_{k_{1}, k_{2} \geq 1}\left|a_{k_{1}, k_{2}}\right| r_{1}^{m_{1, k_{1}}} r_{2}^{m_{2, k_{2}}} \\
& \leq \sup _{0<r_{1}<1}\left(1-r_{1}\right)^{\alpha_{1}} \sum_{k_{1} \geq 1}\left(\sup _{0<r_{2}<1}\left(1-r_{2}\right)^{\alpha_{2}} \sum_{k_{2} \geq 1}\left|a_{k_{1}, k_{2}}\right| r_{2}^{m_{2, k_{2}}}\right) r_{1}^{m_{1, k_{1}}} \\
& \leq C \sup _{0<r_{1}<1}\left(1-r_{1}\right)^{\alpha_{1}} \sum_{k_{1} \geq 1} \sup _{k_{2} \geq 1} \frac{\left|a_{k_{1}, k_{2}}\right|}{m_{2, k_{2}}^{\alpha_{2}}} r_{1}^{m_{1, k_{1}}} \\
& \leq C \sup _{k_{1} \geq 1} \sup _{k_{2} \geq 1} \frac{\left|a_{k_{1}, k_{2}}\right|}{m_{1, k_{1}}^{\alpha_{1}} m_{2, k_{2}}^{\alpha_{2}}} .
\end{aligned}
$$

Proof of implications (i) \Longrightarrow (ii) and (iii) \Longrightarrow (iv)
By Lemma 4 we have

$$
M_{p}(r, f) \cong\left(\sum_{k_{1}, k_{2} \geq 1}\left|a_{k_{1}, k_{2}}\right|^{2} r_{1}^{2 m_{1, k_{1}}} r_{2}^{2 m_{2, k_{2}}}\right)^{1 / 2}
$$

Thus

$$
M_{p}(r, f) \geq \sup _{k_{1}, k_{2} \geq 1}\left|a_{k_{1}, k_{2}}\right| r_{1}^{m_{1, k_{1}}} r_{2}^{m_{2, k_{2}}}, \quad 0<p<\infty
$$

This holds also for $p=\infty$. Hence, if $0<q<\infty$, by applying Lemma 2 twice we get

$$
\begin{aligned}
\|f\|_{p, q, \alpha}^{q} & \geq \int_{0}^{1}\left(1-r_{1}\right)^{q \alpha_{1}-1} d r_{1} \int_{0}^{1}\left(1-r_{2}\right)^{q \alpha_{2}-1} \\
& \times\left(\sup _{k_{2} \geq 1}\left(\sup _{k_{1} \geq 1}\left|a_{k_{1}, k_{2}}\right| r_{1}^{m_{1, k_{1}}}\right) r_{2}^{m_{2, k_{2}}}\right)^{q} d r_{2} \\
& \geq C \int_{0}^{1}\left(1-r_{1}\right)^{q \alpha_{1}-1} \sum_{k_{2} \geq 1} m_{2, k_{2}}^{-q \alpha_{2}}\left(\sup _{k_{1} \geq 1}\left|a_{k_{1}, k_{2}}\right| r_{1}^{m_{1, k_{1}}}\right)^{q} d r_{1} \\
& =C \sum_{k_{2} \geq 1} m_{2, k_{2}}^{-q \alpha_{2}} \int_{0}^{1}\left(1-r_{1}\right)^{q \alpha_{1}-1}\left(\sup _{k_{1} \geq 1}\left|a_{k_{1}, k_{2}}\right| r_{1}^{m_{1, k_{1}}}\right)^{q} d r_{1} \\
& \geq C \sum_{k_{1} \geq 1} \sum_{k_{2} \geq 1} m_{2, k_{2}}^{-q \alpha_{2}} m_{1, k_{1}}^{-q \alpha_{1}}\left|a_{k_{1}, k_{2}}\right|^{q} .
\end{aligned}
$$

If $q=\infty$, then

$$
\begin{aligned}
\|f\|_{p, \infty, \alpha} & =\sup _{0<r_{1}<1} \sup _{0<r_{2}<1}\left(1-r_{1}\right)^{\alpha_{1}}\left(1-r_{2}\right)^{\alpha_{2}} M_{p}(r, f) \\
& \geq \sup _{0<r_{1}<1} \sup _{0<r_{2}<1}\left(1-r_{1}\right)^{\alpha_{1}}\left(1-r_{2}\right)^{\alpha_{2}} \sup _{k_{1}, k_{2} \geq 1}\left|a_{k_{1}, k_{2}}\right| r_{1}^{m_{1, k_{1}}} r_{2}^{m_{2, k_{2}}} \\
& \geq C \sup _{k_{1}, k_{2} \geq 1} \frac{\left|a_{k_{1}, k_{2}}\right|}{m_{1, k_{1}}^{\alpha_{1}} m_{2, k_{2}}^{\alpha_{1}}} .
\end{aligned}
$$

This finishes the proof of Theorem 2.

References

[Av] K. L. Avetisyan, Hardy-Bloch type spaces and lacunary series on the polydisk, Glasgow Math.J. 49(2007),345-356.
[Ch] J. S. Choa, Some properties of analytic functions on the unit ball with Hadamard gaps, Complex Var. Theory Appl. 29(1996), no. 3, 277-285.
[Du] P. L. Duren, Theory of H^{p} Spaces, Academic Press, New York 1970; reprinted by Dover, Mineola, NY 2000.
[JP] M. Jevtić, M. Pavlović, Coefficient multipliers on spaces of analytic functions, Acta Sci. Math. (Szeged) 64(1998), 531-545.
[MP] M. Mateljević, M. Pavlović, Duality and multipliers in Lipschitz spaces, Proc. International Conference on Complex Analysis, Varna (1983), 151-161.
[P] M. Pavlović, Introduction to function spaces in the unit ball of C^{n}, Mat. Inst. SANU, Belgrade, 2004.
[Ru1] W. Rudin, Function theory in polydiscs, Benjamin, New York, 1969.
[Ru2] W. Rudin, Function theory in the unit ball of C^{n}, Springer-Verlag, New York, 1980.
[St] S. Stević, A generalization of a result of Choa on analytic functions with Hadamard gaps, J. Korean Math. Soc. 43(2006), 579-591.
[YO] W. Yang, C. Oyang, Exact location of α-Bloch spaces in L_{a}^{p} and H^{p} of a complex unit ball, Rocky Mountain J. Math. 30(2000), 1151-1169.
[ZZ] R. Zhao, K. Zhu, Theory of Bergman spaces in the unit ball of C^{n}, arxiv:math. CVI0611093v1 3 nov 2006.
[Zy] A. Zygmund, Trigonometric series, Cambridge University Press, 1959.

Miroljub Jevtić:
Matematički Fakultet, p.p. 550, 11000 Belgrade, Serbia
E-mail: jevtic@matf.bg.ac.rs
Miroslav Pavlović:
Matematički Fakultet, p.p. 550, 11000 Belgrade, Serbia
E-mail: pavlovic@matf.bg.ac.rs

