ON SOME WEIGHTED INTEGRAL INEQUALITIES FOR CONVEX FUNCTIONS RELATED TO FEJÉR'S RESULT

K.-L. Tseng*, Shiow-Ru Hwang and S. S. Dragomir

Abstract

In this paper, we introduce some functionals associated with weighted integral means for convex functions. Some new Fejér-type inequalities are obtained as well.

1 Introduction

Throughout this paper, let $f:[a, b] \rightarrow \mathbb{R}$ be convex, $g:[a, b] \rightarrow[0, \infty)$ be integrable and symmetric to $\frac{a+b}{2}$. We define the following mappings on $[0,1]$ that are associated with the well known Hermite-Hadamard inequality [1]

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{2} \tag{1.1}
\end{equation*}
$$

namely

$$
\begin{gathered}
G(t)=\frac{1}{2}\left[f\left(t a+(1-t) \frac{a+b}{2}\right)+f\left(t b+(1-t) \frac{a+b}{2}\right)\right] \\
Q(t)=\frac{1}{2}[f(t a+(1-t) b)+f(t b+(1-t) a)] \\
H(t)=\frac{1}{b-a} \int_{a}^{b} f\left(t x+(1-t) \frac{a+b}{2}\right) d x \\
H_{g}(t)=\int_{a}^{b} f\left(t x+(1-t) \frac{a+b}{2}\right) g(x) d x
\end{gathered}
$$

2010 Mathematics Subject Classifications. 26D15.
Key words and Phrases. Hermite-Hadamard inequality, Fejér inequality, Convex function.
Received: June 5, 2010
Communicated by Vladimir Rakočević
*This research was partially supported by grant NSC 98-2115-M-156-004.

$$
\begin{gathered}
I(t)=\int_{a}^{b} \frac{1}{2}\left[f\left(t \frac{x+a}{2}+(1-t) \frac{a+b}{2}\right)\right. \\
\left.\quad+f\left(t \frac{x+b}{2}+(1-t) \frac{a+b}{2}\right)\right] g(x) d x \\
P(t)=\frac{1}{2(b-a)} \int_{a}^{b}\left[f\left(\left(\frac{1+t}{2}\right) a+\left(\frac{1-t}{2}\right) x\right)\right. \\
\left.\quad+f\left(\left(\frac{1+t}{2}\right) b+\left(\frac{1-t}{2}\right) x\right)\right] d x \\
P_{g}(t)=\int_{a}^{b} \frac{1}{2}\left[f\left(\left(\frac{1+t}{2}\right) a+\left(\frac{1-t}{2}\right) x\right) g\left(\frac{x+a}{2}\right)\right. \\
\left.\quad+f\left(\left(\frac{1+t}{2}\right) b+\left(\frac{1-t}{2}\right) x\right) g\left(\frac{x+b}{2}\right)\right] d x \\
N(t)=\int_{a}^{b} \frac{1}{2}\left[f\left(t a+(1-t) \frac{x+a}{2}\right)+f\left(t b+(1-t) \frac{x+b}{2}\right)\right] g(x) d x \\
L(t)=\frac{1}{2(b-a)} \int_{a}^{b}[f(t a+(1-t) x)+f(t b+(1-t) x)] d x \\
L_{g}(t)=\frac{1}{2} \int_{a}^{b}[f(t a+(1-t) x)+f(t b+(1-t) x)] g(x) d x
\end{gathered}
$$

and

$$
\begin{aligned}
& S_{g}(t)=\frac{1}{4} \int_{a}^{b}\left[f\left(t a+(1-t) \frac{x+a}{2}\right)+f\left(t a+(1-t) \frac{x+b}{2}\right)\right. \\
&\left.+f\left(t b+(1-t) \frac{x+a}{2}\right)+f\left(t b+(1-t) \frac{x+b}{2}\right)\right] g(x) d x
\end{aligned}
$$

Remark 1. We note that $H=H_{g}=I, P=P_{g}=N$ and $L=L_{g}=S_{g}$ on $[0,1]$ as $g(x)=\frac{1}{b-a}(x \in[a, b])$.

For some results which generalize, improve, and extend the famous HermiteHadamard integral inequality, see [2] - [19].

In [8], Fejér established the following weighted generalization of the HermiteHadamard inequality (1.1) :

Theorem A. Let f, g be defined as above. Then

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \int_{a}^{b} g(x) d x \leq \int_{a}^{b} f(x) g(x) d x \leq \frac{f(a)+f(b)}{2} \int_{a}^{b} g(x) d x \tag{1.2}
\end{equation*}
$$

In [11], Tseng et al. established the following Fejér-type inequalities.
Theorem B. Let f, g be defined as above. Then we have

$$
\begin{align*}
f\left(\frac{a+b}{2}\right) \int_{a}^{b} g(x) d x & \leq \frac{f\left(\frac{3 a+b}{4}\right)+f\left(\frac{a+3 b}{4}\right)}{2} \int_{a}^{b} g(x) d x \tag{1.3}\\
& \leq \int_{a}^{b} \frac{1}{2}\left[f\left(\frac{x+a}{2}\right)+f\left(\frac{x+b}{2}\right)\right] g(x) d x \\
& \leq \frac{1}{2}\left[f\left(\frac{a+b}{2}\right)+\frac{f(a)+f(b)}{2}\right] \int_{a}^{b} g(x) d x \\
& \leq \frac{f(a)+f(b)}{2} \int_{a}^{b} g(x) d x .
\end{align*}
$$

In [2], Dragomir established the following Hermite-Hadamard-type inequality which refines the first inequality of (1.1).

Theorem C. Let f, H be defined as above. Then H is convex, increasing on $[0,1]$, and for all $t \in[0,1]$, we have

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right)=H(0) \leq H(t) \leq H(1)=\frac{1}{b-a} \int_{a}^{b} f(x) d x \tag{1.4}
\end{equation*}
$$

In [15], Yang and Hong obtained the following Hermite-Hadamard-type inequality which is a refinement of the second inequality in (1.1).

Theorem D. Let f, P be defined as above. Then P is convex, increasing on $[0,1]$, and for all $t \in[0,1]$, we have

$$
\begin{equation*}
\frac{1}{b-a} \int_{a}^{b} f(x) d x=P(0) \leq P(t) \leq P(1)=\frac{f(a)+f(b)}{2} . \tag{1.5}
\end{equation*}
$$

Yang and Tseng [16] and Tseng et al. [11] established the following Fejér-type inequalities which are weighted generalizations of Theorems C-D.

Theorem E ([16]). Let f, g, H_{g}, P_{g} be defined as above. Then H_{g}, P_{g} are convex, increasing on $[0,1]$, and for all $t \in[0,1]$, we have

$$
\begin{align*}
f\left(\frac{a+b}{2}\right) \int_{a}^{b} g(x) d x & =H_{g}(0) \leq H_{g}(t) \leq H_{g}(1) \tag{1.6}\\
& =\int_{a}^{b} f(x) g(x) d x \\
& =P_{g}(0) \leq P_{g}(t) \leq P_{g}(1) \\
& =\frac{f(a)+f(b)}{2} \int_{a}^{b} g(x) d x
\end{align*}
$$

Theorem $\mathbf{F}([11])$. Let f, g, I, N be defined as above. Then I, N are convex, increasing on $[0,1]$, and for all $t \in[0,1]$, we have

$$
\begin{align*}
f\left(\frac{a+b}{2}\right) \int_{a}^{b} g(x) d x & =I(0) \leq I(t) \leq I(1) \tag{1.7}\\
& =\int_{a}^{b} \frac{1}{2}\left[f\left(\frac{x+a}{2}\right)+f\left(\frac{x+b}{2}\right)\right] g(x) d x \\
& =N(0) \leq N(t) \leq N(1) \\
& =\frac{f(a)+f(b)}{2} \int_{a}^{b} g(x) d x
\end{align*}
$$

In [7], Dragomir et al. established the following Hermite-Hadamard-type inequality.
Theorem G. Let f, H, G, L be defined as above. Then G is convex, increasing on $[0,1], L$ is convex on $[0,1]$, and for all $t \in[0,1]$, we have

$$
\begin{equation*}
H(t) \leq G(t) \leq L(t) \leq \frac{1-t}{b-a} \int_{a}^{b} f(x) d x+t \cdot \frac{f(a)+f(b)}{2} \leq \frac{f(a)+f(b)}{2} \tag{1.8}
\end{equation*}
$$

In [12] - [13], Tseng et al. obtained the following theorems related to Fejér's result which in their turn are weighted generalizations of the inequality (1.8).
Theorem H ([12]). Let f, g, G, H_{g}, L_{g} be defined as above. Then L_{g} is convex, increasing on $[0,1]$, and for all $t \in[0,1]$, we have

$$
\begin{align*}
H_{g}(t) & \leq G(t) \int_{a}^{b} g(x) d x \tag{1.9}\\
& \leq L_{g}(t) \\
& \leq(1-t) \int_{a}^{b} f(x) g(x) d x+t \cdot \frac{f(a)+f(b)}{2} \int_{a}^{b} g(x) d x \\
& \leq \frac{f(a)+f(b)}{2} \int_{a}^{b} g(x) d x
\end{align*}
$$

Theorem I ([13]). Let f, g, G, I, S_{g} be defined as above. Then S_{g} is convex, increasing on $[0,1]$, and for all $t \in[0,1]$, we have

$$
\begin{align*}
I(t) \leq & G(t) \int_{a}^{b} g(x) d x \leq S_{g}(t) \tag{1.10}\\
\leq & (1-t) \int_{a}^{b} \frac{1}{2}\left[f\left(\frac{x+a}{2}\right)+f\left(\frac{x+b}{2}\right)\right] g(x) d x \\
& \quad+t \cdot \frac{f(a)+f(b)}{2} \int_{a}^{b} g(x) d x \\
\leq & \frac{f(a)+f(b)}{2} \int_{a}^{b} g(x) d x
\end{align*}
$$

In this paper, we provide some new Fejér-type inequalities related to the mappings $G, Q, H_{g}, P_{g}, I, N, L_{g}, S_{g}$ defined above. They generalize known results obtained in relation with the Hermite-Hadamard inequality and therefore are useful in obtaining various results for means when the convex function and the weight take particular forms.

2 Main Results

The following lemmae are needed in the proofs of our main results:
Lemma 2 (see [9]). Let f be defined as above and let $a \leq A \leq C \leq D \leq B \leq b$ with $A+B=C+D$. Then

$$
f(C)+f(D) \leq f(A)+f(B) .
$$

The assumptions in Lemma 2 can be weakened as in the following lemma:
Lemma 3. Let f be defined as above and let $a \leq A \leq C \leq B \leq b$ and $a \leq A \leq$ $D \leq B \leq b$ with $A+B=C+D$. Then

$$
f(C)+f(D) \leq f(A)+f(B) .
$$

Lemma 4 (see [14]). Let f, G, Q be defined as above. Then Q is symmetric about $\frac{1}{2}, Q$ is decreasing on $\left[0, \frac{1}{2}\right]$ and increasing on $\left[\frac{1}{2}, 1\right]$,

$$
\begin{gathered}
G(2 t) \leq Q(t) \quad\left(t \in\left[0, \frac{1}{4}\right]\right), \\
G(2 t) \geq Q(t) \quad\left(t \in\left[\frac{1}{4}, \frac{1}{2}\right]\right), \\
G(2(1-t)) \geq Q(t) \quad\left(t \in\left[\frac{1}{2}, \frac{3}{4}\right]\right)
\end{gathered}
$$

and

$$
G(2(1-t)) \leq Q(t) \quad\left(t \in\left[\frac{3}{4}, 1\right]\right) .
$$

Now, we are ready to state and prove our results.
Theorem 5. Let $f, g, G, H_{g}, P_{g}, L_{g}, S_{g}$ be defined as above. Then:

1. The inequality

$$
\begin{align*}
\int_{a}^{b} f(x) g(x) d x & \leq 2\left[\int_{a}^{\frac{3 a+b}{4}} f(x) g(2 x-a) d x+\int_{\frac{a+3 b}{4}}^{b} f(x) g(2 x-b) d x\right] \tag{2.1}\\
& \leq \int_{0}^{1} P_{g}(t) d t \\
& \leq \frac{1}{2}\left[\int_{a}^{b} f(x) g(x) d x+\frac{f(a)+f(b)}{2} \int_{a}^{b} g(x) d x\right]
\end{align*}
$$

holds.
2. The inequalities

$$
\begin{align*}
L_{g}(t) & \leq P_{g}(t) \tag{2.2}\\
& \leq(1-t) \int_{a}^{b} f(x) g(x) d x+t \cdot \frac{f(a)+f(b)}{2} \int_{a}^{b} g(x) d x \\
& \leq \frac{f(a)+f(b)}{2} \int_{a}^{b} g(x) d x
\end{align*}
$$

hold for all $t \in[0,1]$.
3. If f is differentiable on $[a, b]$, then we have the inequalities

$$
\begin{gather*}
0 \leq t\left[\frac{1}{b-a} \int_{a}^{b} f(x) d x-f\left(\frac{a+b}{2}\right)\right] \cdot \inf _{x \in[a, b]} g(x) \tag{2.4}\\
\leq P_{g}(t)-\int_{a}^{b} f(x) g(x) d x \\
0 \leq P_{g}(t)-f\left(\frac{a+b}{2}\right) \int_{a}^{b} g(x) d x \tag{2.5}\\
\leq \frac{\left(f^{\prime}(b)-f^{\prime}(a)\right)(b-a)}{4} \int_{a}^{b} g(x) d x \\
0 \leq L_{g}(t)-H_{g}(t) \leq \frac{\left(f^{\prime}(b)-f^{\prime}(a)\right)(b-a)}{4} \int_{a}^{b} g(x) d x \tag{2.6}\\
0 \leq P_{g}(t)-L_{g}(t) \leq \frac{\left(f^{\prime}(b)-f^{\prime}(a)\right)(b-a)}{4} \int_{a}^{b} g(x) d x \tag{2.7}\\
0 \leq P_{g}(t)-H_{g}(t) \leq \frac{\left(f^{\prime}(b)-f^{\prime}(a)\right)(b-a)}{4} \int_{a}^{b} g(x) d x \tag{2.8}\\
0 \leq N(t)-I(t) \leq \frac{\left(f^{\prime}(b)-f^{\prime}(a)\right)(b-a)}{4} \int_{a}^{b} g(x) d x \tag{2.9}
\end{gather*}
$$

and

$$
\begin{equation*}
0 \leq S_{g}(t)-I(t) \leq \frac{\left(f^{\prime}(b)-f^{\prime}(a)\right)(b-a)}{4} \int_{a}^{b} g(x) d x \tag{2.10}
\end{equation*}
$$

for all $t \in[0,1]$.

Proof. (1) By using simple integration techniques and the hypothesis of g, we have the following identities

$$
\begin{gather*}
\int_{a}^{b} f(x) g(x) d x=2 \int_{a}^{\frac{a+b}{2}} \int_{0}^{\frac{1}{2}}[f(x)+f(a+b-x)] g(x) d t d x \tag{2.11}\\
2\left[\int_{a}^{\frac{3 a+b}{4}} f(x) g(2 x-a) d x+\int_{\frac{a+3 b}{4}}^{b} f(x) g(2 x-b) d x\right] \tag{2.12}\\
=2 \int_{a}^{\frac{3 a+b}{4}}[f(x)+f(a+b-x)] g(2 x-a) d x \\
=2 \int_{a}^{\frac{a+b}{2}} \int_{0}^{\frac{1}{2}}\left[f\left(\frac{a+x}{2}\right)+f\left(\frac{a+2 b-x}{2}\right)\right] g(x) d t d x \\
\begin{aligned}
\int_{0}^{1} P_{g}(t) d t & =\int_{a}^{\frac{a+b}{2}} \int_{0}^{1} f(t a+(1-t) x) g(x) d t d x \\
& +\int_{\frac{a+b}{2}}^{b} \int_{0}^{1} f(t b+(1-t) x) g(x) d t d x \\
& \int_{0}^{\frac{a+b}{2}} f(t a+(1-t) x) g(x) d t d x \\
& +\int_{a}^{\frac{a+b}{2}} \int_{0}^{1} f(t b+(1-t)(a+b+x)) g(x) d t d x \\
= & \int_{a}^{\frac{a+b}{2}} \int_{0}^{\frac{1}{2}}[f(t x+(1-t) a)+f(t a+(1-t) x)] g(x) d t d x \\
& +\int_{a}^{\frac{a+b}{2}} \int_{0}^{\frac{1}{2}}[f(t b+(1-t)(a+b-x)) \\
& +f(t(a+b-x)+(1-t) b)] g(x) d t d x
\end{aligned} \tag{2.13}
\end{gather*}
$$

and

$$
\begin{align*}
\frac{1}{2}\left[\int_{a}^{b} f(x) g(x) d x+\right. & \left.\frac{f(a)+f(b)}{2} \int_{a}^{b} g(x) d x\right] \\
= & \int_{a}^{\frac{a+b}{2}} \int_{0}^{\frac{1}{2}}[f(a)+f(x)] g(x) d t d x \\
& +\int_{a}^{\frac{a+b}{2}} \int_{0}^{\frac{1}{2}}[f(a+b-x)+f(b)] g(x) d t d x \tag{2.14}
\end{align*}
$$

By Lemma 2, the following inequalities hold for all $t \in\left[0, \frac{1}{2}\right]$ and $x \in\left[a, \frac{a+b}{2}\right]$.

$$
\begin{equation*}
f(x)+f(a+b-x) \leq f\left(\frac{a+x}{2}\right)+f\left(\frac{a+2 b-x}{2}\right) \tag{2.15}
\end{equation*}
$$

holds when $A=\frac{a+x}{2}, C=x, D=a+b-x$ and $B=\frac{a+2 b-x}{2}$ in Lemma 2 .

$$
\begin{equation*}
f\left(\frac{a+x}{2}\right) \leq \frac{1}{2}[f(t x+(1-t) a)+f(t a+(1-t) x)] \tag{2.16}
\end{equation*}
$$

holds when $A=t x+(1-t) a, C=D=\frac{a+x}{2}$ and $B=t a+(1-t) x$ in Lemma 2.

$$
\begin{align*}
& f\left(\frac{a+2 b-x}{2}\right) \\
& \quad \leq \frac{1}{2}[f(t b+(1-t)(a+b-x))+f(t(a+b-x)+(1-t) b)] \tag{2.17}
\end{align*}
$$

holds when $A=t b+(1-t)(a+b-x), C=D=\frac{a+2 b-x}{2}$ and $B=t(a+b-x)+$ $(1-t) b$ in Lemma 2 .

$$
\begin{equation*}
\frac{1}{2}[f(t x+(1-t) a)+f(t a+(1-t) x)] \leq \frac{f(a)+f(x)}{2} \tag{2.18}
\end{equation*}
$$

holds when $A=a, C=t x+(1-t) a, D=t a+(1-t) x$ and $B=x$ in Lemma 2.

$$
\begin{align*}
\frac{1}{2}[f(t b+(1-t)(a+b-x))+f(t(a+b-x)+ & (1-t) b)] \\
& \leq \frac{f(a+b-x)+f(b)}{2} \tag{2.19}
\end{align*}
$$

holds as $A=a+b-x, C=t b+(1-t)(a+b-x), D=t(a+b-x)+(1-t) b$ and $B=b$ in Lemma 2. Multiplying the inequalities (2.15) - (2.19) by $g(x)$ and integrating them over t on $\left[0, \frac{1}{2}\right]$, over x on $\left[a, \frac{a+b}{2}\right]$ and using identities (2.11) (2.14), we derive (2.1).
(2) Using substitution rules for integration and the hypothesis of g, we have the following identities

$$
\begin{align*}
P_{g}(t)= & \int_{a}^{\frac{a+b}{2}} f(t a+(1-t) x) g(x) d x \tag{2.20}\\
& +\int_{\frac{a+b}{2}}^{b} f(t b+(1-t) x) g(x) d x \\
= & \int_{a}^{\frac{a+b}{2}}[f(t a+(1-t) x) \\
& +f(t b+(1-t)(a+b-x))] g(x) d x
\end{align*}
$$

and

$$
\begin{align*}
L_{g}(t)= & \frac{1}{2}\left[\int_{a}^{\frac{a+b}{2}} f(t a+(1-t) x) g(x) d x\right. \tag{2.21}\\
& \left.+\int_{\frac{a+b}{2}}^{b} f(t b+(1-t) x) g(x) d x\right] \\
& +\frac{1}{2}\left[\int_{\frac{a+b}{2}}^{b} f(t a+(1-t) x) g(x) d x\right. \\
& \left.+\int_{a}^{\frac{a+b}{2}} f(t b+(1-t) x) g(x) d x\right] \\
=\frac{1}{2} P_{g}(t) & +\frac{1}{2} \int_{a}^{\frac{a+b}{2}}[f(t a+(1-t)(a+b-x)) \\
& +f(t b+(1-t) x)] g(x) d x
\end{align*}
$$

for all $t \in[0,1]$.
If we choose $A=t a+(1-t) x, C=t a+(1-t)(a+b-x), D=t b+(1-t) x$ and $B=t b+(1-t)(a+b-x)$ in Lemma 3, then the inequality

$$
\begin{align*}
f(t a+(1-t)(a+b-x)) & +f(t b+(1-t) x) \\
\leq & f(t a+(1-t) x)+f(t b+(1-t)(a+b-x)) \tag{2.22}
\end{align*}
$$

holds for all $t \in[0,1]$ and $x \in\left[a, \frac{a+b}{2}\right]$. Multiplying the inequality (2.22) by $g(x)$, integrating both sides over x on $\left[a, \frac{a+b}{2}\right]$ and using identities (2.20) - (2.21), we derive the first inequality of (2.2). The second and third inequalities of (2.2) can be obtained by the convexity of f and (1.2). This proves (2.2).

Again, using substitution rules for integration and the hypothesis of g, we have the following identity

$$
\begin{aligned}
N(t)=\int_{a}^{b} \frac{1}{2} & {\left[f\left(t a+(1-t) \frac{x+a}{2}\right)\right.} \\
& \left.+f\left(t b+(1-t) \frac{a+2 b-x}{2}\right)\right] g(x) d x
\end{aligned}
$$

$$
\begin{align*}
& =\int_{a}^{\frac{a+b}{2}}[f(t a+(1-t) x) \\
& \quad+f(t b+(1-t)(a+b-x))] g(2 x-a) d x \tag{2.23}\\
& =\int_{a}^{\frac{3 a+b}{4}}[f(t a+(1-t) x) \\
& \\
& \quad+f\left(t a+(1-t)\left(\frac{3 a+b}{2}-x\right)\right) \\
& \quad+f\left(t b+(1-t)\left(\frac{b-a}{2}+x\right)\right) \tag{2.24}\\
& \quad \\
& \quad+f(t b+(1-t)(a+b-x))] g(2 x-a) d x
\end{align*}
$$

for all $t \in[0,1]$. By Lemma 2, the following inequalities hold for all $t \in[0,1]$ and $x \in\left[a, \frac{3 a+b}{4}\right]$.

$$
\begin{align*}
& f(t a+(1-t) x)+f\left(t a+(1-t)\left(\frac{3 a+b}{2}-x\right)\right) \\
& \quad \leq f(a)+f\left(t a+(1-t) \frac{a+b}{2}\right) \tag{2.25}
\end{align*}
$$

holds when $A=a, C=t a+(1-t) x, D=t a+(1-t)\left(\frac{3 a+b}{2}-x\right)$ and $B=$ $t a+(1-t) \frac{a+b}{2}$ in Lemma 2.

$$
\begin{align*}
f\left(t b+(1-t)\left(\frac{b-a}{2}+x\right)\right)+f(t b+ & (1-t)(a+b-x)) \\
& \leq f\left(t b+(1-t) \frac{a+b}{2}\right)+f(b) \tag{2.26}
\end{align*}
$$

holds when $A=t b+(1-t) \frac{a+b}{2}, C=t b+(1-t)\left(\frac{b-a}{2}+x\right), D=t b+(1-t)(a+b-x)$ and $B=b$ in Lemma 2. Multiplying the inequalities (2.25) - (2.26) by $g(2 x-a)$ and integrating them over x on $\left[a, \frac{3 a+b}{4}\right]$ and using (2.24), we have

$$
\begin{equation*}
N(t) \leq \frac{1}{2}\left[\frac{f(a)+f(b)}{2}+G(t)\right] \int_{a}^{b} g(x) d x \tag{2.27}
\end{equation*}
$$

for all $t \in[0,1]$. Using (2.27), we derive the second inequality of (2.3).
Again, using Lemma 2, we have

$$
\begin{align*}
f\left(t a+(1-t) \frac{a+b}{2}\right)+ & f\left(t b+(1-t) \frac{a+b}{2}\right) \\
& \leq f(t a+(1-t) x)+f(t b+(1-t)(a+b-x)) \tag{2.28}
\end{align*}
$$

for all $t \in[0,1]$ and $x \in\left[a, \frac{a+b}{2}\right]$. Multiplying the inequality (2.28) by $g(2 x-a)$, integrating both sides over x on $\left[a, \frac{a+b}{2}\right]$ and using (2.23), we derive the first inequality of (2.3).

This proves (2.3).
(3) Integrating by parts, we have

$$
\begin{align*}
\frac{1}{b-a} \int_{a}^{\frac{a+b}{2}}\left[(a-x) f^{\prime}(x)+(x-a) f^{\prime}\right. & (a+b-x)] d x \\
& =\frac{1}{b-a} \int_{a}^{b} f(x) d x-f\left(\frac{a+b}{2}\right) . \tag{2.29}
\end{align*}
$$

Using substitution rules for integration, we have the following identity

$$
\begin{equation*}
\frac{1}{b-a} \int_{a}^{b} f(x) d x=\frac{1}{b-a} \int_{a}^{\frac{a+b}{2}}[f(x)+f(a+b-x)] d x . \tag{2.30}
\end{equation*}
$$

Now, using the convexity of f and $g(x) \geq 0$ on $[a, b]$, the inequality

$$
\begin{aligned}
& {[f(t a+(1-t) x)-f(x)] g(x)} \\
& \quad+[f(t b+(1-t)(a+b-x))-f(a+b-x)] g(x) \\
& \quad \geq t(a-x) f^{\prime}(x) g(x)+t(x-a) f^{\prime}(a+b-x) g(x) \\
& =t(x-a)\left[f^{\prime}(a+b-x)-f^{\prime}(x)\right] g(x) \\
& \geq t(x-a)\left[f^{\prime}(a+b-x)-f^{\prime}(x)\right] \inf _{x \in[a, b]} g(x)
\end{aligned}
$$

holds for all $t \in[0,1]$ and $x \in\left[a, \frac{a+b}{2}\right]$. Integrating the above inequality over x on $\left[a, \frac{a+b}{2}\right]$, dividing both sides by $(b-a)$ and using (1.1), (2.20), (2.29) and (2.30), we derive (2.4).

On the other hand, we have

$$
\begin{aligned}
\frac{f(a)-f\left(\frac{a+b}{2}\right)}{2} \int_{a}^{b} g(x) d x & \leq \frac{1}{2}\left(a-\frac{a+b}{2}\right) f^{\prime}(a) \int_{a}^{b} g(x) d x \\
& =\frac{a-b}{4} f^{\prime}(a) \int_{a}^{b} g(x) d x
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{f(b)-f\left(\frac{a+b}{2}\right)}{2} \int_{a}^{b} g(x) d x & \leq \frac{1}{2}\left(b-\frac{a+b}{2}\right) f^{\prime}(b) \int_{a}^{b} g(x) d x \\
& =\frac{b-a}{4} f^{\prime}(b) \int_{a}^{b} g(x) d x
\end{aligned}
$$

and taking their sum we obtain:

$$
\begin{align*}
& {\left[\frac{f(a)+f(b)}{2}-f\left(\frac{a+b}{2}\right)\right] \int_{a}^{b} g(x) d x} \\
& \quad \leq \frac{\left(f^{\prime}(b)-f^{\prime}(a)\right)(b-a)}{4} \int_{a}^{b} g(x) d x \tag{2.31}
\end{align*}
$$

Finally, (2.5) - (2.10) follow from (1.6), (1.7), (1.9), (1.10), (2.2) and (2.31).
This completes the proof.
Let $g(x)=\frac{1}{b-a}(x \in[a, b])$. Then the following Hermite-Hadamard-type inequalities, which are also given in [14], are natural consequences of Theorem 5.
Corollary 6. Let f, G, H, L, P be defined as above. Then:

1. The inequality

$$
\begin{aligned}
\frac{1}{b-a} \int_{a}^{b} f(x) d x & \leq \frac{2}{b-a} \int_{\left[a, \frac{3 a+b}{4}\right] \cup\left[\frac{a+3 b}{4}, b\right]} f(x) d x \\
& \leq \int_{0}^{1} P(t) d t \\
& \leq \frac{1}{2}\left[\frac{1}{b-a} \int_{a}^{b} f(x) d x+\frac{f(a)+f(b)}{2}\right]
\end{aligned}
$$

holds.
2. The inequalities

$$
L(t) \leq P(t) \leq \frac{1-t}{b-a} \int_{a}^{b} f(x) d x+t \cdot \frac{f(a)+f(b)}{2} \leq \frac{f(a)+f(b)}{2}
$$

and

$$
0 \leq P(t)-G(t) \leq \frac{f(a)+f(b)}{2}-P(t)
$$

hold for all $t \in[0,1]$.
3. If f is differentiable on $[a, b]$, then we have the inequalities

$$
\begin{aligned}
& 0 \leq t\left[\frac{1}{b-a} \int_{a}^{b} f(x) d x-f\left(\frac{a+b}{2}\right)\right] \\
& \leq P(t)-\frac{1}{b-a} \int_{a}^{b} f(x) d x \\
& 0 \leq P(t)-f\left(\frac{a+b}{2}\right) \leq \frac{\left(f^{\prime}(b)-f^{\prime}(a)\right)(b-a)}{4} ; \\
& 0 \leq L(t)-H(t) \leq \frac{\left(f^{\prime}(b)-f^{\prime}(a)\right)(b-a)}{4} ; \\
& 0 \leq P(t)-L(t) \leq \frac{\left(f^{\prime}(b)-f^{\prime}(a)\right)(b-a)}{4}
\end{aligned}
$$

and

$$
0 \leq P(t)-H(t) \leq \frac{\left(f^{\prime}(b)-f^{\prime}(a)\right)(b-a)}{4}
$$

for all $t \in[0,1]$.

Remark 7. In Theorem 5, the inequality (2.1) gives a new refinement of the Fejér inequality (1.2).

Remark 8. In Theorem 5, the inequality (2.2) refines the Fejér-type inequality (1.9) .

In the next theorem, we point out some inequalities for the functions $G, Q, H_{g}, P_{g}, S_{g}$ considered above:

Theorem 9. Let $f, g, G, Q, H_{g}, P_{g}, S_{g}$ be defined as above. Then:

1. The inequalities

$$
\begin{align*}
H_{g}(t) & \leq Q(t) \int_{a}^{b} g(x) d x \\
& \leq \frac{f(a)+f(b)}{2} \int_{a}^{b} g(x) d x \quad\left(t \in\left[0, \frac{1}{3}\right]\right) \tag{2.32}
\end{align*}
$$

and

$$
\begin{align*}
f\left(\frac{a+b}{2}\right) \int_{a}^{b} g(x) d x & \leq Q(t) \int_{a}^{b} g(x) d x \\
& \leq P_{g}(t) \quad\left(t \in\left[\frac{1}{3}, 1\right]\right) \tag{2.33}
\end{align*}
$$

hold for all $t \in[0,1]$.
2. The inequality

$$
\begin{align*}
0 & \leq S_{g}(t)-G(t) \int_{a}^{b} g(x) d x \\
& \leq \frac{1}{2}\left[\frac{f(a)+f(b)}{2}+Q(t)\right] \int_{a}^{b} g(x) d x-S_{g}(t) \tag{2.34}
\end{align*}
$$

holds for all $t \in[0,1]$.
Proof. (1) We discuss the following two cases.
Case 1. $t \in\left[0, \frac{1}{3}\right]$.
Using substitution rules for integration and the hypothesis of g, we have the following identity

$$
\begin{align*}
& H(t)=\int_{a}^{\frac{a+b}{2}}\left[f\left(t x+(1-t) \frac{a+b}{2}\right)\right. \\
&\left.+f\left(t(a+b-x)+(1-t) \frac{a+b}{2}\right)\right] g(x) d x \tag{2.35}
\end{align*}
$$

If we choose $A=(1-t) a+t b, C=t x+(1-t) \frac{a+b}{2}, D=t(a+b-x)+(1-t) \frac{a+b}{2}$ and $B=t a+(1-t) b$ in Lemma 2, then the inequality

$$
\begin{align*}
f\left(t x+(1-t) \frac{a+b}{2}\right)+f(t(a+ & \left.b-x)+(1-t) \frac{a+b}{2}\right) \\
& \leq f((1-t) a+t b)+f(t a+(1-t) b) \tag{2.36}
\end{align*}
$$

holds for all $t \in\left[0, \frac{1}{3}\right]$ and $x \in\left[a, \frac{a+b}{2}\right]$. Multiplying the inequality (2.36) by $g(x)$, integrating both sides over x on $\left[a, \frac{a+b}{2}\right]$ and using identity (2.35), we derive the first inequality of (2.32). From Lemma 4, we have

$$
\sup _{t \in\left[0, \frac{1}{3}\right]} Q(t)=\frac{f(a)+f(b)}{2}
$$

Then the second inequality of (2.32) can be obtained. This proves (2.32).

Case 2. $t \in\left[\frac{1}{3}, 1\right]$.
If we choose $A=t a+(1-t) x, C=t a+(1-t) b, D=(1-t) a+t b$ and $B=t b+(1-t)(a+b-x)$ in Lemma 3, then the inequality

$$
\begin{align*}
f(t a+(1-t) b)+f(t b & +(1-t) a) \\
& \leq f(t a+(1-t) x)+f(t b+(1-t)(a+b-x)) \tag{2.37}
\end{align*}
$$

holds for all $t \in\left[\frac{1}{3}, 1\right]$ and $x \in\left[a, \frac{a+b}{2}\right]$. Multiplying the inequality (2.37) by $g(x)$, integrating both sides over x on $\left[a, \frac{a+b}{2}\right]$ and using identity (2.20), we obtain the second inequality of (2.33). From Lemma 4, we have

$$
\inf _{t \in\left[\frac{1}{3}, 1\right]} Q(t)=f\left(\frac{a+b}{2}\right)
$$

Then the first inequality of (2.33) can be obtained. This proves (2.33).
(2) Using substitution rules for integration and the hypothesis of g, we have the
following identity

$$
\begin{aligned}
2 S_{g}(t)= & \int_{a}^{\frac{a+b}{2}}[f(t a+(1-t) x)+f(t b+(1-t) x)] g(2 x-a) d x \\
& +\int_{\frac{a+b}{2}}^{b}[f(t a+(1-t) x)+f(t b+(1-t) x)] g(2 x-b) d x \\
= & \int_{a}^{\frac{a+b}{2}}[f(t a+(1-t) x)+f(t b+(1-t) x) \\
& +f(t a+(1-t)(a+b-x))+f(t b+(1-t)(a+b-x))] \\
& \times g(2 x-a) d x \\
= & \int_{a}^{\frac{3 a+b}{4}}\left[f(t a+(1-t) x)+f\left(t a+(1-t)\left(\frac{3 a+b}{2}-x\right)\right)\right. \\
& +f\left(t a+(1-t)\left(\frac{b-a}{2}+x\right)\right)+f(t a+(1-t)(a+b-x)) \\
& +f(t b+(1-t) x)+f\left(t b+(1-t)\left(\frac{3 a+b}{2}-x\right)\right) \\
& \left.+f\left(t b+(1-t)\left(\frac{b-a}{2}+x\right)\right)+f(t b+(1-t)(a+b-x))\right] \\
& \times g(2 x-a) d x
\end{aligned}
$$

for all $t \in[0,1]$.
By Lemma 2, the following inequalities hold for all $t \in[0,1]$ and $x \in\left[a, \frac{3 a+b}{4}\right]$.

$$
\begin{align*}
& f(t a+(1-t) x)+f\left(t a+(1-t)\left(\frac{3 a+b}{2}-x\right)\right) \\
& \quad \leq f(a)+f\left(t a+(1-t) \frac{a+b}{2}\right) \tag{2.39}
\end{align*}
$$

holds when $A=a, C=t a+(1-t) x, D=t a+(1-t)\left(\frac{3 a+b}{2}-x\right)$ and $B=$ $t a+(1-t) \frac{a+b}{2}$ in Lemma 2.

$$
\begin{align*}
f\left(t a+(1-t)\left(\frac{b-a}{2}+x\right)\right) & +f(t a+(1-t)(a+b-x)) \\
\leq & f\left(t a+(1-t) \frac{a+b}{2}\right)+f(t a+(1-t) b) \tag{2.40}
\end{align*}
$$

holds when $A=t a+(1-t) \frac{a+b}{2}, C=t a+(1-t)\left(\frac{b-a}{2}+x\right), D=t a+(1-t)(a+b-x)$
and $B=t a+(1-t) b$ in Lemma 2 .

$$
\begin{align*}
f(t b+(1-t) x)+f(t b+ & \left.(1-t)\left(\frac{3 a+b}{2}-x\right)\right) \\
& \leq f(t b+(1-t) a)+f\left(t b+(1-t) \frac{a+b}{2}\right) \tag{2.41}
\end{align*}
$$

holds when $A=t b+(1-t) a, C=t b+(1-t) x, D=t b+(1-t)\left(\frac{3 a+b}{2}-x\right)$ and $B=t b+(1-t) \frac{a+b}{2}$ in Lemma 2.

$$
\begin{align*}
f\left(t b+(1-t)\left(\frac{b-a}{2}+x\right)\right)+f(t b+ & (1-t)(a+b-x)) \\
& \leq f\left(t b+(1-t) \frac{a+b}{2}\right)+f(b) \tag{2.42}
\end{align*}
$$

holds when $A=t b+(1-t) \frac{a+b}{2}, C=t b+(1-t)\left(\frac{b-a}{2}+x\right), D=t b+(1-t)(a+b-x)$ and $B=b$ in Lemma 2. Multiplying the inequalities (2.39) - (2.42) by $g(2 x-a)$, integrating them over x on $\left[a, \frac{3 a+b}{4}\right]$ and using identity (2.38), we have

$$
\begin{equation*}
2 S_{g}(t) \leq G(t) \int_{a}^{b} g(x) d x+\frac{1}{2}\left[\frac{f(a)+f(b)}{2}+Q(t)\right] \int_{a}^{b} g(x) d x \tag{2.43}
\end{equation*}
$$

for all $t \in[0,1]$. Using (1.10) and (2.43), we derive (2.34). This completes the proof.

Let $g(x)=\frac{1}{b-a}(x \in[a, b])$. Then the following Hermite-Hadamard-type inequalities, which are given in [14], are natural consequences of Theorem 9.

Corollary 10. Let f, G, H, L, P be defined as above. Then:

1. The inequalities

$$
H(t) \leq Q(t) \leq \frac{f(a)+f(b)}{2} \quad\left(t \in\left[0, \frac{1}{3}\right]\right)
$$

and

$$
f\left(\frac{a+b}{2}\right) \leq Q(t) \leq P(t) \quad\left(t \in\left[\frac{1}{3}, 1\right]\right)
$$

hold for all $t \in[0,1]$.
2. The inequality

$$
0 \leq L(t)-G(t) \leq \frac{1}{2}\left[\frac{f(a)+f(b)}{2}+Q(t)\right]-L(t)
$$

holds for all $t \in[0,1]$.

The following Fejér-type inequalities are natural consequences of Theorems A B, $\mathrm{E}-\mathrm{I}, 5,9$ and Lemma 4 and we shall omit their proofs.

Theorem 11. Let $f, g, G, H_{g}, P_{g}, I, L_{g}, S_{g}$ be defined as above.

$$
\begin{aligned}
f\left(\frac{a+b}{2}\right) \int_{a}^{b} g(x) d x & \leq H_{g}(t) \leq G(t) \int_{a}^{b} g(x) d x \leq S_{g}(t) \\
\leq & (1-t) \int_{a}^{b} \frac{1}{2}\left[f\left(\frac{x+a}{2}\right)+f\left(\frac{x+b}{2}\right)\right] g(x) d x \\
& +t \cdot \frac{f(a)+f(b)}{2} \int_{a}^{b} g(x) d x \\
\leq & \frac{f(a)+f(b)}{2} \int_{a}^{b} g(x) d x
\end{aligned}
$$

and

$$
\begin{aligned}
f\left(\frac{a+b}{2}\right) \int_{a}^{b} g(x) d x & \leq I(t) \leq G(t) \int_{a}^{b} g(x) d x \\
& \leq L_{g}(t) \leq P_{g}(t) \\
& \leq(1-t) \int_{a}^{b} f(x) g(x) d x+t \cdot \frac{f(a)+f(b)}{2} \int_{a}^{b} g(x) d x \\
& \leq \frac{f(a)+f(b)}{2} \int_{a}^{b} g(x) d x
\end{aligned}
$$

Theorem 12. Let f, g, G, Q, H_{g}, I be defined as above. Then, for all $t \in\left[0, \frac{1}{4}\right]$, we have

$$
\begin{aligned}
f\left(\frac{a+b}{2}\right) \int_{a}^{b} g(x) d x & \leq H_{g}(t) \leq H_{g}(2 t) \leq G(2 t) \int_{a}^{b} g(x) d x \\
& \leq Q(t) \int_{a}^{b} g(x) d x \leq \frac{f(a)+f(b)}{2} \int_{a}^{b} g(x) d x
\end{aligned}
$$

and

$$
\begin{aligned}
f\left(\frac{a+b}{2}\right) \int_{a}^{b} g(x) d x & \leq I(t) \leq I(2 t) \leq G(2 t) \int_{a}^{b} g(x) d x \\
& \leq Q(t) \int_{a}^{b} g(x) d x \leq \frac{f(a)+f(b)}{2} \int_{a}^{b} g(x) d x
\end{aligned}
$$

Theorem 13. Let $f, g, G, Q, H_{g}, P_{g}, L_{g}, S_{g}$ be defined as above. Then, for all $t \in$
$\left[\frac{1}{4}, \frac{1}{3}\right]$, we have

$$
\begin{aligned}
f\left(\frac{a+b}{2}\right) \int_{a}^{b} g(x) d x & \leq H_{g}(t) \leq Q(t) \int_{a}^{b} g(x) d x \leq G(2 t) \int_{a}^{b} g(x) d x \\
& \leq L_{g}(2 t) \leq P_{g}(2 t) \\
& \leq(1-2 t) \int_{a}^{b} f(x) g(x) d x+2 t \cdot \frac{f(a)+f(b)}{2} \int_{a}^{b} g(x) d x \\
& \leq \frac{f(a)+f(b)}{2} \int_{a}^{b} g(x) d x
\end{aligned}
$$

and

$$
\begin{aligned}
f\left(\frac{a+b}{2}\right) \int_{a}^{b} g(x) d x & \leq H_{g}(t) \leq Q(t) \int_{a}^{b} g(x) d x \\
& \leq G(2 t) \int_{a}^{b} g(x) d x \leq S_{g}(2 t) \\
& \leq(1-2 t) \int_{a}^{b} \frac{1}{2}\left[f\left(\frac{x+a}{2}\right)+f\left(\frac{x+b}{2}\right)\right] g(x) d x \\
& +2 t \cdot \frac{f(a)+f(b)}{2} \int_{a}^{b} g(x) d x \\
& \leq \frac{f(a)+f(b)}{2} \int_{a}^{b} g(x) d x
\end{aligned}
$$

Theorem 14. Let $f, g, G, Q, P_{g}, L_{g}, S_{g}$ be defined as above. Then, for all $t \in\left[\frac{1}{3}, \frac{1}{2}\right]$, we have

$$
\begin{aligned}
f\left(\frac{a+b}{2}\right) \int_{a}^{b} g(x) d & \leq Q(t) \int_{a}^{b} g(x) d x \\
& \leq G(2 t) \int_{a}^{b} g(x) d x \leq L_{g}(2 t) \leq P_{g}(2 t) \\
& \leq(1-2 t) \int_{a}^{b} f(x) g(x) d x+2 t \cdot \frac{f(a)+f(b)}{2} \int_{a}^{b} g(x) d x \\
& \leq \frac{f(a)+f(b)}{2} \int_{a}^{b} g(x) d x
\end{aligned}
$$

$$
\begin{aligned}
f\left(\frac{a+b}{2}\right) \int_{a}^{b} g(x) d & \leq Q(t) \int_{a}^{b} g(x) d x \\
& \leq G(2 t) \int_{a}^{b} g(x) d x \leq S_{g}(2 t) \\
& \leq(1-2 t) \int_{a}^{b} \frac{1}{2}\left[f\left(\frac{x+a}{2}\right)+f\left(\frac{x+b}{2}\right)\right] g(x) d x \\
& +2 t \cdot \frac{f(a)+f(b)}{2} \int_{a}^{b} g(x) d x \\
& \leq \frac{f(a)+f(b)}{2} \int_{a}^{b} g(x) d x
\end{aligned}
$$

and

$$
\begin{aligned}
f\left(\frac{a+b}{2}\right) \int_{a}^{b} g(x) d x & \leq Q(t) \int_{a}^{b} g(x) d x \leq P_{g}(t) \leq P_{g}(2 t) \\
& \leq(1-2 t) \int_{a}^{b} f(x) g(x) d x+2 t \cdot \frac{f(a)+f(b)}{2} \int_{a}^{b} g(x) d x \\
& \leq \frac{f(a)+f(b)}{2} \int_{a}^{b} g(x) d x
\end{aligned}
$$

Theorem 15. Let $f, g, G, Q, P_{g}, L_{g}, S_{g}$ be defined as above. Then, for all $t \in\left[\frac{1}{2}, \frac{2}{3}\right]$, we have

$$
\begin{aligned}
f\left(\frac{a+b}{2}\right) \int_{a}^{b} g(x) d x & \leq Q(t) \int_{a}^{b} g(x) d x \leq G(2(1-t)) \int_{a}^{b} g(x) d x \\
& \leq L_{g}(2(1-t)) \leq P_{g}(2(1-t)) \\
& \leq(2 t-1) \int_{a}^{b} f(x) g(x) d x+2(1-t) \cdot \frac{f(a)+f(b)}{2} \int_{a}^{b} g(x) d x \\
& \leq \frac{f(a)+f(b)}{2} \int_{a}^{b} g(x) d x
\end{aligned}
$$

and

$$
\begin{aligned}
f\left(\frac{a+b}{2}\right) \int_{a}^{b} g(x) d x & \leq Q(t) \int_{a}^{b} g(x) d x \\
& \leq G(2(1-t)) \int_{a}^{b} g(x) d x \leq S_{g}(2(1-t)) \\
& \leq(2 t-1) \int_{a}^{b} \frac{1}{2}\left[f\left(\frac{x+a}{2}\right)+f\left(\frac{x+b}{2}\right)\right] g(x) d x \\
& +2(1-t) \cdot \frac{f(a)+f(b)}{2} \int_{a}^{b} g(x) d x \\
& \leq \frac{f(a)+f(b)}{2} \int_{a}^{b} g(x) d x
\end{aligned}
$$

Theorem 16. Let $f, g, G, Q, H_{g}, P_{g}, L_{g}, S_{g}$ be defined as above. Then, for all $t \in$ $\left[\frac{2}{3}, \frac{3}{4}\right]$, we have

$$
\begin{aligned}
f\left(\frac{a+b}{2}\right) \int_{a}^{b} g(x) d x & \leq Q(t) \int_{a}^{b} g(x) d x \\
& \leq G(2(1-t)) \int_{a}^{b} g(x) d x \\
& \leq G(t) \int_{a}^{b} g(x) d x \leq L_{g}(t) \leq P_{g}(t) \\
& \leq(1-t) \int_{a}^{b} f(x) g(x) d x+t \cdot \frac{f(a)+f(b)}{2} \int_{a}^{b} g(x) d x \\
& \leq \frac{f(a)+f(b)}{2} \int_{a}^{b} g(x) d x
\end{aligned}
$$

and

$$
\begin{aligned}
f\left(\frac{a+b}{2}\right) \int_{a}^{b} g(x) d x & \leq Q(t) \int_{a}^{b} g(x) d x \leq G(2(1-t)) \int_{a}^{b} g(x) d x \\
& \leq G(t) \int_{a}^{b} g(x) d x \leq S_{g}(t)
\end{aligned}
$$

$$
\begin{aligned}
& \leq(1-t) \int_{a}^{b} \frac{1}{2}\left[f\left(\frac{x+a}{2}\right)+f\left(\frac{x+b}{2}\right)\right] g(x) d x \\
& \quad+t \cdot \frac{f(a)+f(b)}{2} \int_{a}^{b} g(x) d x \\
& \leq \frac{f(a)+f(b)}{2} \int_{a}^{b} g(x) d x
\end{aligned}
$$

Theorem 17. Let $f, g, G, Q, H_{g}, P_{g}, I, S_{g}$ be defined as above. Then, for all $t \in$ $\left[\frac{3}{4}, 1\right]$, we have

$$
\begin{aligned}
f\left(\frac{a+b}{2}\right) \int_{a}^{b} g(x) d x & \leq H_{g}(2(1-t)) \leq G(2(1-t)) \int_{a}^{b} g(x) d x \\
& \leq Q(t) \int_{a}^{b} g(x) d x \leq P_{g}(t) \\
& \leq \frac{1-t}{b-a} \int_{a}^{b} f(x) g(x) d x+t \cdot \frac{f(a)+f(b)}{2} \int_{a}^{b} g(x) d x \\
& \leq \frac{f(a)+f(b)}{2} \int_{a}^{b} g(x) d x
\end{aligned}
$$

and

$$
\begin{aligned}
f\left(\frac{a+b}{2}\right) \int_{a}^{b} g(x) d x & \leq I(2(1-t)) \leq G(2(1-t)) \int_{a}^{b} g(x) d x \\
& \leq Q(t) \int_{a}^{b} g(x) d x \leq P_{g}(t) \\
& \leq \frac{1-t}{b-a} \int_{a}^{b} f(x) g(x) d x+t \cdot \frac{f(a)+f(b)}{2} \int_{a}^{b} g(x) d x \\
& \leq \frac{f(a)+f(b)}{2} \int_{a}^{b} g(x) d x .
\end{aligned}
$$

Let $g(x)=\frac{1}{b-a}(x \in[a, b])$. Then the following Hermite-Hadamard-type inequalities are natural consequences of Theorems $11-17$, which are given in [14].

Corollary 18. Let f, Q, G, H, P, L be defined as above. Then we have:

1. For all $t \in\left[0, \frac{1}{4}\right]$ one has the inequality

$$
f\left(\frac{a+b}{2}\right) \leq H(t) \leq H(2 t) \leq G(2 t) \leq Q(t) \leq \frac{f(a)+f(b)}{2}
$$

2. For all $t \in\left[\frac{1}{4}, \frac{1}{3}\right]$ one has the inequality

$$
\begin{aligned}
f\left(\frac{a+b}{2}\right) & \leq H(t) \leq Q(t) \leq G(2 t) \leq L(2 t) \leq P(2 t) \\
& \leq \frac{1-2 t}{b-a} \int_{a}^{b} f(x) d x+2 t \cdot \frac{f(a)+f(b)}{2} \\
& \leq \frac{f(a)+f(b)}{2} .
\end{aligned}
$$

3. For all $t \in\left[\frac{1}{3}, \frac{1}{2}\right]$ one has the inequalities

$$
\begin{aligned}
f\left(\frac{a+b}{2}\right) & \leq Q(t) \leq G(2 t) \leq L(2 t) \leq P(2 t) \\
& \leq \frac{1-2 t}{b-a} \int_{a}^{b} f(x) d x+2 t \cdot \frac{f(a)+f(b)}{2} \\
& \leq \frac{f(a)+f(b)}{2}
\end{aligned}
$$

and

$$
\begin{aligned}
f\left(\frac{a+b}{2}\right) & \leq Q(t) \leq P(t) \leq P(2 t) \\
& \leq \frac{1-2 t}{b-a} \int_{a}^{b} f(x) d x+2 t \cdot \frac{f(a)+f(b)}{2} \\
& \leq \frac{f(a)+f(b)}{2}
\end{aligned}
$$

4. For all $t \in\left[\frac{1}{2}, \frac{2}{3}\right]$ one has the inequality

$$
\begin{aligned}
f\left(\frac{a+b}{2}\right) & \leq Q(t) \leq G(2(1-t)) \leq L(2(1-t)) \leq P(2(1-t)) \\
& \leq \frac{2 t-1}{b-a} \int_{a}^{b} f(x) d x+2(1-t) \cdot \frac{f(a)+f(b)}{2} \\
& \leq \frac{f(a)+f(b)}{2}
\end{aligned}
$$

5. For all $t \in\left[\frac{2}{3}, \frac{3}{4}\right]$ one has the inequality

$$
\begin{aligned}
f\left(\frac{a+b}{2}\right) & \leq Q(t) \leq G(2(1-t)) \leq G(t) \leq L(t) \leq P(t) \\
& \leq \frac{1-t}{b-a} \int_{a}^{b} f(x) d x+t \cdot \frac{f(a)+f(b)}{2} \leq \frac{f(a)+f(b)}{2}
\end{aligned}
$$

6. For all $t \in\left[\frac{3}{4}, 1\right]$ one has the inequality

$$
\begin{aligned}
f\left(\frac{a+b}{2}\right) & \leq H(2(1-t)) \leq G(2(1-t)) \leq Q(t) \leq P(t) \\
& \leq \frac{1-t}{b-a} \int_{a}^{b} f(x) d x+t \cdot \frac{f(a)+f(b)}{2} \leq \frac{f(a)+f(b)}{2}
\end{aligned}
$$

References

[1] J. Hadamard, Étude sur les propriétés des fonctions entières en particulier d'une fonction considérée par Riemann, J. Math. Pures Appl. 58 (1893), 171215.
[2] S. S. Dragomir, Two mappings in Connection to Hadamard's Inequalities, J. Math. Anal. Appl. 167 (1992), 49-56.
[3] S. S. Dragomir, A Refinement of Hadamard's Inequality for Isotonic Linear Functionals, Tamkang. J. Math. 24 (1) (1993), 101-106.
[4] S. S. Dragomir, On the Hadamard's Inequality for Convex on the Co-ordinates in a Rectangle from the Plane, Taiwanese J. Math., 5 (4) (2001), 775-788.
[5] S. S. Dragomir, Further Properties of Some Mappings Associated with HermiteHadamard Inequalities, Tamkang. J. Math. 34 (1) (2003), 45-57.
[6] S. S. Dragomir, Y.-J. Cho and S.-S. Kim, Inequalities of Hadamard's type for Lipschitzian Mappings and their Applications, J. Math. Anal. Appl. 245 (2000),489-501.
[7] S. S. Dragomir, D. S. Milošević and József Sándor, On Some Refinements of Hadamard's Inequalities and Applications, Univ. Belgrad. Publ. Elek. Fak. Sci. Math. 4 (1993), 3-10.
[8] L. Fejér, Über die Fourierreihen, II, Math. Naturwiss. Anz Ungar. Akad. Wiss. 24 (1906),369-390.(In Hungarian).
[9] D.-Y. Hwang, K.-L. Tseng and G.-S. Yang, Some Hadamard's Inequalities for Co-ordinated Convex Functions in a Rectangle from the Plane, Taiwanese J. Math., 11 (1) (2007), 63-73.
[10] K.-L. Tseng, S.-R. Hwang and S. S. Dragomir, On Some New Inequalities of Hermite-Hadamard-Fejér Type Involving Convex Functions, Demonstratio Math. XL (1) (2007), 51-64.
[11] K.-L. Tseng, S.-R. Hwang and S. S. Dragomir, Fejér-type Inequalities (I). (Submitted), Preprint RGMIA Res. Rep. Coll. 12(2009), No.4, Article 5. [Online http://www.staff.vu.edu.au/RGMIA/v12n4.asp].
[12] K.-L. Tseng, S.-R. Hwang and S. S. Dragomir, Fejér-type Inequalities (II). (Submitted) Preprint RGMIA Res. Rep. Coll. 12(2009), Supplement, Article 15.[Online http://www.staff.vu.edu.au/RGMIA/v12(E).asp].
[13] K.-L. Tseng, S.-R. Hwang and S. S. Dragomir, Some Companions of Fejer's Inequality for Convex Functions. (Submitted) RGMIA Res. Rep. Coll. 12(2009), Supplement, Article 19.[Online http://www.staff.vu.edu.au/RGMIA/v12(E).asp].
[14] K.-L. Tseng, G.-S. Yang and K.-C. Hsu, On Some Inequalities of Hadamard's Type and Applications, Taiwanese J. Math., 13 (6B) (2009), 1929-1948.
[15] G.-S. Yang and M.-C. Hong, A Note on Hadamard's Inequality, Tamkang. J. Math. 28 (1) (1997), 33-37.
[16] G.-S. Yang and K.-L. Tseng, On Certain Integral Inequalities Related to Hermite-Hadamard Inequalities, J. Math. Anal. Appl. 239 (1999), 180-187.
[17] G.-S. Yang and K.-L. Tseng, Inequalities of Hadamard's Type for Lipschitzian Mappings, J. Math. Anal. Appl. 260 (2001),230-238.
[18] G.-S. Yang and K.-L. Tseng, On Certain Multiple Integral Inequalities Related to Hermite-Hadamard Inequalities, Utilitas Math., 62 (2002), 131-142.
[19] G.-S. Yang and K.-L. Tseng, Inequalities of Hermite-Hadamard-Fejér Type for Convex Functions and Lipschitzian Functions, Taiwanese J. Math., 7 (3) (2003), 433-440.

Addresses:
K.-L. Tseng

Department of Mathematics, Aletheia University, 32 Chen-Li St., Tamsui, Taiwan 25103

E-mail: kltseng@email.au.edu.tw
Shiow-Ru Hwang
China University of Science and Technology, No. 245, Sec. 3 Academia Rd., Nankang, Taipei, Taiwan 11522

E-mail: hsru@cc.cust.edu.tw
S.S. Dragomir

School of Engineering and Science, Victoria University, PO Box 14428, Melbourne City MC, Victoria 8001, Australia

E-mail: sever.dragomir@.vu.edu.au
http://www.staff.vu.edu.au/RGMIA/dragomir/

