MATRIX TRANSFORMATIONS OF STRONGLY CONVERGENT SEQUENCES INTO V_{σ}

S.A. Mohiuddine and M. Aiyub

Abstract

In this paper, we define the spaces $\omega(p, s)$ and $\omega_{p}(s)$, where $$
\omega(p, s)=\left\{x: \frac{1}{n} \sum_{k=1}^{n} K^{-s}\left|x_{k}-\ell\right|^{p_{k}} \rightarrow 0 \text { for some } \ell, s \geq 0\right\}
$$ and if $p_{k}=p$ for each k, we have $\omega(p, s)=\omega_{p}(s)$. We further characterize the matrix classes $\left(\omega(p, s), V_{\sigma}\right),\left(\omega_{p}(s), V_{\sigma}\right)$ and $\left(\omega_{p}(s), V_{\sigma}\right)_{\text {reg }}$, where V_{σ} denotes the set of bounded sequences all of whose σ-mean are equal.

1 Introduction

In [11], Schaefer has defined the concept of σ-conservative, σ-regular and σ-coercive matrices and characterized matrix classes $\left(c, V_{\sigma}\right),\left(c, V_{\sigma}\right)_{\text {reg }}$ and $\left(\ell_{\infty}, V_{\sigma}\right)$, where ℓ_{∞} and c are the Banach spaces of bounded and convergent sequences $x=\left(x_{j k}\right)$ with the usual norm $\|x\|=\sup \left|x_{k}\right|$, and V_{σ} denote the set of all bounded sequences all of whose invariant means (or σ-means) are equal. In [9], Mursaleen characterized the class $\left(c(p), V_{\sigma}\right),\left(c(p), V_{\sigma}\right)_{r e g}$ and $\left(\ell_{\infty}(p), V_{\sigma}\right)$ matrices which generalized the results due to Schaefer [11]. In [9], the author has determined the matrices of classes $\left(\ell(p), V_{\sigma}\right)$ and $\left(M_{0}(p), V_{\sigma}\right)$.

In this paper, we define some sequence spaces for more general sequence $s=\left(s_{k}\right)$. We further characterize the matrix classes from this spaces to the space V_{σ} of invariant mean, i.e. we obtain necessary and sufficient conditions to characterize the matrices of classes $\left(\omega(p, s), V_{\sigma}\right),\left(\omega_{p}(s), V_{\sigma}\right)$ and $\left(\omega_{p}(s), V_{\sigma}\right)_{\text {reg }}$.

[^0]
2 Preliminaries

Let σ be a one-to-one mapping from the set \mathbb{N} of natural numbers into itself. A continuous linear functional φ on ℓ_{∞} is said to be an invariant mean or a σ-mean [11] if and only if
(i) $\varphi(x) \geq 0$ when the sequence $x=\left(x_{k}\right)$ has $x_{k} \geq 0$ for all k;
(ii) $\varphi(e)=1$;
(iii) $\varphi(x)=\varphi\left(x_{\sigma(k)}\right)$ for all $x \in \ell_{\infty}$.

By V_{σ}, we denote the set of bounded sequences all of whose σ-means are equal. We say that a sequence $x=\left(x_{k}\right)$ is σ-convergent if and only if $x \in V_{\sigma}$. For $\sigma(n)=n+1$, the set V_{σ} is reduced to the set f of almost convergent sequences $[2,10]$. Note that $c \subset V_{\sigma} \subset \ell_{\infty}$.

The class V_{2}^{σ} and matrix transformations of double sequences, we refer to Çakan, Altay and Mursaleen [1], Mursaleen and Mohiuddine [5,6,7,8].

If $x=\left(x_{n}\right)$, write $T x=\left(x_{\sigma(n)}\right)$. It is easy to show that

$$
V_{\sigma}=\left\{x \in \ell_{\infty}: \lim _{m} t_{m n}(x)=L e, L=\sigma-\lim x\right\}
$$

where

$$
t_{m n}(x)=\frac{1}{m+1} \sum_{j=0}^{m} T^{j} x_{n}
$$

and $\sigma^{m}(n)$ denotes the m-th iterate of σ at n.
If p_{k} is real such that $p_{k}>0$ and $\sup _{k} p_{k}<\infty$ (see Maddox [4] and Simons [12])

$$
\begin{gathered}
\ell(p)=\left\{x: \sum_{k}\left|x_{k}\right|^{p_{k}}<\infty\right\} \\
\ell_{\infty}(p)=\left\{x: \sup _{k}\left|x_{k}\right|^{p_{k}}<\infty\right\} \\
c(p)=\left\{x:\left|x_{k}-\ell\right|^{p_{k}} \rightarrow 0 \text { for some } \ell\right\} \\
\omega(p)=\left\{x: \frac{1}{n} \sum_{k=1}^{n}\left|x_{k}-\ell\right|^{p_{k}} \rightarrow 0 \text { for some } \ell\right\} .
\end{gathered}
$$

We define

$$
\omega(p, s)=\left\{x: \frac{1}{n} \sum_{k=1}^{n} K^{-s}\left|x_{k}-\ell\right|^{p_{k}} \rightarrow 0 \text { for some } \ell, s \geq 0\right\}
$$

where $s=\left(s_{k}\right)$ is an arbitrary sequence with $s_{k} \neq 0,(k=1,2, \cdots)$. If $p_{k}=p$ for each k, we have $\ell(p)=\ell_{p}, \ell_{\infty}(p)=\ell_{\infty}, c(p)=c, \omega(p)=\omega_{p}$ and $\omega(p, s)=\omega_{p}(s)$.

If E is a subset of ω, the space of complex sequences, then we shall write E^{+} for generalized Köthe-Toeplitz dual of E, i.e.

$$
E^{+}=\left\{a: \sum_{k} a_{k} x_{k} \text { converges for every } x \in E\right\} .
$$

If $0<p_{k} \leq 1$ then $\omega^{+}(p)=\mathbb{M}$, where

$$
\mathbb{M}=\left\{a: \sum_{r=0}^{\infty} \max _{r}\left\{\left(2^{r} N^{-1}\right)^{1 / p_{k}}\left|a_{k}\right|\right\}<\infty, \text { for some integer } N>1\right\}
$$

and $\max _{r}$ is the maximum taken over $2^{r} \leq k<2^{r+1}$ (see Theorem 4 [3]).
If X is a topological linear space, we shall denote X^{*} the continuous dual of X, i.e. the set of all continuous linear functional on X. Obviously,

$$
[\omega(p, s)]^{*}=\left\{a: \sum_{r=0}^{\infty} \max _{r}\left\{\left(2^{r} N^{-1}\right)^{1 / p_{k}}\left|\frac{a_{k}}{s_{k}}\right|\right\}<\infty, \text { for some integer } N>1\right\}
$$

3 Main results

We shall use the notation $a(n, k)$ to denote the element $a_{n k}$ of matrix A and we write for all integers $n, m \geq 1$

$$
\begin{aligned}
t_{m n}(A x) & \left.=\left(A x_{n}+T A x_{n}\right)+\cdots+T^{m} A x_{n}\right) /(m+1) \\
& =\sum_{k} t(n, k, m) x_{k}
\end{aligned}
$$

where

$$
t(n, k, m)=\frac{1}{m+1} \sum_{j=0}^{m} a\left(\sigma^{j}(n), k\right)
$$

Theorem 3.1. Let $0<p_{k} \leq 1$, then $A \in\left(\omega(p, s), V_{\sigma}\right)$ if and only if
(i) there exists an integer $B>1$ such that for every n

$$
D_{n}=\sup _{m} \sum_{r=0}^{\infty} \max _{r}\left(2^{r} B^{-1}\right)^{1 / p_{k}}\left|\frac{t(n, k, m)}{s_{k}}\right|<\infty
$$

(ii) $a_{(k)}=\left\{a_{n k}\right\}_{n=1}^{\infty} \in V_{\sigma}$ for each k;
(iii) $a=\left\{\sum_{k} a_{n k}\right\}_{n=1}^{\infty} \in V_{\sigma}$.

In this case the σ-limit of $A x$ is $(\lim x)\left[u-\sum_{k} u_{k}\right]+\sum_{k} u_{k} x_{k}$ for every $x \in \omega(p, s)$, where $u=\sigma$ - $\lim a$ and $u_{k}=\sigma$ - $\lim a_{(k)}, k=1,2, \cdots$.

Proof. Suppose that $A \in\left(\omega(p, s), V_{\sigma}\right)$. Define $e^{k}=(0,0, \cdots 0,1,0, \cdots)$ having 1 in the k th entry. Since e and e^{k} are in $\omega(p, s)$, necessity of (ii) and (iii) is obvious. Now we know that $\sum_{k} t(n, k, m) x_{k}$ converges for each m and $x \in \omega(p, s)$ therefore $(t(n, k, m))_{k} \in \omega^{+}(p, s)$ and

$$
\sum_{r=0}^{\infty} \max _{r}\left(2^{r} B^{-1}\right)^{1 / p_{k}}\left|\frac{t(n, k, m)}{s_{k}}\right|<\infty
$$

for each m (see [3]). Furthermore, if $f_{m n}(x)=t_{m n}(A x)$ then $\left\{f_{m n}\right\}_{m}$ is a sequence of continuous linear functional on $\omega(p, s)$ such that $\lim _{m \rightarrow \infty} t_{m n}(A x)$ exists. Therefore by Banach-Steinhaus theorem, necessity of (i) is follows immediately.

Conversely, suppose that the conditions (i), (ii) and (iii) hold and $x \in \omega(p, s)$. We know that $(t(n, k, m))_{k}$ and u_{k} are in $\omega^{+}(p, s)$ the series $\sum_{k} t(n, k, m) x_{k}$ and $\sum_{k} u_{k} x_{k}$ converges for each m. We put

$$
c(n, k, m)=t(n, k, m)-u_{k}
$$

then

$$
\sum_{k} t(n, k, m) x_{k}=\sum_{k} u_{k} x_{k}+\ell \sum_{k} c(n, k, m)+\sum_{k} c(n, k, m)\left(x_{k}-\ell\right)
$$

by (ii) for an integer $k_{0}>0$, we have

$$
\lim _{m} \sum_{k \leq k_{0}} c(n, k, m)\left(x_{k}-\ell\right)=0
$$

where ℓ being the limit of x for $x \in \omega(p, s)$. Now since

$$
\begin{aligned}
& \sup _{m} \sum_{r} \max _{r}\left(2^{r} B^{-1}\right)^{1 / p_{k}}|c(n, k, m)| \leq 2 D_{n} \\
& \lim _{m} \sum_{k \leq k_{0}}\left|\frac{t(n, k, m)-u_{k}}{s_{k}}\right|\left|s_{k}\left(x_{k}-\ell\right)\right|=0
\end{aligned}
$$

whence

$$
\lim _{m} \sum_{k} t(n, k, m) x_{k}=\ell u+\sum_{k} u_{k}\left(x_{k}-\ell\right) .
$$

This completes the proof of the theorem.
Theorem 3.2. Let $1 \leq p_{k}<\infty$, then $A \in\left(\omega_{p}(s), V_{\sigma}\right)$ if and only if
(i) for every n,

$$
M(A)=\sup _{m} \sum_{r} 2^{r / p}\left(\sum_{r}\left|\frac{t(n, k, m)}{s_{k}}\right|^{q}\right)^{1 / q}<\infty
$$

where $p^{-1}+q_{-1}=1$;
(ii) $a_{(k)} \in V_{\sigma}$ for each k;
(iii) $a \in V_{\sigma}$.

In this case the σ-limit is same as in Theorem 3.1.
Proof. Let the conditions are satisfied and $x \in \omega_{p}(s)$. Now

$$
\begin{aligned}
\left|t_{m n}(A x)\right| & \leq \sum_{r=0}^{\infty} \sum_{r}\left|\frac{t(n, k, m) s_{k} x_{k}}{s_{k}}\right| \\
& \leq \sum_{r=0}^{\infty}\left(\sum_{r}\left|\frac{t(n, k, m)}{s_{k}}\right|^{q}\right)^{1 / q}\left(\sum_{r}\left|x_{k}\right|^{p}\right)^{1 / p} \\
& \leq M(A)\|x\|<\infty
\end{aligned}
$$

therefore $t_{m n}(A x)$ is absolutely and uniformly convergent for each m. Note that (i) and (ii) imply that

$$
\sum_{r=0}^{\infty} 2^{r / p}\left(\sum_{r}\left|s_{k} u_{k}\right|\right)^{1 / q} \leq M(A)<\infty
$$

by Hölder's inequality $\sum_{k} u_{k} x_{k}<\infty$. Now as in the converse part of Theorem 3.1; it follows that $A \in\left(\omega_{p}(s), V_{\sigma}\right)$.

Conversely, suppose that $A \in\left(\omega_{p}(s), V_{\sigma}\right)$. Since e^{k} and e are in $\omega_{p}(s)$, necessity of (ii) and (iii) is obvious. For the necessity of (i), suppose that

$$
t_{m n}(A x)=\sum_{k} t(n, k, m) x_{k}
$$

exits for each m whenever $x \in \omega_{p}(s)$. Then for each m and $r \geq 0$, define

$$
f_{m r}(x)=\sum_{r} t(n, k, m) x_{k}
$$

Then $\left\{f_{m n}\right\}_{m}$ is a sequence of continuous linear functional on $\omega_{p}(s)$, since

$$
\begin{aligned}
\left|f_{m r}(x)\right| & \leq\left(\sum_{r}\left|\frac{t(n, k, m)}{s_{k}}\right|^{q}\right)^{1 / q}\left(\sum_{r}\left|s_{k} x_{k}\right|^{p}\right)^{1 / p} \\
& \leq 2^{r / p}\left(\sum_{r}\left|\frac{t(n, k, m)}{s_{k}}\right|^{q}\right)^{1 / q}\|x\|
\end{aligned}
$$

it follows ([4], corollary on pp. 114), that for each m

$$
\lim _{j} \sum_{r=0}^{j} f_{m r}(x)=t_{m n}(A x)
$$

is in the dual space ω_{p}^{*}, hence there exists $K_{m n}$ such that

$$
\begin{equation*}
\left|\frac{t(n, k, m)}{s_{k}}\right| \leq K_{m n}\|x\| \tag{3.2.1}
\end{equation*}
$$

For each m, we take any integer $j>0$ and define $x \in \omega_{p}(s)$ as in ([4] Theorem 7 p . 173), we get

$$
\sum_{r=0}^{j} 2^{r / p}\left(\sum_{r}\left|\frac{t(n, k, m)}{s_{k}}\right|^{q}\right)^{1 / q} \leq K_{m n}
$$

whence for each m

$$
\begin{equation*}
\sum_{r=0}^{\infty} 2^{r / p}\left(\sum_{r}\left|\frac{t(n, k, m)}{s_{k}}\right|^{q}\right)^{1 / q} \leq K_{m n}<\infty \tag{3.2.2}
\end{equation*}
$$

Now, since $t_{m n}(x)(A x)$ is absolutely convergent, we have

$$
\left|t_{m n}(x)\right| \leq \sum_{r=0}^{\infty} 2^{r / p}\left(\sum_{r}\left|\frac{t(n, k, m)}{s_{k}}\right|^{q}\right)^{1 / q}\|x\|
$$

so that

$$
\begin{equation*}
K_{m n}(x) \leq \sum_{r=0}^{\infty} 2^{r / p}\left(\sum_{r}\left|\frac{t(n, k, m)}{s_{k}}\right|^{q}\right)^{1 / q} . \tag{3.2.3}
\end{equation*}
$$

By virtue of (3.2.2) and (3.2.3),

$$
K_{m n}=\sum_{r=0}^{\infty} 2^{r / p}\left(\sum_{r}\left|\frac{t(n, k, m)}{s_{k}}\right|^{q}\right)^{1 / q}
$$

Finally, by (Theorem 11 [4], p. 114) for every n, the existence of $\lim _{m} t_{m n}(A x)$ on $\omega_{p}(s)$ implies that

$$
\sup _{m} K_{m n}=\sup _{m} \sum_{r=0}^{\infty} 2^{r / p}\left(\sum_{r}\left|\frac{t(n, k, m)}{s_{k}}\right|^{q}\right)^{1 / q}<\infty
$$

which is (i).
This completes the proof of the theorem.
Theorem 3.3. Let $0<p_{k}<\infty$, then $A \in\left(\omega_{p}(s), V_{\sigma}\right)_{\text {reg }}$ if and only if condition (i), (ii) with σ - $\lim =0$ and (iii) with σ - $\lim =+1$ of Theorem 3.2 hold.

4 Acknowledgment

Research of the first author was supported by the Department of Atomic Energy, Government of India under the NBHM-Post Doctoral Fellowship programme number 40/10/2008-R\&D II/892.

References

[1] C. Çakan, B. Altay and Mursaleen, σ-convergence and σ-core of double sequences, Appl. Math. Lett. 19 (2006), 1122-1128.
[2] G.G. Lorentz, A contribution to theory of divergent sequences, Acta Math. 80 (1948), 167-190.
[3] C.G. Lascarides and I.J. Maddox, Matrix transformations between some classes of sequences, Proc. Camb. Phil. Soc. 68 (1970), 99-104.
[4] I.J. Maddox, Elements of Functional Analysis, Univ. Press, Cambridge, 1970.
[5] Mursaleen and S.A. Mohiuddine, Double σ-Multiplicative Matrices, J. Math. Anal. Appl. 327 (2007) 991-996.
[6] M. Mursaleen and S.A. Mohiuddine, Regularly σ-Conservative and σ-Coercive Four Dimensional Matrices, Comp. Math. Appl. 56 (2008) 1580-1586.
[7] M. Mursaleen and S.A. Mohiuddine, Invariant Mean and some Core Theorems for Double Sequences, Taiwanese J. Math. 14 (1) (2010) 21-33.
[8] M. Mursaleen and S.A. Mohiuddine, On σ-conservative and boundedly σ conservative four-dimensional matrices, Comp. Math. Appl. 59 (2010) 880-885.
[9] Mursaleen, On infinite matrices and invariant means, Indian J. Pure Appl. Math. 10 (4) (1979), 457-460.
[10] Qamaruddin and S.A. Mohiuddine, Almost Convergence and some matrix transformations, Filomat 21 (2) (2007), 261-266.
[11] P. Schaefer, Infinite matrices and invariant means, Proc. Amer. Math. Soc. 36 (1972), 104-110.
[12] S. Simons, The sequence spaces $\ell(p)$ and $m(p)$, Proc. London Math. Soc. 3 (15) (1965), 422-436.

Addresses:
S.A. Mohiuddine

Department of Mathematics, Aligarh Muslim University, Aligarh 202002, India
E-mail: mohiuddine@gmail.com
M. Aiyub

Department of Mathematics, University of Bahrain, P.O. Box-32038, Kingdom of Bahrain

E-mail: maiyub2002@yahoo.com

[^0]: 2010 Mathematics Subject Classifications. 40C05, 40H05
 Key words and Phrases. Invariant mean; matrix transformations; sequence spaces.
 Received: August 13, 2009
 Communicated by Dragan Djordjevic

