Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Filomat **24:3** (2010), 103–109 DOI: 10.2298/FIL1003103M

MATRIX TRANSFORMATIONS OF STRONGLY CONVERGENT SEQUENCES INTO V_{σ}

S.A. Mohiuddine and M. Aiyub

Abstract

In this paper, we define the spaces $\omega(p, s)$ and $\omega_p(s)$, where

$$\omega(p,s) = \{ x : \frac{1}{n} \sum_{k=1}^{n} K^{-s} | x_k - \ell |^{p_k} \to 0 \text{ for some } \ell, \ s \ge 0 \}$$

and if $p_k = p$ for each k, we have $\omega(p, s) = \omega_p(s)$. We further characterize the matrix classes $(\omega(p, s), V_{\sigma}), (\omega_p(s), V_{\sigma})$ and $(\omega_p(s), V_{\sigma})_{reg}$, where V_{σ} denotes the set of bounded sequences all of whose σ -mean are equal.

1 Introduction

In [11], Schaefer has defined the concept of σ -conservative, σ -regular and σ -coercive matrices and characterized matrix classes $(c, V_{\sigma}), (c, V_{\sigma})_{reg}$ and $(\ell_{\infty}, V_{\sigma})$, where ℓ_{∞} and c are the Banach spaces of bounded and convergent sequences $x = (x_{jk})$ with the usual norm $||x|| = \sup_{k} |x_k|$, and V_{σ} denote the set of all bounded sequences all of whose invariant means (or σ -means) are equal. In [9], Mursaleen characterized the class $(c(p), V_{\sigma}), (c(p), V_{\sigma})_{reg}$ and $(\ell_{\infty}(p), V_{\sigma})$ matrices which generalized the results due to Schaefer [11]. In [9], the author has determined the matrices of classes $(\ell(p), V_{\sigma})$ and $(M_0(p), V_{\sigma})$.

In this paper, we define some sequence spaces for more general sequence $s = (s_k)$. We further characterize the matrix classes from this spaces to the space V_{σ} of invariant mean, i.e. we obtain necessary and sufficient conditions to characterize the matrices of classes $(\omega(p, s), V_{\sigma}), (\omega_p(s), V_{\sigma})$ and $(\omega_p(s), V_{\sigma})_{reg}$.

²⁰¹⁰ Mathematics Subject Classifications. 40C05, 40H05.

 $Key \ words \ and \ Phrases.$ Invariant mean; matrix transformations; sequence spaces.

Received: August 13, 2009

Communicated by Dragan Djordjevic

2 Preliminaries

Let σ be a one-to-one mapping from the set \mathbb{N} of natural numbers into itself. A continuous linear functional φ on ℓ_{∞} is said to be an *invariant mean* or a σ -mean [11] if and only if

- (i) $\varphi(x) \ge 0$ when the sequence $x = (x_k)$ has $x_k \ge 0$ for all k;
- (ii) $\varphi(e) = 1;$
- (iii) $\varphi(x) = \varphi(x_{\sigma(k)})$ for all $x \in \ell_{\infty}$.

By V_{σ} , we denote the set of bounded sequences all of whose σ -means are equal. We say that a sequence $x = (x_k)$ is σ -convergent if and only if $x \in V_{\sigma}$. For $\sigma(n) = n + 1$, the set V_{σ} is reduced to the set f of almost convergent sequences [2,10]. Note that $c \subset V_{\sigma} \subset \ell_{\infty}$.

The class V_2^{σ} and matrix transformations of double sequences, we refer to Çakan, Altay and Mursaleen [1], Mursaleen and Mohiuddine [5,6,7,8].

If $x = (x_n)$, write $Tx = (x_{\sigma(n)})$. It is easy to show that

$$V_{\sigma} = \{ x \in \ell_{\infty} : \lim_{m} t_{mn}(x) = Le, \ L = \sigma \operatorname{-}\lim x \},\$$

where

$$t_{mn}(x) = \frac{1}{m+1} \sum_{j=0}^{m} T^{j} x_{n}$$

and $\sigma^m(n)$ denotes the *m*-th iterate of σ at *n*.

۵

If p_k is real such that $p_k > 0$ and $\sup p_k < \infty$ (see Maddox [4] and Simons [12])

$$\ell(p) = \{x : \sum_{k} |x_{k}|^{p_{k}} < \infty\},\$$
$$\ell_{\infty}(p) = \{x : \sup_{k} |x_{k}|^{p_{k}} < \infty\},\$$
$$c(p) = \{x : |x_{k} - \ell|^{p_{k}} \to 0 \text{ for some } \ell\},\$$
$$\omega(p) = \{x : \frac{1}{n} \sum_{k=1}^{n} |x_{k} - \ell|^{p_{k}} \to 0 \text{ for some } \ell\}$$

We define

$$\omega(p,s) = \{ x : \frac{1}{n} \sum_{k=1}^{n} K^{-s} | x_k - \ell |^{p_k} \to 0 \text{ for some } \ell, \ s \ge 0 \},\$$

where $s = (s_k)$ is an arbitrary sequence with $s_k \neq 0$, $(k = 1, 2, \cdots)$. If $p_k = p$ for each k, we have $\ell(p) = \ell_p$, $\ell_{\infty}(p) = \ell_{\infty}$, c(p) = c, $\omega(p) = \omega_p$ and $\omega(p, s) = \omega_p(s)$.

Matrix transformations of strongly convergent sequences into V_{σ}

If E is a subset of ω , the space of complex sequences, then we shall write E^+ for generalized Köthe-Toeplitz dual of E, i.e.

$$E^+ = \{a : \sum_k a_k x_k \text{ converges for every } x \in E\}.$$

If $0 < p_k \leq 1$ then $\omega^+(p) = \mathbb{M}$, where

$$\mathbb{M} = \left\{ a : \sum_{r=0}^{\infty} \max_{r} \{ (2^{r} N^{-1})^{1/p_{k}} | a_{k} | \} < \infty, \text{ for some integer } N > 1 \right\},\$$

and max is the maximum taken over $2^r \le k < 2^{r+1}$ (see Theorem 4 [3]).

If X is a topological linear space, we shall denote X^* the continuous dual of X, i.e. the set of all continuous linear functional on X. Obviously,

$$[\omega(p,s)]^* = \bigg\{ a : \sum_{r=0}^{\infty} \max_{r} \bigg\{ (2^r N^{-1})^{1/p_k} \bigg| \frac{a_k}{s_k} \bigg| \bigg\} < \infty, \text{ for some integer } N > 1 \bigg\}.$$

3 Main results

We shall use the notation a(n,k) to denote the element a_{nk} of matrix A and we write for all integers $n,m \ge 1$

$$t_{mn}(Ax) = (Ax_n + TAx_n) + \dots + T^m Ax_n)/(m+1)$$
$$= \sum_k t(n,k,m)x_k$$

where

$$t(n,k,m)=\frac{1}{m+1}\sum_{j=0}^m a(\sigma^j(n),k).$$

Theorem 3.1. Let $0 < p_k \leq 1$, then $A \in (\omega(p, s), V_{\sigma})$ if and only if

(i) there exists an integer B > 1 such that for every n

$$D_n = \sup_m \sum_{r=0}^{\infty} \max_r (2^r B^{-1})^{1/p_k} \left| \frac{t(n,k,m)}{s_k} \right| < \infty,$$

(ii) $a_{(k)} = \{a_{nk}\}_{n=1}^{\infty} \in V_{\sigma}$ for each k;

(iii) $a = \{\sum_{k} a_{nk}\}_{n=1}^{\infty} \in V_{\sigma}.$

In this case the σ -limit of Ax is $(\lim x)[u - \sum_{k} u_k] + \sum_{k} u_k x_k$ for every $x \in \omega(p, s)$, where $u = \sigma$ -lim a and $u_k = \sigma$ -lim $a_{(k)}, k = 1, 2, \cdots$. **Proof.** Suppose that $A \in (\omega(p, s), V_{\sigma})$. Define $e^k = (0, 0, \dots, 0, 1, 0, \dots)$ having 1 in the *kth* entry. Since *e* and e^k are in $\omega(p, s)$, necessity of (ii) and (iii) is obvious. Now we know that $\sum_k t(n, k, m)x_k$ converges for each *m* and $x \in \omega(p, s)$ therefore $(t(n, k, m))_k \in \omega^+(p, s)$ and

$$\sum_{r=0}^{\infty} \max_{r} (2^{r} B^{-1})^{1/p_{k}} \left| \frac{t(n,k,m)}{s_{k}} \right| < \infty$$

for each m (see [3]). Furthermore, if $f_{mn}(x) = t_{mn}(Ax)$ then $\{f_{mn}\}_m$ is a sequence of continuous linear functional on $\omega(p, s)$ such that $\lim_{m \to \infty} t_{mn}(Ax)$ exists. Therefore by Banach-Steinhaus theorem, necessity of (i) is follows immediately.

Conversely, suppose that the conditions (i), (ii) and (iii) hold and $x \in \omega(p, s)$. We know that $(t(n, k, m))_k$ and u_k are in $\omega^+(p, s)$ the series $\sum_k t(n, k, m)x_k$ and $\sum_k u_k x_k$ converges for each m. We put

$$c(n,k,m) = t(n,k,m) - u_k$$

then

$$\sum_{k} t(n,k,m)x_{k} = \sum_{k} u_{k}x_{k} + \ell \sum_{k} c(n,k,m) + \sum_{k} c(n,k,m)(x_{k}-\ell)$$

by (ii) for an integer $k_0 > 0$, we have

$$\lim_{m}\sum_{k\leq k_0}c(n,k,m)(x_k-\ell)=0,$$

where ℓ being the limit of x for $x \in \omega(p, s)$. Now since

$$\sup_{m} \sum_{r} \max_{r} (2^{r} B^{-1})^{1/p_{k}} |c(n,k,m)| \le 2D_{n},$$
$$\lim_{m} \sum_{k \le k_{0}} \left| \frac{t(n,k,m) - u_{k}}{s_{k}} \right| |s_{k}(x_{k} - \ell)| = 0,$$

whence

$$\lim_{m} \sum_{k} t(n,k,m) x_{k} = \ell u + \sum_{k} u_{k}(x_{k} - \ell)$$

This completes the proof of the theorem.

Theorem 3.2. Let $1 \le p_k < \infty$, then $A \in (\omega_p(s), V_\sigma)$ if and only if (i) for every n,

$$M(A) = \sup_{m} \sum_{r} 2^{r/p} \left(\sum_{r} \left| \frac{t(n,k,m)}{s_k} \right|^q \right)^{1/q} < \infty,$$

where $p^{-1} + q_{-1} = 1;$

- (ii) $a_{(k)} \in V_{\sigma}$ for each k;
- (iii) $a \in V_{\sigma}$.

In this case the σ -limit is same as in Theorem 3.1.

Proof. Let the conditions are satisfied and $x \in \omega_p(s)$. Now

$$\begin{aligned} |t_{mn}(Ax)| &\leq \sum_{r=0}^{\infty} \sum_{r} \left| \frac{t(n,k,m)s_k x_k}{s_k} \right| \\ &\leq \sum_{r=0}^{\infty} \left(\sum_{r} \left| \frac{t(n,k,m)}{s_k} \right|^q \right)^{1/q} \left(\sum_{r} |x_k|^p \right)^{1/p} \\ &\leq M(A) ||x|| < \infty, \end{aligned}$$

therefore $t_{mn}(Ax)$ is absolutely and uniformly convergent for each m. Note that (i) and (ii) imply that

$$\sum_{r=0}^{\infty} 2^{r/p} \left(\sum_{r} |s_k u_k| \right)^{1/q} \le M(A) < \infty$$

by Hölder's inequality $\sum_{k} u_k x_k < \infty$. Now as in the converse part of Theorem 3.1; it follows that $A \in (\omega_p(s), V_{\sigma})$.

Conversely, suppose that $A \in (\omega_p(s), V_{\sigma})$. Since e^k and e are in $\omega_p(s)$, necessity of (ii) and (iii) is obvious. For the necessity of (i), suppose that

$$t_{mn}(Ax) = \sum_{k} t(n,k,m)x_k$$

exits for each m whenever $x \in \omega_p(s)$. Then for each m and $r \ge 0$, define

$$f_{mr}(x) = \sum_{r} t(n,k,m) x_k.$$

Then $\{f_{mn}\}_m$ is a sequence of continuous linear functional on $\omega_p(s)$, since

$$|f_{mr}(x)| \leq \left(\sum_{r} \left|\frac{t(n,k,m)}{s_{k}}\right|^{q}\right)^{1/q} \left(\sum_{r} |s_{k}x_{k}|^{p}\right)^{1/p}$$
$$\leq 2^{r/p} \left(\sum_{r} \left|\frac{t(n,k,m)}{s_{k}}\right|^{q}\right)^{1/q} ||x||,$$

it follows ([4], corollary on pp. 114), that for each m

$$\lim_{j}\sum_{r=0}^{j}f_{mr}(x) = t_{mn}(Ax)$$

is in the dual space ω_p^* , hence there exists K_{mn} such that

(3.2.1)
$$\left|\frac{t(n,k,m)}{s_k}\right| \le K_{mn} ||x||.$$

For each m, we take any integer j > 0 and define $x \in \omega_p(s)$ as in ([4] Theorem 7 p. 173), we get

$$\sum_{r=0}^{j} 2^{r/p} \left(\sum_{r} \left| \frac{t(n,k,m)}{s_k} \right|^q \right)^{1/q} \leq K_{mn},$$

whence for each m

(3.2.2)
$$\sum_{r=0}^{\infty} 2^{r/p} \left(\sum_{r} \left| \frac{t(n,k,m)}{s_k} \right|^q \right)^{1/q} \le K_{mn} < \infty.$$

Now, since $t_{mn}(x)(Ax)$ is absolutely convergent, we have

$$|t_{mn}(x)| \le \sum_{r=0}^{\infty} 2^{r/p} \left(\sum_{r} \left| \frac{t(n,k,m)}{s_k} \right|^q \right)^{1/q} ||x||$$

so that

(3.2.3)
$$K_{mn}(x) \le \sum_{r=0}^{\infty} 2^{r/p} \left(\sum_{r} \left| \frac{t(n,k,m)}{s_k} \right|^q \right)^{1/q}.$$

By virtue of (3.2.2) and (3.2.3),

$$K_{mn} = \sum_{r=0}^{\infty} 2^{r/p} \left(\sum_{r} \left| \frac{t(n,k,m)}{s_k} \right|^q \right)^{1/q}.$$

Finally, by (Theorem 11 [4], p. 114) for every n, the existence of $\lim_{m} t_{mn}(Ax)$ on $\omega_p(s)$ implies that

$$\sup_{m} K_{mn} = \sup_{m} \sum_{r=0}^{\infty} 2^{r/p} \left(\sum_{r} \left| \frac{t(n,k,m)}{s_k} \right|^q \right)^{1/q} < \infty$$

which is (i).

This completes the proof of the theorem.

Theorem 3.3. Let $0 < p_k < \infty$, then $A \in (\omega_p(s), V_\sigma)_{reg}$ if and only if condition (i), (ii) with σ -lim = 0 and (iii) with σ -lim = +1 of Theorem 3.2 hold.

4 Acknowledgment

Research of the first author was supported by the Department of Atomic Energy, Government of India under the NBHM-Post Doctoral Fellowship programme number 40/10/2008-R&D II/892.

References

- [1] C. Çakan, B. Altay and Mursaleen, σ -convergence and σ -core of double sequences, Appl. Math. Lett. 19 (2006), 1122-1128.
- [2] G.G. Lorentz, A contribution to theory of divergent sequences, Acta Math. 80 (1948), 167-190.
- [3] C.G. Lascarides and I.J. Maddox, Matrix transformations between some classes of sequences, Proc. Camb. Phil. Soc. 68 (1970), 99-104.
- [4] I.J. Maddox, *Elements of Functional Analysis*, Univ. Press, Cambridge, 1970.
- [5] Mursaleen and S.A. Mohiuddine, Double σ-Multiplicative Matrices, J. Math. Anal. Appl. 327 (2007) 991-996.
- [6] M. Mursaleen and S.A. Mohiuddine, Regularly σ -Conservative and σ -Coercive Four Dimensional Matrices, Comp. Math. Appl. 56 (2008) 1580-1586.
- [7] M. Mursaleen and S.A. Mohiuddine, Invariant Mean and some Core Theorems for Double Sequences, Taiwanese J. Math. 14 (1) (2010) 21-33.
- [8] M. Mursaleen and S.A. Mohiuddine, On σ -conservative and boundedly σ -conservative four-dimensional matrices, Comp. Math. Appl. 59 (2010) 880-885.
- [9] Mursaleen, On infinite matrices and invariant means, Indian J. Pure Appl. Math. 10 (4) (1979), 457-460.
- [10] Qamaruddin and S.A. Mohiuddine, Almost Convergence and some matrix transformations, Filomat 21 (2) (2007), 261-266.
- [11] P. Schaefer, Infinite matrices and invariant means, Proc. Amer. Math. Soc. 36 (1972), 104-110.
- [12] S. Simons, The sequence spaces $\ell(p)$ and m(p), Proc. London Math. Soc. 3 (15) (1965), 422-436.

Addresses:

S.A. Mohiuddine

Department of Mathematics, Aligarh Muslim University, Aligarh 202002, India *E-mail:* mohiuddine@gmail.com

M. Aiyub

Department of Mathematics, University of Bahrain, P.O. Box-32038, Kingdom of Bahrain

E-mail: maiyub2002@yahoo.com