A REMARKABLE EQUALITY REFERRING TO SPLINE FUNCTIONS IN HILBERT SPACES

A. Branga and M. Acu

Abstract

In the introduction of this paper is presented the definition of the generalized spline functions as solutions of a variational problem and are shown some theorems regarding to the existence and uniqueness. The main result of this article consists in a remarkable equality verified by the generalized spline elements, based on the properties of the spaces, operator and interpolatory set involved, which can be used as a characterization theorem of the generalized spline functions in Hilbert spaces.

1 Introduction

Definition 1. Let E_{1} be a real linear space, $\left(E_{2},\|\cdot\|_{2}\right)$ a normed real linear space, $T: E_{1} \rightarrow E_{2}$ an operator and $U \subseteq E_{1}$ a non-empty set. The problem of finding the elements $s \in U$ which satisfy

$$
\begin{equation*}
\|T(s)\|_{2}=\inf _{u \in U}\|T(u)\|_{2} \tag{1}
\end{equation*}
$$

is called the general spline interpolation problem, corresponding to the set U.
A solution of this problem, provided that it exists, is named general spline interpolation element, corresponding to the set U.

The set U is called interpolatory set.
In the sequel we assume that E_{1} is a real linear space, $\left(E_{2},(., .)_{2},\|.\|_{2}\right)$ is a real Hilbert space, $T: E_{1} \rightarrow E_{2}$ is a linear operator and $U \subseteq E_{1}$ is a non-empty set.

Theorem 1. (Existence Theorem) If U is a convex set and $T(U)$ is a closed set, then the general spline interpolation problem (1) (corresponding to U) has at least one solution.

[^0]The proof is shown in the papers $[1,3]$.
For every element $s \in U$ we define the set

$$
\begin{equation*}
U(s):=U-s \tag{2}
\end{equation*}
$$

Lemma 1. For every element $s \in U$ the set $U(s)$ is non-empty $\left(0_{E_{1}} \in U(s)\right)$.
The result follows directly from the relation (2).
Theorem 2. (Uniqueness Theorem) If U is a convex set, $T(U)$ is a closed set and there exists a solution $s \in U$ of the general spline interpolation problem (1) (corresponding to U), such that $U(s)$ is a linear subspace of E_{1}, then the following statements are true
i) For any solutions $s_{1}, s_{2} \in U$ of the general spline interpolation problem (1) (corresponding to U) we have

$$
\begin{equation*}
s_{1}-s_{2} \in \operatorname{Ker}(T) \cap U(s) ; \tag{3}
\end{equation*}
$$

ii) The element $s \in U$ is the unique solution of the general spline interpolation problem (1) (corresponding to U) if and only if

$$
\begin{equation*}
\operatorname{Ker}(T) \cap U(s)=\left\{0_{E_{1}}\right\} \tag{4}
\end{equation*}
$$

A proof is presented in the papers [1, 2].
Lemma 2. For every element $s \in U$ the following statements are true
i) $T(U(s))$ is a non-empty set $\left(0_{E_{2}} \in T(U(s))\right)$;
ii) $T(U)=T(s)+T(U(s))$;
iii) If $U(s)$ is a linear subspace of E_{1}, then $T(U(s))$ is a linear subspace of E_{2}.

For a proof see the paper [1].
Lemma 3. For every element $s \in U$ the set $(T(U(s)))^{\perp}$ has the following properties
i) $(T(U(s)))^{\perp}$ is a non-empty set $\left(0_{E_{2}} \in(T(U(s)))^{\perp}\right)$;
ii) $(T(U(s)))^{\perp}$ is a linear subspace of E_{2};
iii) $(T(U(s)))^{\perp}$ is a closed set;
iv) $(T(U(s))) \cap(T(U(s)))^{\perp}=\left\{0_{E_{2}}\right\}$.

A proof is shown in the paper [1].

2 Main result

Theorem 3. An element $s \in U$, such that $U(s)$ is a linear subspace of E_{1}, is a solution of the general spline interpolation problem (1) (corresponding to U) if and only if the following equality is true

$$
\begin{gather*}
\|T(u)-\widetilde{w}\|_{2}^{2}= \tag{5}\\
=\|T(u)-T(s)\|_{2}^{2}+\|T(s)-\widetilde{w}\|_{2}^{2}, \quad(\forall) u \in U, \quad(\forall) \widetilde{w} \in(T(U(s)))^{\perp} .
\end{gather*}
$$

Proof. Let $s \in U$ be an element, such that $U(s)$ is a linear subspace of E_{1}.

1) Suppose that s is a solution of the general spline interpolation problem (1) (corresponding to U) and show that the equality (5) is true.

Let $\lambda \in[0,1]$ be an arbitrary number and $T\left(u_{1}\right), T\left(u_{2}\right) \in T(U)$ be arbitrary elements $\left(u_{1}, u_{2} \in U\right)$. From Lemma 2 ii) results that there are the elements $T\left(\widetilde{u}_{1}\right), T\left(\widetilde{u}_{2}\right) \in T(U(s))\left(\widetilde{u}_{1}, \widetilde{u}_{2} \in U(s)\right)$ so that $T\left(u_{1}\right)=T(s)+T\left(\widetilde{u}_{1}\right), T\left(u_{2}\right)=$ $T(s)+T\left(\widetilde{u}_{2}\right)$. Consequently, we have

$$
\begin{gathered}
(1-\lambda) T\left(u_{1}\right)+\lambda T\left(u_{2}\right)=(1-\lambda)\left(T(s)+T\left(\widetilde{u}_{1}\right)\right)+\lambda\left(T(s)+T\left(\widetilde{u}_{2}\right)\right)= \\
=T(s)+\left((1-\lambda) T\left(\widetilde{u}_{1}\right)+\lambda T\left(\widetilde{u}_{2}\right)\right) .
\end{gathered}
$$

Because $U(s)$ is a linear subspace of E_{1}, applying Lemma 2 iii), results that $T(U(s))$ is a linear subspace of E_{2}, hence $(1-\lambda) T\left(\widetilde{u}_{1}\right)+\lambda T\left(\widetilde{u}_{2}\right) \in T(U(s))$. Therefore, we have $(1-\lambda) T\left(u_{1}\right)+\lambda T\left(u_{2}\right) \in T(s)+T(U(s))$ and using Lemma 2 ii) we obtain

$$
(1-\lambda) T\left(u_{1}\right)+\lambda T\left(u_{2}\right) \in T(U)
$$

i.e. $T(U)$ is a convex set.

Since $s \in U$ is a solution of the general spline interpolation problem (1) (corresponding to U) it follows that

$$
\|T(s)\|_{2}=\inf _{u \in U}\|T(u)\|_{2}
$$

and seeing the equality $\{T(u) \mid u \in U\}=\{t \mid t \in T(U)\}$ it obtains

$$
\begin{equation*}
\|T(s)\|_{2}=\inf _{t \in T(U)}\|t\|_{2} \tag{6}
\end{equation*}
$$

Let $t \in T(U)$ be an arbitrary element $(u \in U)$.
We consider a certain $\alpha \in(0,1)$ and define the element

$$
\begin{equation*}
t^{\prime}=(1-\alpha) T(s)+\alpha t . \tag{7}
\end{equation*}
$$

Because $\alpha \in(0,1), T(s), t \in T(U)$ and taking into account that $T(U)$ is a convex set, from the relation (7) results

$$
\begin{equation*}
t^{\prime} \in T(U) \tag{8}
\end{equation*}
$$

Therefore, from the relations (6), (8) we deduce

$$
\|T(s)\|_{2} \leq\left\|t^{\prime}\right\|_{2}
$$

and considering the equality (7) we find

$$
\|T(s)\|_{2} \leq\|(1-\alpha) T(s)+\alpha t\|_{2}
$$

which is equivalent to

$$
\begin{equation*}
\|T(s)\|_{2}^{2} \leq\|(1-\alpha) T(s)+\alpha t\|_{2}^{2} \tag{9}
\end{equation*}
$$

Using the properties of the inner product it obtains

$$
\begin{align*}
& \|(1-\alpha) T(s)+\alpha t\|_{2}^{2}=\|T(s)+\alpha(t-T(s))\|_{2}^{2}= \tag{10}\\
= & \|T(s)\|_{2}^{2}+2 \alpha(T(s), t-T(s))_{2}+\alpha^{2}\|t-T(s)\|_{2}^{2}
\end{align*}
$$

Substituting the equality (10) in the relation (9) it follows that

$$
\|T(s)\|_{2}^{2} \leq\|T(s)\|_{2}^{2}+2 \alpha(T(s), t-T(s))_{2}+\alpha^{2}\|t-T(s)\|_{2}^{2}
$$

i.e.

$$
2 \alpha(T(s), t-T(s))_{2}+\alpha^{2}\|t-T(s)\|_{2}^{2} \geq 0
$$

and dividing by $2 \alpha \in(0,2)$ we obtain

$$
\begin{equation*}
(T(s), t-T(s))_{2}+\frac{\alpha}{2}\|t-T(s)\|_{2}^{2} \geq 0 \tag{11}
\end{equation*}
$$

Because $\alpha \in(0,1)$ was chosen arbitrarily it follows that the inequality (11) holds $(\forall) \alpha \in(0,1)$ and passing to the limit for $\alpha \rightarrow 0$ it obtains

$$
(T(s), t-T(s))_{2} \geq 0
$$

As the element $t \in T(U)$ was chosen arbitrarily we deduce that the previous relation is true $(\forall) t \in T(U)$, i.e.

$$
\begin{equation*}
(T(s), t-T(s))_{2} \geq 0, \quad(\forall) t \in T(U) \tag{12}
\end{equation*}
$$

Let show that in the relation (12) we have only equality. Suppose that $(\exists) t_{0} \in$ $T(U)$ such that

$$
\begin{equation*}
\left(T(s), t_{0}-T(s)\right)_{2}>0 \tag{13}
\end{equation*}
$$

Using the properties of the inner product, from the relation (13) we find

$$
\begin{equation*}
\left(T(s), T(s)-t_{0}\right)_{2}<0 \tag{14}
\end{equation*}
$$

Because $t_{0} \in T(U)$ it results that $T(s)-t_{0} \in T(s)-T(U)$ and considering Lemma 2 ii) it obtains $T(s)-t_{0} \in-T(U(s))$. But, $U(s)$ being a linear subspace of E_{1}, applying Lemma 2 iii) we deduce that $T(U(s))$ is a linear subspace of E_{2}, hence
$-T(U(s))=T(U(s))$. Consequently, $T(s)-t_{0} \in T(U(s))$ and using Lemma 2 ii) we find $T(s)-t_{0} \in T(U)-T(s)$, i.e.
$(\exists) t_{1} \in T(U)$ such that $T(s)-t_{0}=t_{1}-T(s)$.
From the relations (14) and (15) it follows that there is an element $t_{1} \in T(U)$ so that $\left(T(s), t_{1}-T(s)\right)_{2}<0$, which is in contradiction with the relation (12).

Therefore, the relation (12) is equivalent to

$$
\begin{equation*}
(T(s), t-T(s))_{2}=0, \quad(\forall) t \in T(U) . \tag{16}
\end{equation*}
$$

Let $\tilde{t} \in T(U(s))$ be an arbitrary element.
Applying Lemma 2 ii) we obtain that $\tilde{t} \in T(U)-T(s)$, so there is an element $t \in T(U)$ such that $\widetilde{t}=t-T(s)$. Using the relation (16) we deduce

$$
(T(s), \widetilde{t})_{2}=0
$$

As the element $\tilde{t} \in T(U(s))$ was chosen arbitrarily we find that the previous relation is true $(\forall) \widetilde{t} \in T(U(s))$, hence

$$
\begin{equation*}
T(s) \in(T(U(s)))^{\perp} \tag{17}
\end{equation*}
$$

Let $u \in U, \widetilde{w} \in(T(U(s)))^{\perp}$ be arbitrary elements.
Using the properties of the inner product we find

$$
\begin{gather*}
\|T(u)-\widetilde{w}\|_{2}^{2}=\|(T(u)-T(s))+(T(s)-\widetilde{w})\|_{2}^{2}= \tag{18}\\
=\|T(u)-T(s)\|_{2}^{2}+2(T(u)-T(s), T(s)-\widetilde{w})_{2}+\|T(s)-\widetilde{w}\|_{2}^{2} .
\end{gather*}
$$

Since $u \in U$ it is obvious that

$$
T(u) \in T(U)
$$

therefore

$$
T(u)-T(s) \in T(U)-T(s)
$$

and applying Lemma 2 ii) it follows that

$$
\begin{equation*}
T(u)-T(s) \in T(U(s)) \tag{19}
\end{equation*}
$$

As $T(s) \in(T(U(s)))^{\perp}, \widetilde{w} \in(T(U(s)))^{\perp}$ and taking into account Lemma 3 ii) we obtain

$$
\begin{equation*}
T(s)-\widetilde{w} \in(T(U(s)))^{\perp} \tag{20}
\end{equation*}
$$

Consequently, from the relations (19) and (20) we deduce

$$
\begin{equation*}
(T(u)-T(s), T(s)-\widetilde{w})_{2}=0 \tag{21}
\end{equation*}
$$

Substituting the equality (21) in the relation (18) we find

$$
\begin{equation*}
\|T(u)-\widetilde{w}\|_{2}^{2}=\|T(u)-T(s)\|_{2}^{2}+\|T(s)-\widetilde{w}\|_{2}^{2} . \tag{22}
\end{equation*}
$$

As the elements $u \in U, \widetilde{w} \in(T(U(s)))^{\perp}$ were chosen arbitrarily it follows that the previous equality is true $(\forall) u \in U,(\forall) \widetilde{w} \in(T(U(s)))^{\perp}$, i.e.

$$
\begin{gathered}
\|T(u)-\widetilde{w}\|_{2}^{2}= \\
=\|T(u)-T(s)\|_{2}^{2}+\|T(s)-\widetilde{w}\|_{2}^{2}, \quad(\forall) u \in U,(\forall) \widetilde{w} \in(T(U(s)))^{\perp} .
\end{gathered}
$$

2) Suppose that the equality (5) is true and show that s is a solution of the general spline interpolation problem (1) (corresponding to U).

Let $u \in U$ be an arbitrary element.
According to Lemma 3 i) we have $0_{E_{2}} \in(T(U(s)))^{\perp}$ and considering $\widetilde{w}=0_{E_{2}}$ in the equality (5) and taking into account the properties of the norm, we obtain

$$
\|T(u)\|_{2}^{2}=\|T(u)-T(s)\|_{2}^{2}+\|T(s)\|_{2}^{2}
$$

hence

$$
\|T(s)\|_{2}^{2}=\|T(u)\|_{2}^{2}-\|T(u)-T(s)\|_{2}^{2} \leq\|T(u)\|_{2}^{2}
$$

with equality if and only if $\|T(u)-T(s)\|_{2}^{2}=0$, i.e. $T(u)=T(s)$.
The previous relation implies

$$
\|T(s)\|_{2} \leq\|T(u)\|_{2}
$$

with equality if and only if $T(u)=T(s)$.
As the element $u \in U$ was chosen arbitrarily we obtain that the previous inequality is true $(\forall) u \in U$, i.e.

$$
\begin{equation*}
\|T(s)\|_{2} \leq\|T(u)\|_{2}, \quad(\forall) u \in U \tag{23}
\end{equation*}
$$

and the equality is attained in the element $T(u)=T(s)$, which is equivalent to

$$
\|T(s)\|_{2}=\inf _{u \in U}\|T(u)\|_{2}
$$

Consequently, s is a solution of the general spline interpolation problem (1) (corresponding to U).

Remark 1. The equality presented in Theorem 3 is remarkable because it represents a necessary and sufficient condition to characterize the solution of the general spline interpolation problem in Hilbert spaces. Also, from this theorem we obtain a few interesting inequalities and some optimal approximation properties satisfied by the general spline interpolation functions, like $\|T(u)-T(s)\|_{2} \leq\|T(u)-\widetilde{w}\|_{2},(\forall) u \in$ $U,(\forall) \widetilde{w} \in(T(U(s)))^{\perp}$, respectively $\|T(s)-\widetilde{w}\|_{2}=\inf _{u \in U}\|T(u)-\widetilde{w}\|_{2}, \quad(\forall) \widetilde{w} \in$ $(T(U(s)))^{\perp}$.

References

[1] A. Branga, Contribuţii la teoria funcţiilor spline şi aplicaţii, Teză de Doctorat, Universitatea "Babeş-Bolyai", Cluj-Napoca, 2003.
[2] Gh. Micula, Funcţii spline şi aplicaţii, Editura Tehnică, Bucureşti, 1978.
[3] Gh. Micula, S. Micula, Handbook of splines, Kluwer Acad. Publ., Dordrecht-Boston-London, 1999.

Addresses:
A. Branga:
"Lucian Blaga" University of Sibiu, Department of Mathematics, Dr. I. Raţiu 5-7, 550012 Sibiu, Romania
E-mail: adrian_branga@yahoo.com
M. Acu:
"Lucian Blaga" University of Sibiu, Department of Mathematics, Dr. I. Raţiu 5-7, 550012 Sibiu, Romania
E-mail: acu_mugur@yahoo.com

[^0]: 2010 Mathematics Subject Classifications. 41A15, 41A65, 41A50, 41A52.
 Key words and Phrases. Spline functions, Best approximation, Equalities in abstract spaces, Characterization of the solution.

 Received: February 9, 2010
 Communicated by Dragan S. Djordjević

