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A REMARKABLE EQUALITY REFERRING TO

SPLINE FUNCTIONS IN HILBERT SPACES

A. Branga and M. Acu

Abstract

In the introduction of this paper is presented the definition of the gen-
eralized spline functions as solutions of a variational problem and are shown
some theorems regarding to the existence and uniqueness. The main result of
this article consists in a remarkable equality verified by the generalized spline
elements, based on the properties of the spaces, operator and interpolatory set
involved, which can be used as a characterization theorem of the generalized
spline functions in Hilbert spaces.

1 Introduction

Definition 1. Let E1 be a real linear space, (E2, ‖.‖2) a normed real linear space,
T : E1 → E2 an operator and U ⊆ E1 a non-empty set. The problem of finding the
elements s ∈ U which satisfy

‖T (s)‖2 = inf
u∈U

‖T (u)‖2, (1)

is called the general spline interpolation problem, corresponding to the set U .
A solution of this problem, provided that it exists, is named general spline inter-

polation element, corresponding to the set U .
The set U is called interpolatory set.

In the sequel we assume that E1 is a real linear space, (E2, (. , .)2, ‖.‖2) is a real
Hilbert space, T : E1 → E2 is a linear operator and U ⊆ E1 is a non-empty set.

Theorem 1. (Existence Theorem) If U is a convex set and T (U) is a closed set,
then the general spline interpolation problem (1) (corresponding to U) has at least
one solution.
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The proof is shown in the papers [1, 3].
For every element s ∈ U we define the set

U(s) := U − s. (2)

Lemma 1. For every element s ∈ U the set U(s) is non-empty (0E1 ∈ U(s)).

The result follows directly from the relation (2).

Theorem 2. (Uniqueness Theorem) If U is a convex set, T (U) is a closed set
and there exists a solution s ∈ U of the general spline interpolation problem (1)
(corresponding to U), such that U(s) is a linear subspace of E1, then the following
statements are true

i) For any solutions s1, s2 ∈ U of the general spline interpolation problem (1)
(corresponding to U) we have

s1 − s2 ∈ Ker(T ) ∩ U(s); (3)

ii) The element s ∈ U is the unique solution of the general spline interpolation
problem (1) (corresponding to U) if and only if

Ker(T ) ∩ U(s) = {0E1}. (4)

A proof is presented in the papers [1, 2].

Lemma 2. For every element s ∈ U the following statements are true

i) T (U(s)) is a non-empty set (0E2 ∈ T (U(s)));

ii) T(U) = T(s) + T(U(s));

iii) If U(s) is a linear subspace of E1, then T (U(s)) is a linear subspace of E2.

For a proof see the paper [1].

Lemma 3. For every element s ∈ U the set (T (U(s)))⊥ has the following properties

i) (T (U(s)))⊥ is a non-empty set (0E2 ∈ (T (U(s)))⊥);

ii) (T (U(s)))⊥ is a linear subspace of E2;

iii) (T (U(s)))⊥ is a closed set;

iv) (T (U(s))) ∩ (T (U(s)))⊥ = {0E2}.

A proof is shown in the paper [1].
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2 Main result

Theorem 3. An element s ∈ U , such that U(s) is a linear subspace of E1, is a
solution of the general spline interpolation problem (1) (corresponding to U) if and
only if the following equality is true

‖T (u)− w̃‖22 = (5)

= ‖T (u)− T (s)‖22 + ‖T (s)− w̃‖22, (∀) u ∈ U, (∀) w̃ ∈ (T (U(s)))⊥.

Proof. Let s ∈ U be an element, such that U(s) is a linear subspace of E1.
1) Suppose that s is a solution of the general spline interpolation problem (1)
(corresponding to U) and show that the equality (5) is true.

Let λ ∈ [0, 1] be an arbitrary number and T (u1), T (u2) ∈ T (U) be arbitrary
elements (u1, u2 ∈ U). From Lemma 2 ii) results that there are the elements
T (ũ1), T (ũ2) ∈ T (U(s)) (ũ1, ũ2 ∈ U(s)) so that T (u1) = T (s) + T (ũ1), T (u2) =
T (s) + T (ũ2). Consequently, we have

(1− λ)T (u1) + λT (u2) = (1− λ)(T (s) + T (ũ1)) + λ(T (s) + T (ũ2)) =

= T (s) + ((1− λ)T (ũ1) + λT (ũ2)).

Because U(s) is a linear subspace of E1, applying Lemma 2 iii), results that T (U(s))
is a linear subspace of E2, hence (1− λ)T (ũ1) + λT (ũ2) ∈ T (U(s)). Therefore, we
have (1− λ)T (u1) + λT (u2) ∈ T (s) + T (U(s)) and using Lemma 2 ii) we obtain

(1− λ)T (u1) + λT (u2) ∈ T (U),

i.e. T (U) is a convex set.
Since s ∈ U is a solution of the general spline interpolation problem (1) (corre-

sponding to U) it follows that

‖T (s)‖2 = inf
u∈U

‖T (u)‖2

and seeing the equality {T (u) | u ∈ U} = {t | t ∈ T (U)} it obtains

‖T (s)‖2 = inf
t∈T (U)

‖t‖2. (6)

Let t ∈ T (U) be an arbitrary element (u ∈ U).
We consider a certain α ∈ (0, 1) and define the element

t′ = (1− α)T (s) + αt. (7)

Because α ∈ (0, 1), T (s), t ∈ T (U) and taking into account that T (U) is a convex
set, from the relation (7) results

t′ ∈ T (U). (8)
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Therefore, from the relations (6), (8) we deduce

‖T (s)‖2 ≤ ‖t′‖2
and considering the equality (7) we find

‖T (s)‖2 ≤ ‖(1− α)T (s) + αt‖2,

which is equivalent to

‖T (s)‖22 ≤ ‖(1− α)T (s) + αt‖22. (9)

Using the properties of the inner product it obtains

‖(1− α)T (s) + αt‖22 = ‖T (s) + α(t− T (s))‖22 = (10)

= ‖T (s)‖22 + 2α(T (s), t− T (s))2 + α2‖t− T (s)‖22.
Substituting the equality (10) in the relation (9) it follows that

‖T (s)‖22 ≤ ‖T (s)‖22 + 2α(T (s), t− T (s))2 + α2‖t− T (s)‖22,

i.e.
2α(T (s), t− T (s))2 + α2‖t− T (s)‖22 ≥ 0

and dividing by 2α ∈ (0, 2) we obtain

(T (s), t− T (s))2 +
α

2
‖t− T (s)‖22 ≥ 0. (11)

Because α ∈ (0, 1) was chosen arbitrarily it follows that the inequality (11) holds
(∀) α ∈ (0, 1) and passing to the limit for α → 0 it obtains

(T (s), t− T (s))2 ≥ 0.

As the element t ∈ T (U) was chosen arbitrarily we deduce that the previous relation
is true (∀) t ∈ T (U), i.e.

(T (s), t− T (s))2 ≥ 0, (∀) t ∈ T (U). (12)

Let show that in the relation (12) we have only equality. Suppose that (∃) t0 ∈
T (U) such that

(T (s), t0 − T (s))2 > 0. (13)

Using the properties of the inner product, from the relation (13) we find

(T (s), T (s)− t0)2 < 0. (14)

Because t0 ∈ T (U) it results that T (s)− t0 ∈ T (s)− T (U) and considering Lemma
2 ii) it obtains T (s) − t0 ∈ −T (U(s)). But, U(s) being a linear subspace of E1,
applying Lemma 2 iii) we deduce that T (U(s)) is a linear subspace of E2, hence
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−T (U(s)) = T (U(s)). Consequently, T (s) − t0 ∈ T (U(s)) and using Lemma 2 ii)
we find T (s)− t0 ∈ T (U)− T (s), i.e.

(∃) t1 ∈ T (U) such that T (s)− t0 = t1 − T (s). (15)

From the relations (14) and (15) it follows that there is an element t1 ∈ T (U)
so that (T (s), t1 − T (s))2 < 0, which is in contradiction with the relation (12).

Therefore, the relation (12) is equivalent to

(T (s), t− T (s))2 = 0, (∀) t ∈ T (U). (16)

Let t̃ ∈ T (U(s)) be an arbitrary element.
Applying Lemma 2 ii) we obtain that t̃ ∈ T (U) − T (s), so there is an element

t ∈ T (U) such that t̃ = t− T (s). Using the relation (16) we deduce

(T (s), t̃)2 = 0.

As the element t̃ ∈ T (U(s)) was chosen arbitrarily we find that the previous relation
is true (∀) t̃ ∈ T (U(s)), hence

T (s) ∈ (T (U(s)))⊥. (17)

Let u ∈ U , w̃ ∈ (T (U(s)))⊥ be arbitrary elements.
Using the properties of the inner product we find

‖T (u)− w̃‖22 = ‖(T (u)− T (s)) + (T (s)− w̃)‖22 = (18)

= ‖T (u)− T (s)‖22 + 2(T (u)− T (s), T (s)− w̃)2 + ‖T (s)− w̃‖22.
Since u ∈ U it is obvious that

T (u) ∈ T (U),

therefore
T (u)− T (s) ∈ T (U)− T (s)

and applying Lemma 2 ii) it follows that

T (u)− T (s) ∈ T (U(s)). (19)

As T (s) ∈ (T (U(s)))⊥, w̃ ∈ (T (U(s)))⊥ and taking into account Lemma 3 ii)
we obtain

T (s)− w̃ ∈ (T (U(s)))⊥. (20)

Consequently, from the relations (19) and (20) we deduce

(T (u)− T (s), T (s)− w̃)2 = 0. (21)

Substituting the equality (21) in the relation (18) we find

‖T (u)− w̃‖22 = ‖T (u)− T (s)‖22 + ‖T (s)− w̃‖22. (22)
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As the elements u ∈ U , w̃ ∈ (T (U(s)))⊥ were chosen arbitrarily it follows that
the previous equality is true (∀) u ∈ U , (∀) w̃ ∈ (T (U(s)))⊥, i.e.

‖T (u)− w̃‖22 =

= ‖T (u)− T (s)‖22 + ‖T (s)− w̃‖22, (∀) u ∈ U, (∀) w̃ ∈ (T (U(s)))⊥.

2) Suppose that the equality (5) is true and show that s is a solution of the general
spline interpolation problem (1) (corresponding to U).

Let u ∈ U be an arbitrary element.
According to Lemma 3 i) we have 0E2 ∈ (T (U(s)))⊥ and considering w̃ = 0E2

in the equality (5) and taking into account the properties of the norm, we obtain

‖T (u)‖22 = ‖T (u)− T (s)‖22 + ‖T (s)‖22,

hence

‖T (s)‖22 = ‖T (u)‖22 − ‖T (u)− T (s)‖22 ≤ ‖T (u)‖22,

with equality if and only if ‖T (u)− T (s)‖22 = 0, i.e. T (u) = T (s).
The previous relation implies

‖T (s)‖2 ≤ ‖T (u)‖2,

with equality if and only if T (u) = T (s).
As the element u ∈ U was chosen arbitrarily we obtain that the previous in-

equality is true (∀) u ∈ U , i.e.

‖T (s)‖2 ≤ ‖T (u)‖2, (∀) u ∈ U, (23)

and the equality is attained in the element T (u) = T (s), which is equivalent to

‖T (s)‖2 = inf
u∈U

‖T (u)‖2.

Consequently, s is a solution of the general spline interpolation problem (1)
(corresponding to U). ¤

Remark 1. The equality presented in Theorem 3 is remarkable because it represents
a necessary and sufficient condition to characterize the solution of the general spline
interpolation problem in Hilbert spaces. Also, from this theorem we obtain a few
interesting inequalities and some optimal approximation properties satisfied by the
general spline interpolation functions, like ‖T (u)− T (s)‖2 ≤ ‖T (u)− w̃‖2, (∀) u ∈
U, (∀) w̃ ∈ (T (U(s)))⊥, respectively ‖T (s) − w̃‖2 = inf

u∈U
‖T (u) − w̃‖2, (∀) w̃ ∈

(T (U(s)))⊥.
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