Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Filomat **24:4** (2010), 129–136 DOI: 10.2298/FIL1004129A

G_{δ} -BLUMBERG SPACES

M. R. Ahmadi Zand

Abstract

A topological space X is called a G_{δ} -Blumberg space If for every realvalued function f on X, there exists a dense G_{δ} -set D in X such that the restriction of f to D is continuous. In this paper, the behaviour of this space under taking subspaces and superspaces, images and preimages are studied, and a G_{δ} -Blumberg space which is a generalization of an almost P-space is characterized. Some unsolved problems are posed.

1 Introduction

Let X be a topological space and $A \subseteq X$, $int_X A$ denotes the interior of A in X, $cl_X A$ denotes the closure of A in X. Where no ambiguity can arise, the interior of A in X is denoted by A° and the closure of A in X is denoted by \overline{A} . In this paper I(X) denotes the set of all isolated points of topological space X. A topological space X is said to be almost discrete if $\overline{I(X)} = X$, and if $I(X) = \emptyset$, then X is called crowded or dense-in-itself.

Recall that a topological space X is Baire if the intersection of any sequence of dense open sets of X is dense.

Let X be crowded, if $\overline{D} = \overline{(X \setminus D)} = X$ for some subset D of X, then X is called resolvable, otherwise X is called irresolvable.

Let X and Y be topological spaces and let F(X, Y) be the set of functions on X into Y. In this paper $F(X, \mathbb{R})$ is denoted by F(X). It is clear that F(X) with addition and multiplication defined pointwise, is a commutative ring. The collection of continuous members of F(X) is denoted by C(X). The zero-set of $f \in F(X)$ is denoted by Z(f) and is defined by $Z(f) = \{x \in X : f(x) = 0\}$. The complement of Z(f) in X, is called cozero-set of f and it is denoted by Coz(f). Let X be a topological space. $\mathcal{D}(X)$, $\mathcal{D}O(X)$ and $\mathcal{D}\mathcal{G}(X)$ denote the set of dense, dense open and dense G_{δ} subspaces of X, respectively. Let X be a topological space. If for every $f \in F(X)$ there exists a $D \in \mathcal{D}\mathcal{G}(X)$ such that $f|D \in C(D)$, then X is

²⁰⁰⁰ Mathematics Subject Classifications. Primary 54C30, 54C05; Secondary 5C40, 13A18.

Key words and Phrases. Blumberg space, G_{δ} -B. space, S.B. space, Baire space, almost GP-space, crowded space.

Received: August 24, 2009

Communicated by Ljubiša D.R. Kočinac

called a G_{δ} -Blumberg space. In Section 2, we introduce G_{δ} -Blumberg spaces and we give examples. In Theorem 2.6 and Corollary 2.7 we give characterizations of G_{δ} -Blumberg spaces. In Section 3, we characterize some subspaces and superspaces of a G_{δ} -Blumberg space, which are G_{δ} -Blumberg spaces. In Theorem 3.7 we show that a preimage of a G_{δ} -Blumberg space under irreducible mapping is also a G_{δ} -Blumberg space. Section 4 of our paper is devoted to a generalization of almost P-spaces which are G_{δ} -Blumberg spaces.

As usual, we let \mathbf{c} denote the cardinality of the continuum.

2 A generalized S-Z function

Let X and Y be a topological spaces. Let T(X, Y) denote the set of all f in F(X, Y) such that there exists a D in $\mathcal{D}(X)$ and f|D is continuous. In this paper $T(X, \mathbb{R})$ is denoted by T(X).

In 1922, Blumberg [1] proved that if X is a separable complete metric space then for every real valued function f defined on X, there is a dense subset D of X such that $f|D \in C(D)$. i.e., T(X) = F(X). A topological space X is called a Blumberg space if T(X) = F(X). In 1960, Bradford and Goffman [2] showed that if X is metric, then X is a Blumberg space if and only if X is a Baire space. In 1974, White proved in [3] that if X is a Baire space having a σ -disjoint pseudo-base, then X is a Blumberg space. In 1976, Alas [4] improved White's result by showing that, if X is a Baire space having a σ -disjoint pseudo-base and Y is a second countable Hausdorff space, then F(X, Y) = T(X, Y). In 1984, Piotrowski and Szymanski [5] proved that if X is a Baire space having a σ -disjoint pseudo-base and Y is a second countable space then F(X, Y) = T(X, Y). They also showed that T(X) = F(X) if and only if T(X, Y) = F(X, Y) for every second countable space Y.

Definition 1. Let X be a topological space and let

$$T'(X) = \{ f \in F(X) | \exists D \in \mathcal{D}O(X) \text{ such that } f | D \in C(D) \}.$$

If T'(X) = F(X), then X is called a strongly Blumberg space, abbreviated as S.B. space.

Strongly Blumberg spaces are introduced and studied in [6]. It was shown in [6] that under V = L, a topological space X is a strongly Blumberg space if and only if it is almost discrete.

Definition 2. Let X and Y be topological spaces and

$$TG(X,Y) = \{ f \in F(X,Y) | \exists D \in \mathcal{DG}(X) \text{ such that } f | D \in C(D,Y) \},\$$

where C(D,Y) denotes the collection of all continuous functions from D into Y. $TG(X,\mathbb{R})$ is denoted by TG(X). If TG(X) = F(X) then X is called a G_{δ} -Blumberg space, abbreviated as G_{δ} -B. space.

The fact that the class of G_{δ} -B. spaces properly contained in the class of Blumberg spaces follows from the next example.

Example 1. (CH) Sierpiński and Zigmund in [7] showed that there exists an $f \in F(\mathbb{R}) = T(\mathbb{R})$, called S-Z function, such that for every $M \in \mathcal{D}(\mathbb{R})$ of cardinality $\mathbf{c}, f | M \notin C(M)$. Since \mathbb{R} has no countable dense G_{δ} -set [8], f has no continuous restriction to any dense G_{δ} -set. So the Blumberg space \mathbb{R} is not a G_{δ} -B. space.

In the following definition we give a generalization of a S - Z function to some topological spaces:

Definition 3. Let X be a Blumberg space which is not a G_{δ} -B. space and $f \in F(X) \setminus TG(X)$. Then f is called a generalized S-Z function.

We now show that the class of G_{δ} -B. spaces properly contains the class of strongly Blumberg spaces.

Example 2. Let $X = \{0, 1, \frac{1}{2}, \dots, \frac{1}{n}, \dots\},$ and define $\tau_X = \{\{0, \frac{1}{n}, \frac{1}{n+1}, \dots\} : n \in \mathbb{N}\},$ as a topology on X. Since $cl_X\{0\} = X$, and $\{0\}$ is G_{δ} , X is a G_{δ} -B. space, but X is not an almost discrete space.

Recall that a commutative ring R is called (von Neumann) regular if for each $r \in R$ there exists an $s \in R$ such that $r = r^2 s$. Clearly F(X) is a regular ring.

Proposition 1. If TG(X) is a subring of F(X), then TG(X) is a regular subring.

Proof. $f \in TG(X)$ implies that there exists a $D \in \mathcal{DG}(X)$ such that $f|D \in C(D)$. Let $g(x) = \frac{1}{f(x)}$ if x is in cozero-set of f, and g(x) = 0 if $x \in Z(f)$. It is easily seen that $D_1 = Coz(f|D) \cup int_D Z(f|D)$ is dense G_{δ} in X and $g|D_1 \in C(D_1)$. So $g \in TG(X)$, and $f^2g = f$ and $g^2f = g$. Thus TG(X) is a regular subring of F(X).

If X is Baire, then TG(X) is a subring of F(X), and so by the above proposition TG(X) is its regular subring. In [9] some characterizations of a space X that TG(X) is a subring of F(X) is given.

The following theorem and corollary are proved in the same ways as Theorem 1 and Corollary 2 in [5], respectively.

Theorem 1. A space X is a G_{δ} -B. space, if and only if for every countable cover $(P_n)_{n \in \mathbb{N}}$ of X, there exists a $D \in \mathcal{DG}(X)$ such that $P_n \cap D$ is a G_{δ} in X for every $n \in \mathbb{N}$.

Corollary 1. Let X be a topological space. Then the following conditions are equivalent.

1. For every real-valued function f on X there exists a $D \in D\mathcal{G}(X)$ such that f|D is continuous.

2. Let Y be a second countable space. Then for every function f on X into Y there exists a $D \in D\mathcal{G}(X)$ such that f|D is continuous.

3 Subspaces and pre-images of G_{δ} -B. spaces

Theorem 2. Let U be a G_{δ} -set in a space X, $U \subseteq A \subseteq \overline{U}$ and let A be Baire. Then U is a G_{δ} -B. space if and only if A is so.

Proof. \Rightarrow :Let U be a G_{δ} -B. space. Suppose $g \in F(A)$. Since U is a G_{δ} -B. space and $g|U \in F(U)$, there exists a $B \in \mathcal{DG}(U)$ such that $g|B \in C(B)$. Since U is a G_{δ} in X, B is a G_{δ} and dense subset of A. Therefore A is a G_{δ} -B. space.

 \Leftarrow : Suppose A is a G_{δ} -B. space and $g \in F(U)$. We can extend g to a function $h \in F(A)$, then by hypothesis there exists a $B \in \mathcal{DG}(A)$ such that $h|B \in C(B)$. Since U is a G_{δ} set in X, and U is Baire, $B \cap U \in \mathcal{DG}(U)$. So $g|(B \cap U) \in C(B \cap U)$. Therefore U is a G_{δ} -B. space.

Corollary 2. a.) Let W be a G_{δ} dense subset of X. Let X be Baire. Then W is a G_{δ} -B. space if and only if X is a G_{δ} -B. space.

b.) Every open subset of a G_{δ} -B. space is a G_{δ} -B. space.

c.) Every regular closed subset of a G_{δ} -B. space is a G_{δ} -B. space.

Proof. a.). It is an immediate consequence of the above theorem. b.) It is clear. For proof c.), let A be a regular closed in a G_{δ} -B. space X. So by b.) A^o is a G_{δ} -B. space, and so by Theorem 2 $A = \overline{A^o}$ is a G_{δ} -B. space.

Corollary 3. Let X be a topological space, then the following statements are equivalent.

a.) X is a G_{δ} -B. space.

b.) Every dense G_{δ} subset D of X is a G_{δ} -B. space.

c.) There exists a dense G_{δ} subset D of X which is a G_{δ} -B. space.

Proof. a.) \Rightarrow b.) Let X be a G_{δ} -B. space, and let D be a dense G_{δ} in X. Then X is Baire, and since every dense G_{δ} in a Baire space is Baire, D is Baire. So by Theorem 2, D is a G_{δ} -B. space.

 $b) \Rightarrow c$) It is obvious.

 $(c) \Rightarrow a$) It follows from Corollary 2.

Example 3. (CH) Let $\beta = \{\{r\} \mid r \in \mathbb{Q}\} \cup \tau$, where τ is the natural topology on the real line. Then β is a base for a topology on $X = \mathbb{R}$ and X is a G_{δ} -B. space. $G = \mathbb{R} \setminus \mathbb{Q}$ is a closed G_{δ} set in X. G is not a G_{δ} -B. space. Otherwise by Corollary 3, the real line, with ordinary topology, is a G_{δ} -B. space. But by Example 1 there is a real-valued function f defined on X, such that for every G_{δ} and dense subset D of the real line $f \mid D \notin C(D)$ and this is a contradiction.

Example 3 shows that the property of being G_{δ} -B. space need not be inherited by arbitrary subspaces. This example shows that a closed G_{δ} in a G_{δ} -B. space, need not be a G_{δ} -B. space.

Remark 1. If $(X, \tau X)$ is not a G_{δ} -B. space, where τX is the topology on X. Then when X is retopologised with the discrete topology, X becomes a G_{δ} -B. space. So

G_{δ} -Blumberg spaces

the identity function from X with the discrete topology to $(X, \tau X)$ is a continuous mapping from a G_{δ} -B. space to a space which is not a G_{δ} -B. space. Thus the image of a G_{δ} -B. space under a continuous mapping need not be a G_{δ} -B. space.

Recall that a continuous mapping $f : X \to Y$ of X onto Y is irreducible, if $f(F) \neq Y$ for every proper closed subset F in X. In the light of Theorem 1 we show that a preimage of a G_{δ} -B. space under irreducible mapping is also a G_{δ} -B. space.

Theorem 3. Let Y be a G_{δ} -B. space and let $f : X \to Y$ be an irreducible mapping. Then X is a G_{δ} -B. space.

Proof. Let $\mathcal{P} = (P_n)_{n \in \mathbb{N}}$ be an arbitrary countable cover of X. Then $f(\mathcal{P}) = \{f(P) \mid P \in \mathcal{P}\}$ is a countable cover of Y. Since Y is a G_{δ} -B. space, Theorem 1 implies that there exists a dense G_{δ} subset D' of Y such that for every $P \in \mathcal{P}$, $f(P) \cap D'$ is a G_{δ} -set. For every $y \in D'$ we select one member in $f^{-1}(y)$, and let D be the set of these selected members. Since f is an irreducible mapping and D' is dense in Y we conclude that D is dense in X. If $P \in \mathcal{P}$, then $P \cap D = f^{-1}(f(P) \cap D')$, and since f is a continuous mapping, $P \cap D$ is a G_{δ} -set. Thus by Theorem 1, X is a G_{δ} -B. space.

4 When almost GP-spaces are G_{δ} -B. spaces

Recall that a completely regular space in which every non-empty G_{δ} -set has nonempty interior is called an almost P-space [10].

Almost P-spaces are generalized in [9] as follows:

Definition 4. Let X be a topological space. If every dense G_{δ} subset of X has nonempty interior, then X is called an almost GP-space.

Proposition 2. Let X be crowded. If X is an almost GP-space and X is a G_{δ} -B. space, then X is an irresolvable space.

Proof. Suppose to the contrary that D and $D^c = X \setminus D$ are dense dense in X. Let f be the characteristic function of D^c . Then by hypothesis there exists a G_{δ} and dense subset W of X such that $f|W \in C(W)$. Since D and D^c are dense, $f|int_X W \notin C(int_X W)$, and this is a contradiction. Thus X is an irresolvable space.

Theorem 4. The following conditions are equivalent in ZFC: (1) there exists an irresolvable Blumberg space X. (2) there exists a crowded almost GP-space which is a G_{δ} -B. space.

Proof. (1) \Rightarrow (2). Let X be an irresolvable Blumberg space. By [[11], Fact 3.1] X has a non-empty open hereditarily irresolvable subspace Y. So Y is an almost GP-space and by [12] T'(Y) = T(Y). It is clear that Y will be a Blumberg space

as well, so T(Y) = F(Y). Since $T'(Y) \subseteq TG(Y) \subseteq F(Y)$, we have TG(Y) = F(Y), i.e., Y is a G_{δ} -B. space. (2) \Rightarrow (1). Suppose that X is a crowded almost GP-space which is a G_{δ} -B. space. Then by Proposition 2 X is irresolvable. Since every G_{δ} -B. space is Blumberg we are done.

Theorem 5. Let X be an almost P-space. Then X is a G_{δ} -B. space if and only if X is an S.B. space.

Proof. If X is a G_{δ} -B. space and $f \in F(X, \mathbb{R})$, then there exists a dense and G_{δ} subset D of X such that $f|D \in C(D)$. Since X is a completely regular space, $int_X D$ is dense in D [10]. Since D is dense in X, $int_X D$ is dense in X and $f|int_X D \in C(int_X D)$. So X is a S.B. space. The converse is obvious.

An almost GP-space X is called a GID-space if every dense G_{δ} -set of X has dense interior in X [9]. With slight changes in the proof of the above theorem, we note that Theorem 5 is true for a GID-space.

Lemma 1. If V = L, then there is no crowded irresolvable G_{δ} -S.B. space (respectively Blumberg space and strongly Blumberg space).

Proof. To the contrary, suppose that X is a crowded G_{δ} -B. space. Since every G_{δ} -B. space (respectively Blumberg space and strongly Blumberg space) is a Baire space [3], we have a Baire irresolvable space under V=L, and by [13] this is a contradiction.

Let X be a crowded topological space, then it was shown in [12] that if T(X) = T'(X), then X is an irresolvable space.

Proposition 3. Let X be a G_{δ} -B. space. If X is a crowded almost P-space, then X is an open-hereditarily irresolvable space.

Proof. Let U be a nonempty open set, by Corollary 3 U is a G_{δ} -B. space and Theorem 5 imply that U is a *S.B.* space. So by [12] U is an irresolvable space. Therefore X is an open-hereditarily irresolvable space.

Corollary 4. Under V=L, every almost P-space X which is a G_{δ} -B. space is almost discrete.

Proof. Let U be a nonempty subset of X. Then by Corollary 2 U is a G_{δ} -B. space, so U is Baire. By [10], U is an almost P-space. Thus by [13] and Proposition 3 U has an isolated point and so X is an almost discrete space.

Remark 2. Not every almost P-subspace of a G_{δ} -B. space need be a G_{δ} -B. space. For example, $X = \beta \mathbb{N}$, the Stone Čech compactification of natural numbers, is a G_{δ} -B. space since the set of all isolated points of $\beta \mathbb{N}$ is dense in $\beta \mathbb{N}$. $Y = \beta \mathbb{N} \setminus \mathbb{N}$ is a closed subset of $\beta \mathbb{N}$, $I(Y) = \emptyset$ and Y is a compact almost P-space [14]. By [12] the closed subset $Y = \beta \mathbb{N} \setminus \mathbb{N}$ is not a S.B. space, and so by Theorem 5 Y is not a G_{δ} -B. space. We note that by [3] Y is a Blumberg space, and so there exists a generalized S-Z function in F(Y). G_{δ} -Blumberg spaces

5 Open problems

In the following we list a number of questions which we could not answer.

Problem 1. Is there a Hausdorff G_{δ} -B. space which is not a strongly Blumberg space?

By the first paragraph after proof of Theorem 5, we know that in the class of GID-spaces every G_{δ} -B. space is a strongly Blumberg space. This gives a partial answer to Problem 1. We note that if the answer of the Problem 1 is negative, then under V = L, for every crowded Blumberg space X there exists a generalized S - Z function in F(X).

Problem 2. Are the following conditions equivalent in ZFC?
(1) There exists a Baire irresolvable space.
(2) There exists a crowded almost GP-space which is a G_δ-B. space.

Problem 3. Let X be crowded and let X be an almost GP-space. Are the following conditions equivalent in ZFC?

(1) X is a G_{δ} -B. space.

(2) X is a S.B. space.

Acknowledgement The author thanks the referee for his careful reading and valuable comments.

References

- H. Blumberg, New properties of all real functions, Trans. Amer. Math. Soc. 24 (1922), 113–128.
- [2] J.C. Bradford, C. Goffman, Metric spaces in which Blumberg's theorem holds, Proc. Amer. Math. Soc. 11 (1960), 667–670.
- [3] H.E. White, Jr., Topological spaces in which Blumberg's theorem holds, Proc. Amer. Math. Soc. 44 (1974), 454–462.
- [4] O.T. Alas, On Blumberg's theorem, Atti Acad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 60 (1976), 579–582.
- [5] Z. Piotrowski, A. Szymanski, Concerning Blumbrg's theorem, Houston J. Math. 10, (1984), 109–115.
- [6] M.R. Ahmadi Zand, Strongly Blumberg spaces, Ph.D. thesis, Shahid Chamran University of Ahvaz, Ahvaz, Iran, 2006.
- [7] W. Sierpiński, A. Zigmund, Sur une fonction qui est discontinue sur tout ensemble de puissance du continu, ibid. 4 (1923), 316–318.
- [8] R. Engelking, General Topology, PWN, Warszawa, 1977.

- [9] M.R. Ahmadi Zand, Almost GP-spaces, J. Korean Math. Soc. 47 (2010), 215– 222.
- [10] R. Levy, Almost P-spaces, Canad. J. Math. 2 (1977), 284–288.
- [11] E.K. van Douwen, Applications of maximal topologies, Topology Appl. 51 (1993), 125–139.
- [12] M.R. Ahmadi Zand, An algebraic characterization of Blumberg spaces, Quaest. Math. 33 (2010), 223–230.
- [13] K. Kunen, F. Tall, On the consistency of the non-existence of Baire irresolvable spaces, Topology Atlas, Preprint #345, 1998. http://at.yorku.ca/v/a/a/a/27.htm.
- [14] R.C. Walker, The Stone-Čech compactification, Springer Verlag, Mass (1970).

M.R. Ahmadi Zand Department of Mathematics, Yazd University, Yazd, Iran *E-mail*: mahmadi@yazduni.ac.ir