
Faculty of Sciences and Mathematics, University of Nǐs, Serbia
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Gδ-BLUMBERG SPACES

M. R. Ahmadi Zand

Abstract

A topological space X is called a Gδ-Blumberg space If for every real-
valued function f on X, there exists a dense Gδ-set D in X such that the
restriction of f to D is continuous. In this paper, the behaviour of this space
under taking subspaces and superspaces, images and preimages are studied,
and a Gδ-Blumberg space which is a generalization of an almost P-space is
characterized. Some unsolved problems are posed.

1 Introduction

Let X be a topological space and A ⊆ X, intXA denotes the interior of A in X,
clXA denotes the closure of A in X. Where no ambiguity can arise, the interior of
A in X is denoted by A◦ and the closure of A in X is denoted by A. In this paper
I(X) denotes the set of all isolated points of topological space X. A topological
space X is said to be almost discrete if I(X) = X, and if I(X) = ∅, then X is called
crowded or dense-in-itself.

Recall that a topological space X is Baire if the intersection of any sequence of
dense open sets of X is dense.

Let X be crowded, if D = (X\D) = X for some subset D of X, then X is called
resolvable, otherwise X is called irresolvable.
Let X and Y be topological spaces and let F (X, Y ) be the set of functions on
X into Y . In this paper F (X,R) is denoted by F (X). It is clear that F (X) with
addition and multiplication defined pointwise, is a commutative ring. The collection
of continuous members of F (X) is denoted by C(X). The zero-set of f ∈ F (X) is
denoted by Z(f) and is defined by Z(f) = {x ∈ X : f(x) = 0}. The complement
of Z(f) in X, is called cozero-set of f and it is denoted by Coz(f). Let X be a
topological space. D(X), DO(X) and DG(X) denote the set of dense, dense open
and dense Gδ subspaces of X, respectively. Let X be a topological space. If for
every f ∈ F (X) there exists a D ∈ DG(X) such that f |D ∈ C(D), then X is
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called a Gδ-Blumberg space. In Section 2, we introduce Gδ-Blumberg spaces and
we give examples. In Theorem 2.6 and Corollary 2.7 we give characterizations of
Gδ-Blumberg spaces. In Section 3, we characterize some subspaces and superspaces
of a Gδ-Blumberg space, which are Gδ-Blumberg spaces. In Theorem 3.7 we show
that a preimage of a Gδ-Blumberg space under irreducible mapping is also a Gδ-
Blumberg space. Section 4 of our paper is devoted to a generalization of almost
P-spaces which are Gδ-Blumberg spaces.

As usual, we let c denote the cardinality of the continuum.

2 A generalized S-Z function

Let X and Y be a topological spaces. Let T (X, Y ) denote the set of all f in F (X, Y )
such that there exists a D in D(X) and f |D is continuous. In this paper T (X,R)
is denoted by T (X).

In 1922, Blumberg [1] proved that if X is a separable complete metric space
then for every real valued function f defined on X, there is a dense subset D of
X such that f |D ∈ C(D). ,i.e., T (X) = F (X). A topological space X is called a
Blumberg space if T (X) = F (X). In 1960, Bradford and Goffman [2] showed that if
X is metric, then X is a Blumberg space if and only if X is a Baire space. In 1974,
White proved in [3] that if X is a Baire space having a σ-disjoint pseudo-base, then
X is a Blumberg space. In 1976, Alas [4] improved White’s result by showing that,
if X is a Baire space having a σ-disjoint pseudo-base and Y is a second countable
Hausdorff space, then F (X, Y ) = T (X,Y ). In 1984, Piotrowski and Szymanski [5]
proved that if X is a Baire space having a σ-disjoint pseudo-base and Y is a second
countable space then F (X, Y ) = T (X, Y ). They also showed that T (X) = F (X) if
and only if T (X,Y ) = F (X, Y ) for every second countable space Y .

Definition 1. Let X be a topological space and let

T
′
(X) = {f ∈ F (X)|∃D ∈ DO(X) such that f|D ∈ C(D)}.

If T
′
(X) = F (X), then X is called a strongly Blumberg space, abbreviated as S.B.

space.

Strongly Blumberg spaces are introduced and studied in [6]. It was shown in [6]
that under V = L, a topological space X is a strongly Blumberg space if and only
if it is almost discrete.

Definition 2. Let X and Y be topological spaces and

TG(X,Y ) = {f ∈ F (X,Y )|∃D ∈ DG(X) such that f|D ∈ C(D, Y)},
where C(D,Y ) denotes the collection of all continuous functions from D into Y .
TG(X,R) is denoted by TG(X). If TG(X) = F (X) then X is called a Gδ -
Blumberg space, abbreviated as Gδ-B. space.

The fact that the class of Gδ-B. spaces properly contained in the class of Blum-
berg spaces follows from the next example.
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Example 1. (CH) Sierpiński and Zigmund in [7] showed that there exists an f ∈
F (R) = T (R), called S-Z function, such that for every M ∈ D(R) of cardinality
c, f |M /∈ C(M). Since R has no countable dense Gδ-set [8], f has no continuous
restriction to any dense Gδ-set. So the Blumberg space R is not a Gδ-B. space.

In the following definition we give a generalization of a S − Z function to some
topological spaces:

Definition 3. Let X be a Blumberg space which is not a Gδ-B. space and f ∈
F (X) \ TG(X). Then f is called a generalized S-Z function.

We now show that the class of Gδ-B. spaces properly contains the class of
strongly Blumberg spaces.

Example 2. Let X = {0, 1, 1
2 , · · · , 1

n , · · · }, and define
τX = {{0, 1

n , 1
n+1 , · · · } : n ∈ N}, as a topology on X. Since clX{0} = X, and

{0} is Gδ, X is a Gδ-B. space, but X is not an almost discrete space.

Recall that a commutative ring R is called (von Neumann) regular if for each
r ∈ R there exists an s ∈ R such that r = r2s. Clearly F (X) is a regular ring.

Proposition 1. If TG(X) is a subring of F (X), then TG(X) is a regular subring.

Proof. f ∈ TG(X) implies that there exists a D ∈ DG(X) such that f |D ∈ C(D).
Let g(x) = 1

f(x) if x is in cozero-set of f , and g(x) = 0 if x ∈ Z(f). It is easily
seen that D1 = Coz(f |D) ∪ intDZ(f |D) is dense Gδ in X and g|D1 ∈ C(D1).
So g ∈ TG(X), and f2g = f and g2f = g. Thus TG(X) is a regular subring of
F (X).

If X is Baire, then TG(X) is a subring of F (X), and so by the above proposition
TG(X) is its regular subring. In [9] some characterizations of a space X that TG(X)
is a subring of F (X) is given.

The following theorem and corollary are proved in the same ways as Theorem 1
and Corollary 2 in [5], respectively.

Theorem 1. A space X is a Gδ-B. space, if and only if for every countable cover
(Pn)n∈N of X, there exists a D ∈ DG(X) such that Pn

⋂
D is a Gδ in X for every

n ∈ N.¤

Corollary 1. Let X be a topological space. Then the following conditions are equiv-
alent.
1. For every real-valued function f on X there exists a D ∈ DG(X) such that f |D
is continuous.
2. Let Y be a second countable space. Then for every function f on X into Y there
exists a D ∈ DG(X) such that f |D is continuous.¤
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3 Subspaces and pre-images of Gδ-B. spaces

Theorem 2. Let U be a Gδ-set in a space X, U ⊆ A ⊆ U and let A be Baire.
Then U is a Gδ-B. space if and only if A is so.

Proof. ⇒:Let U be a Gδ-B. space. Suppose g ∈ F (A). Since U is a Gδ-B. space
and g|U ∈ F (U), there exists a B ∈ DG(U) such that g|B ∈ C(B). Since U is a Gδ

in X, B is a Gδ and dense subset of A. Therefore A is a Gδ-B. space.
⇐: Suppose A is a Gδ-B. space and g ∈ F (U). We can extend g to a function
h ∈ F (A), then by hypothesis there exists a B ∈ DG(A) such that h|B ∈ C(B).
Since U is a Gδ set in X, and U is Baire, B∩U ∈ DG(U). So g|(B∩U) ∈ C(B∩U).
Therefore U is a Gδ-B. space.

Corollary 2. a.) Let W be a Gδ dense subset of X. Let X be Baire. Then W is
a Gδ-B. space if and only if X is a Gδ-B. space.
b.) Every open subset of a Gδ-B. space is a Gδ-B. space.
c.) Every regular closed subset of a Gδ-B. space is a Gδ-B. space.

Proof. a.). It is an immediate consequence of the above theorem. b.) It is clear. For
proof c.), let A be a regular closed in a Gδ-B. space X. So by b.) Ao is a Gδ-B.
space, and so by Theorem 2 A = Ao is a Gδ-B. space.

Corollary 3. Let X be a topological space, then the following statements are equiv-
alent.
a.) X is a Gδ-B. space.
b.) Every dense Gδ subset D of X is a Gδ-B. space.
c.) There exists a dense Gδ subset D of X which is a Gδ-B. space.

Proof. a.) ⇒ b.) Let X be a Gδ-B. space, and let D be a dense Gδ in X. Then
X is Baire, and since every dense Gδ in a Baire space is Baire, D is Baire. So by
Theorem 2, D is a Gδ-B. space.
b) ⇒ c) It is obvious.
c) ⇒ a) It follows from Corollary 2.

Example 3. (CH) Let β = {{r}| r ∈ Q} ∪ τ , where τ is the natural topology on
the real line. Then β is a base for a topology on X = R and X is a Gδ-B. space.
G = R \Q is a closed Gδ set in X. G is not a Gδ-B. space. Otherwise by Corollary
3, the real line, with ordinary topology, is a Gδ-B. space. But by Example 1 there
is a real-valued function f defined on X, such that for every Gδ and dense subset
D of the real line f |D /∈ C(D) and this is a contradiction.

Example 3 shows that the property of being Gδ-B. space need not be inherited
by arbitrary subspaces. This example shows that a closed Gδ in a Gδ-B. space,
need not be a Gδ-B. space.

Remark 1. If (X, τX) is not a Gδ-B. space, where τX is the topology on X. Then
when X is retopologised with the discrete topology, X becomes a Gδ-B. space. So
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the identity function from X with the discrete topology to (X, τX) is a continuous
mapping from a Gδ-B. space to a space which is not a Gδ-B. space. Thus the image
of a Gδ-B. space under a continuous mapping need not be a Gδ-B. space.

Recall that a continuous mapping f : X → Y of X onto Y is irreducible, if
f(F ) 6= Y for every proper closed subset F in X. In the light of Theorem 1 we
show that a preimage of a Gδ-B. space under irreducible mapping is also a Gδ-B.
space.

Theorem 3. Let Y be a Gδ-B. space and let f : X → Y be an irreducible mapping.
Then X is a Gδ-B. space.

Proof. Let P = (Pn)n∈N be an arbitrary countable cover of X. Then f(P) =
{f(P ) | P ∈ P} is a countable cover of Y . Since Y is a Gδ-B. space, Theorem
1 implies that there exists a dense Gδ subset D

′
of Y such that for every P ∈ P,

f(P )
⋂

D
′

is a Gδ-set. For every y ∈ D
′

we select one member in f−1(y), and let
D be the set of these selected members. Since f is an irreducible mapping and
D
′

is dense in Y we conclude that D is dense in X. If P ∈ P , then P
⋂

D =
f−1(f(P )

⋂
D
′
), and since f is a continuous mapping, P

⋂
D is a Gδ-set. Thus by

Theorem 1, X is a Gδ-B. space.

4 When almost GP-spaces are Gδ-B. spaces

Recall that a completely regular space in which every non-empty Gδ-set has non-
empty interior is called an almost P-space [10].

Almost P-spaces are generalized in [9] as follows:

Definition 4. Let X be a topological space. If every dense Gδ subset of X has
nonempty interior, then X is called an almost GP-space.

Proposition 2. Let X be crowded. If X is an almost GP-space and X is a Gδ-B.
space, then X is an irresolvable space.

Proof. Suppose to the contrary that D and Dc = X \ D are dense dense in X.
Let f be the characteristic function of Dc. Then by hypothesis there exists a Gδ

and dense subset W of X such that f |W ∈ C(W ). Since D and Dc are dense,
f |intXW /∈ C(intXW ), and this is a contradiction. Thus X is an irresolvable
space.

Theorem 4. The following conditions are equivalent in ZFC:
(1) there exists an irresolvable Blumberg space X.
(2) there exists a crowded almost GP-space which is a Gδ-B. space.

Proof. (1) ⇒ (2). Let X be an irresolvable Blumberg space. By [[11], Fact 3.1]
X has a non-empty open hereditarily irresolvable subspace Y . So Y is an almost
GP-space and by [12] T

′
(Y ) = T (Y ). It is clear that Y will be a Blumberg space
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as well, so T (Y ) = F (Y ). Since T
′
(Y ) ⊆ TG(Y ) ⊆ F (Y ), we have TG(Y ) = F (Y ),

i.e., Y is a Gδ-B. space. (2) ⇒ (1). Suppose that X is a crowded almost GP-space
which is a Gδ-B. space. Then by Proposition 2 X is irresolvable. Since every Gδ-B.
space is Blumberg we are done.

Theorem 5. Let X be an almost P-space. Then X is a Gδ-B. space if and only if
X is an S.B. space.

Proof. If X is a Gδ-B. space and f ∈ F (X,R), then there exists a dense and Gδ

subset D of X such that f |D ∈ C(D). Since X is a completely regular space, intXD
is dense in D [10]. Since D is dense in X, intXD is dense in X and f |intXD ∈
C(intXD). So X is a S.B. space. The converse is obvious.

An almost GP-space X is called a GID-space if every dense Gδ-set of X has
dense interior in X [9]. With slight changes in the proof of the above theorem, we
note that Theorem 5 is true for a GID-space.

Lemma 1. If V = L, then there is no crowded irresolvable Gδ-S.B. space (respec-
tively Blumberg space and strongly Blumberg space).

Proof. To the contrary, suppose that X is a crowded Gδ-B. space. Since every
Gδ-B. space (respectively Blumberg space and strongly Blumberg space) is a Baire
space [3], we have a Baire irresolvable space under V=L, and by [13] this is a
contradiction.

Let X be a crowded topological space, then it was shown in [12] that if T (X) =
T
′
(X), then X is an irresolvable space.

Proposition 3. Let X be a Gδ-B. space. If X is a crowded almost P-space, then
X is an open-hereditarily irresolvable space.

Proof. Let U be a nonempty open set, by Corollary 3 U is a Gδ-B. space and
Theorem 5 imply that U is a S.B. space. So by [12] U is an irresolvable space.
Therefore X is an open-hereditarily irresolvable space.

Corollary 4. Under V=L, every almost P-space X which is a Gδ-B. space is almost
discrete.

Proof. Let U be a nonempty subset of X. Then by Corollary 2 U is a Gδ-B. space,
so U is Baire. By [10], U is an almost P-space. Thus by [13] and Proposition 3 U
has an isolated point and so X is an almost discrete space.

Remark 2. Not every almost P-subspace of a Gδ-B. space need be a Gδ-B. space.
For example, X = βN , the Stone Čech compactification of natural numbers, is a
Gδ-B. space since the set of all isolated points of βN is dense in βN. Y = βN\N
is a closed subset of βN, I(Y ) = ∅ and Y is a compact almost P-space [14]. By [12]
the closed subset Y = βN\N is not a S.B. space, and so by Theorem 5 Y is not
a Gδ-B. space. We note that by [3] Y is a Blumberg space, and so there exists a
generalized S-Z function in F (Y ).
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5 Open problems

In the following we list a number of questions which we could not answer.

Problem 1. Is there a Hausdorff Gδ-B. space which is not a strongly Blumberg
space?

By the first paragraph after proof of Theorem 5, we know that in the class of
GID-spaces every Gδ-B. space is a strongly Blumberg space. This gives a partial
answer to Problem 1. We note that if the answer of the Problem 1 is negative, then
under V = L, for every crowded Blumberg space X there exists a generalized S−Z
function in F (X).

Problem 2. Are the following conditions equivalent in ZFC?
(1) There exists a Baire irresolvable space.
(2) There exists a crowded almost GP-space which is a Gδ-B. space.

Problem 3. Let X be crowded and let X be an almost GP-space. Are the following
conditions equivalent in ZFC?
(1) X is a Gδ-B. space.
(2) X is a S.B. space.
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