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ON THE EXISTENCE OF SOLUTIONS FOR

NON-LINEAR FUNCTIONAL INTEGRAL EQUATION

E. M. El-Abd

Abstract

We have proved the existence of monotonic solutions of a nonlinear func-
tional integeral equation by using Darbo fixed point theorem associated with
a measure of noncompactness.

1 Introduction

Integral equations of various types create the important subject of several mathe-
matical investigations and appear often in many applications.

The main objective of the present paper is to study the solvability of a nonlinear
functional integral equation. The theory of equations of such a type is very devel-
oped. Nevertheless, there are a lot of problems concerning the solvability of such
equations in some classes of functions which are not satisfactory and not completely
solved till now.

In this paper, we introduce some rather simply and convenient conditions that
ensure the existence of solutions of the equations in the space of all Lebesgue inte-
grable on set (0, 1) . In our considerations we will use the technique of measures of
noncompactness and the modified version of the fixed point theorem of Darbo [6] .

2 Notions and Some Auxiliary Facts

Let E be a measurable set and f (x) is a real function defined on E. We say that
f (x) is Lebesgue measurable or briefly, measurable on E . if for each real number
k the values x ∈ E for which f (x) Â k is measurable. Let I = (0, 1) be the
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Lebesgue measurable subset of R+ and L1 (I ) be the space of Lebesgue measurable
functions on a measurable subset I with the norm

‖y ‖L1(I) =
∫

I

, | y ( t )| dt.

For further purposes we shall write L1 instead of L1 (I ) . Moreover, the norm
in the space L1 will be denoting by ‖.‖ .

Now, let us assume that a function f (t, y) = f : I × R −→ R+ satisfies
Caratheodory conditions i.e. it is measurable in t for any y ∈ R and continuous
in y for almost all t ∈ I. Then to every function y (t) which is measurable on I
we may assign the function

(Fy)(t) = f, (t, y(t)), t ∈ I.

It is well known that the function (Fy) is also measurable on I . The operator
F defined in such a way is said to be the Superposition ( or Nemytskii) operator
generated by the function f .

Although the Superposition operator is very simple, it turns out to be one of the
most important operators studied in a non-linear functional analysis [1] . We have
the following theorem due to Appell and Zabrejko [3] .

Theorem 1. The superposition operator F maps continuously the space L1(I
) into itself if and only if

| f ( t, y )| ¹ a ( t ) + b | y| ,
for all t ∈ I and y ∈ R , where a ( t ) ∈ L1(I ) and b ≥ 0.

Next, we will mention a desired theorem concerning the compactness in measure
of a subset X of L1(I ) [8] .

Theorem 2. Let X be a bounded subset of L1(I ) consisting of functions which
are a.e. nondecreasing ( or nonincreasing) on the interval I . Then X is compact
in measure.

Further, we recall a few facts about the linear integral operator. Let k(t, s) :
I ×I −→ R+ be a measurable with respect to its variable, then for any function y
∈ L1(I ) the integral

(Ky) (t) =
∫ 1

0
k (t, s) y (s) ds,

exists for every t ∈ I .
Moreover, the function (Ky) (t) belongs to the space L1. Therefore K is a linear

operator which maps L1 into L1 and K is also bounded since ‖Ky‖ ≤ ‖K‖L1(I)

‖y‖ .

In the sequel, we have the following theorem due to Krzyz [13] .
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Theorem 3. Assume that k(t, s) : I ×I −→ R+ is a measurable function, and
the linear integral operator

(Ky) (t) =
∫ 1

0
k (t, s) y (s) ds, t ∈ I

maps L1 into itself. Then K transforms the set of nonincreasing functions from L1

into itself if and only if for any p Â 0 the following implication is true

t 1 ≺ t 2 =⇒ ∫ p

0
k (t1 , s) ds º ∫ b

0
k (t2 , s) ds .

Finally, we give a note on measure of noncompactness and fixed point theorem.
Let E be an arbitrary Banach space and X be a nonempty and bounded subset
of E . Let Br be a closed ball in E centered at θ and radius r .

Let us recall the notion of the measure of weak and strong noncompactness
defined by De Blasi [9] and Hausdorff [5] respectively in the following way :

β (X ) = inf .

{
r Â 0 there exists aweakly compact subset Y

of E such that X ⊂ Y + Br

}
,

χ (X ) = inf
{

r Â 0 there exists compact subset
Y of E such that X ⊂ Y + Br

}
.

The functions β ( X) and χ (X ) possess several useful properties whichmay
be found in [9] and [4] .

The convenient and handly formula for the function β (X ) in the space L1

was gives by J. Appelland E. De pascale [2]:

β ( X) = lim
c −→ 0

{
sup

x ∈ X

{
sup

[ ∫
D

| y ( t ) | dt :
D < (0, 1) , meas. D ≤ ε

]}}
,

where the symbol meas.D stands for Lebesgue measure of a subset D.
The two measures β ( X) and χ (X ) are connected in the case when X is

compact in measure as in the following theorem.

Theorem 4. Assume that X be an arbitrary nonempty and bounded subset
of L1 (I) . if X is compact in measure then

β ( X ) = χ (X ) [4] .

As an application of measures of noncompactness, we recall the fixed point
theorem due to Darbo.

Theorem 5. Let Q be a nonempty, bounded, closed
and convex subset of E and let T : Q −→ Q be a continuous transformation

which is a contraction with respect to the measure of non compact χ i.e. there
exists θ ∈ I such that χ (TX ) ≤ θ χ (X ) for any nonemptysubset X of Q .
Then T has at least one fixed point in the set Q.
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Main Results

Now, we will be investigated the following functional integral equation

y (t ) = g ( t ) + f (t , λ (t )
∫ 1

0
k ( t, s ) y (φ (s )) ds, t ∈ (0, 1) (1)

In this paper, we prove the existence of a monotone solution for equation ( 1 ).
For convenience the operator

(Ty )(t) = g ( t ) + f (t , λ (t )
∫ 1

0
k ( t, s ) y (φ (s )) ds,

which can be writing as the product

T y = g + λ F Ky (φ),

where F is the superposition operator generated by the function

(F y )(t) = f (t, y (t)).

Thus equation (1) becomes

T y = y(t) = g (t )+ λ F Ky (φ). (2)

We treat equation (1) under the following assumptions:

(i) The function g ∈ L1 is a.e. non-increasing on the interval I ,
(ii) f :I×R −→ R+ satisfies Caratheodory conditions and there exist a function

a (t) ∈ L1anda non-negative constant b such that
| f ( t, y )| ≤ a (t) + b | y | ,

for all t ∈ I and y ∈ R . Moreover, f ( t, y ) is assumed to be non-increasing on
the set I ×R −→ R+ with respect to t and non-decreasing with respect to y,

(iii) k : I ×I −→ R+ is measurable with respect to both its variables and
such that the integral operator K maps L1 into itself,

(iv) For every p Â 0 and for all t1, t2 ∈ I
the following condition is satisfied

t 1 ≺ t 2 =⇒ ∫ p

0
k (t1 , s) ds º ∫ p

0
k (t2 , s) ds ,

(v) φ : I −→ I is an increasing absolutely continuous and there exists constant
M Â 0 such that ϕ ( t ) º M for almost all t ∈ I ,

(vi) λ : I −→ R+ is bounded non-increasing function
i.e.|λ(t)| ≺ B, for all t ∈ I
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(vii ) b B ‖ k ‖
M ≺ 1.

Then we can prove the following theorem;

Theorem 6. If the assumptions formulated above are satisfied, then the equation
(1) has at least one solution y ∈ L1 which is a.e.non-increasing on the interval I.

Proof . First of all observe that for a given y ∈ L1 the function T y belong
to L1 which is a consequence of the assumption (ii), (iii), (v), (vii).

Additionally, using (2) we get

‖Ty ‖ =
∫ 1

0

(∣∣∣ g (t) + f
(
t , λ (t)

∫ 1

0
k (t, s) y (φ (s))

)
ds

∣∣∣
)

dt

≤ ∫ 1

0
| g | d t +

∫ 1

0

∣∣∣f (t, λ (t))
∫ 1

0
k (t, s) y (φ (s)) ds

∣∣∣ dt

≤ ‖ g ‖+
∫ 1

0

[
a(t) + b

∣∣∣ λ(t)
∫ 1

0
k (t, s) y (φ (s)) ds

∣∣∣
]
dt

≤ ‖ g ‖+ ‖ a ‖+ b B ‖k y (ϕ)‖

≤ ‖ g ‖+ ‖ a ‖+ b B ‖k ‖ ∫ 1

0
|y (φ (s)) | ds

≤ ‖ g ‖+ ‖ a ‖+ b B ‖ k ‖
M

∫ 1

0
|y (φ (s))|ϕ′(s)ds

≤ ‖ g ‖+ ‖ a ‖+ b B ‖ k ‖
M ‖y‖ .

From this estimation and (v), (vii) we infer that the operator T maps the ball
Br into itself, where

r = ‖ g ‖+ ‖ a ‖
1− b B ‖ k ‖M−1 .

Further, let Qr stand for the subset of Br consisting of all functions which are
a.e. positive and nonincreasing on I . Note that Qr is nonempty, bounded, closed
and convex subset of L1. Moreover, in view of Theorem 2 the set Qr is compact
in measure. Next, take y ∈ Qr, then y (ϕ) is a.e. positive and nonincreasing on I
and consequently K y (ϕ) is also of the same type in virtue of the assumption (iv)
and Theorem 3.

Further, the assumption (ii) permits us to deduce that

T y == g (t )+ λ(t) F Ky (φ)
is also a.e. positive and nonincreasing on I . This fact, together with the assertion
T : Br −→ Br gives that T is a self mapping of the set Qr .
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From now on assume that Y is a nonempty subset of Qr and ε Â 0 is fixed,
then for an arbitrary y ∈ Y and for a set D ⊂ I , D ≤ ε we obtain

∫
D

(Ty ) (t ) dt =
∫

D
| g (t)| dt +

∫
D

∣∣∣ f (t, λ (t)
∫ 1

0
k (t, s) y (s) ds

∣∣∣ dt

¹ ‖g‖L1(D ) +
∫

D
|λ (t)|

[
a(t) + b

∣∣∣
∫ 1

0
k (t, s) y (s) ds

∣∣∣
]

dt

¹ ‖g‖L1(D ) + B
[
a + b ‖Ky ‖L1(D )

]
.

Further, keeping in mind that the operator K transforms the space L1 (D ) into
itself and is continuous we derive

∫
D

(Ty ) (t ) dt ¹ ‖g‖L1(D ) + B
[
a + b ‖K‖D ‖y‖L1(D )

]
,

where the symbol ‖K‖D denotes the norm of the operator K : L1 (D ) −→ L1 (D ) .

Consequently, we get

∫
D

(Ty ) (t ) dt ¹ ‖g‖L1(D ) + B
[
a + b ‖K‖D

∫
D
|y (φ (t)) | dt

]

¹ ‖g‖L1(D ) + B
[
a + b ‖ K ‖D

M

∫
D
|y (φ (t)) |ϕ′(t)dt

]
.

Now, applying the theorem on integration by substitution for Lebesgue integral
we may write the last estimation as

∫
D

(Ty ) (t ) dt ¹ ‖g‖L1(D ) + a B + b B ‖ K ‖D

M

∫
ϕ(D)

|y (t) | dt.

Hence, taking into account the equality

lim
ε −→ 0

{
sup

[∫
D

g (t) dt + a B : D < I, meas. D ≤ ε
]}

= 0

Consequently, taking into account that the function ϕ is assumed to be absolutely
continuous we have

β (T Y ) ¹ b ‖ B ‖‖ K ‖D

M β (Y ) ,
where β is the De Blasi measure of weak noncompactness.

In view of the properties of the set Qr established before and Theorem 4 we
can rewrite the last inequality in the following form

χ (T Y ) ¹
b ‖ B ‖

L1(D )
‖ K ‖D

M χ (Y ) ,
where χ is the Hausdorf measure of noncompact.
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Thus, in virtue of the assumption (v) we can apply Theorem 5 which guarantees
that the equation (1) has at least one solution. These complete the proof.
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