On an integral-type operator from the Bloch space into the $Q_{K}(p, q)$ space

Songxiao Li^{a}
${ }^{a}$ Department of Mathematics, JiaYing University, 514015, Meizhou, GuangDong, China

Abstract

Let n be a positive integer, $g \in H(\mathbb{D})$ and φ be an analytic self-map of \mathbb{D}. The boundedness and compactness of the integral operator $\left(C_{\varphi, g}^{n} f\right)(z)=\int_{0}^{z} f^{(n)}(\varphi(\xi)) g(\xi) d \xi$ from the Bloch and little Bloch space into the spaces $Q_{K}(p, q)$ and $Q_{K, 0}(p, q)$ are characterized.

1. Introduction

Let $\mathbb{D}=\{z:|z|<1\}$ be the unit disk of complex plane \mathbb{C}. Denote by $H(\mathbb{D})$ the class of functions analytic in \mathbb{D}. Let $d A$ denote the normalized Lebesgue area measure in \mathbb{D} and $g(z, a)$ the Green function with logarithmic singularity at a, i.e. $g(z, a)=\log \frac{1}{\left|\varphi_{a}(z)\right|}$, where $\varphi_{a}(z)=\frac{a-z}{1-\bar{z} z}$ for $a \in \mathbb{D}$. An $f \in H(\mathbb{D})$ is said to belong to the Bloch space, denoted by \mathcal{B}, if

$$
\|f\|_{b}=\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right|<\infty .
$$

Under the norm $\|f\|_{\mathcal{B}}=|f(0)|+\|f\|_{b}, \mathcal{B}$ is a Banach space. Let \mathcal{B}_{0} denote the space of all $f \in \mathcal{B}$ satisfying

$$
\lim _{|z| \rightarrow 1}\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right|=0
$$

This space is called the little Bloch space. Throughout this paper, the closed unit ball in \mathcal{B} and \mathcal{B}_{0} will be denoted by $\mathbb{B}_{\mathcal{B}}$ and $\mathbb{B}_{\mathcal{B}_{0}}$ respectively.

Let $p>0, q>-2, K:[0, \infty) \rightarrow[0, \infty)$ be a nondecreasing continuous function. The space $Q_{K}(p, q)$ consists of those $f \in H(\mathbb{D})$ such that (see $[11,26]$)

$$
\begin{equation*}
\|f\|^{p}=\sup _{a \in \mathbb{D}} \int_{\mathbb{D}}\left|f^{\prime}(z)\right|^{p}\left(1-|z|^{2}\right)^{q} K(g(z, a)) d A(z)<\infty . \tag{1}
\end{equation*}
$$

When $p \geq 1, Q_{K}(p, q)$ is a Banach space with the norm defined by $\|f\|_{Q_{k}(p, q)}=|f(0)|+\|f\|$. We say that an $f \in H(\mathbb{D})$ belong to the space $Q_{K, 0}(p, q)$ if

$$
\begin{equation*}
\lim _{|a| \rightarrow 1} \int_{\mathbb{D}}\left|f^{\prime}(z)\right|^{p}\left(1-|z|^{2}\right)^{q} K(g(z, a)) d A(z)=0 \tag{2}
\end{equation*}
$$

[^0]When $p=2, q=0$, the space $Q_{K}(p, q)$ equals to Q_{K}, which was studied, for example, in $[3,4,10,23,25,27-29]$. If $Q_{K}(p, q)$ consists of just constant functions, we say that it is trivial. $Q_{K}(p, q)$ is non-trivial if and only if (see [26])

$$
\begin{equation*}
\int_{0}^{1}\left(1-r^{2}\right)^{q} K(-\log r) r d r<\infty \tag{3}
\end{equation*}
$$

Throughout this paper, we assume that (3) is satisfied.
Let φ be an analytic self-map of \mathbb{D}. The composition operator C_{φ} is defined by

$$
C_{\varphi}(f)(z)=f(\varphi(z)), \quad f \in H(\mathbb{D})
$$

The composition operator has been studied by many researchers on various spaces (see, e.g., [1] and the references therein).

Let $g \in H(\mathbb{D})$ and φ be an analytic self-map of \mathbb{D}. In [6], the author of this paper and Stević defined the generalized composition operator as follows:

$$
\left(C_{\varphi}^{g} f\right)(z)=\int_{0}^{z} f^{\prime}(\varphi(\xi)) g(\xi) d \xi, \quad f \in H(\mathbb{D}), \quad z \in \mathbb{D}
$$

The boundedness and compactness of the generalized composition operator on Zygmund spaces and Bloch spaces were investigated in [6]. Some related results can be found, for example, in [5,7,8,13,16, 17, 19, 30, 31]. For related operators in n-dimensional case, see [9, 15, 18, 20-22].

Let n be a nonnegative integer, $g \in H(\mathbb{D})$ and φ be an analytic self-map of \mathbb{D}. Here we study the following integral-type operator

$$
\left(C_{\varphi, g}^{n} f\right)(z)=\int_{0}^{z} f^{(n)}(\varphi(\xi)) g(\xi) d \xi, \quad z \in \mathbb{D}, \quad f \in H(\mathbb{D})
$$

When $n=1, C_{\varphi, g}^{1}$ is the generalized composition operator C_{φ}^{g}. The purpose of this paper is to study the operator $C_{\varphi, g}^{n}$. The boundedness and compactness of the operator $C_{\varphi, g}^{n}$ from the Bloch space \mathcal{B} into $Q_{K}(p, q)$ and $Q_{K, 0}(p, q)$ are completely characterized.

Throughout this paper, constants are denoted by C, they are positive and may differ from one occurrence to the other. The notation $A \asymp B$ means that there is a positive constant C such that $B / C \leq A \leq C B$.

2. Main result and proof

In order to formulate our main results, we need some auxiliary results which are incorporated in the following lemmas. The following lemma, can be proved in a standard way (see, e.g., Theorem 3.11 in [1]).
Lemma 1. Let $p>0, q>-2$ and K be a nonnegative nondecreasing function on $[0, \infty)$. Assume that φ is an analytic self-map of $\mathbb{D}, g \in H(\mathbb{D})$ and n is a positive integer. Then $C_{p, g}^{n}: \mathcal{B} \rightarrow Q_{K}(p, q)$ is compact if and only if $C_{\varphi, g}^{n}: \mathcal{B} \rightarrow Q_{K}(p, q)$ is bounded and for every bounded sequence $\left\{f_{k}\right\}$ in \mathcal{B} which converges to 0 uniformly on compact subsets of \mathbb{D} as $k \rightarrow \infty, \lim _{k \rightarrow \infty}\left\|C_{\varphi, g}^{n} f_{k}\right\|_{Q_{k}(p, q)}=0$.
Lemma 2 Let $p>0, q>-2$ and K be a nonnegative nondecreasing function on $[0, \infty)$. Assume that φ is an analytic self-map of $\mathbb{D}, g \in H(\mathbb{D})$ and n is a positive integer. If $C_{\varphi, g}^{n}: \mathcal{B}\left(\mathcal{B}_{0}\right) \rightarrow Q_{K}(p, q)$ is compact, then for any $\varepsilon>0$ there exists a $\delta, 0<\delta<1$, such that for all f in $\mathbb{B}_{\mathcal{B}}\left(\mathbb{B}_{\mathcal{B}_{0}}\right)$,

$$
\begin{equation*}
\sup _{a \in \mathbb{D}} \int_{|\varphi(z)|>r}\left|f^{(n)}(\varphi(z))\right|^{p}|g(z)|^{p}\left(1-|z|^{2}\right)^{q} K(g(z, a)) d A(z)<\varepsilon \tag{4}
\end{equation*}
$$

holds whenever $\delta<r<1$.
Proof. We adopt the methods of [24]. We only give the proof for \mathcal{B}_{0} and the proof for \mathcal{B} is similar. For $f \in \mathbb{B}_{\mathcal{B}_{0}}$ let $f_{s}(z)=f(s z), 0<s<1$. Then $f_{s} \in \mathbb{B}_{\mathcal{B}_{0}}$ and $f_{s} \rightarrow f$ uniformly on compact subsets of \mathbb{D} as $s \rightarrow 1$.

Since $C_{\varphi, g}^{n}$ is compact, $\left\|C_{\varphi, g}^{n} f_{s}-C_{\varphi, g}^{n} f\right\|_{Q_{k}(p, q)} \rightarrow 0$ as $s \rightarrow 1$. That is, for given $\varepsilon>0$ there exists an $s \in(0,1)$ such that

$$
\begin{equation*}
\sup _{a \in \mathbb{D}} \int_{\mathbb{D}}\left|f_{s}^{(n)}(\varphi(z))-f^{(n)}(\varphi(z))\right|^{p}|g(z)|^{p}\left(1-|z|^{2}\right)^{q} K(g(z, a)) d A(z)<\varepsilon \tag{5}
\end{equation*}
$$

For $r, 0<r<1$, using the triangle inequality and (5), we get

$$
\begin{aligned}
& \sup _{a \in \mathbb{D}} \int_{|\varphi(z)|>r}\left|f^{(n)}(\varphi(z))\right|^{p}|g(z)|^{p}\left(1-|z|^{2}\right)^{q} K(g(z, a)) d A(z) \\
\leq & 2^{p} \varepsilon+2^{p}\left\|f_{s}^{(n)}\right\|_{\infty}^{p} \sup _{a \in \mathbb{D}} \int_{\mid \varphi(z \mid \gg r} \mid g(z)^{p}\left(1-|z|^{2}\right)^{q} K(g(z, a)) d A(z) .
\end{aligned}
$$

Now we prove that for given $\varepsilon>0$ and $\left\|f_{s}^{(n)}\right\|_{\infty}^{p}>0$ there exists a $\delta \in(0,1)$ such that

$$
\left\|f_{s}^{(n)}\right\|_{\infty}^{p} \sup _{a \in \mathbb{D}} \int_{|\varphi(z)|>r} \mid g(z)^{p}\left(1-|z|^{2}\right)^{q} K(g(z, a)) d A(z)<\varepsilon
$$

whenever $\delta<r<1$.
Set $f_{k}(z)=z^{k} \in \mathcal{B}_{0}$. Since $C_{\varphi, g}^{n}$ is compact, we get $\lim _{k \rightarrow \infty}\left\|C_{\varphi, g}^{n} z^{k}\right\| \rightarrow 0$. Thus, for given $\varepsilon>0$ and $\left\|f_{s}\right\|_{\infty}^{p}>0$ there exists an $N \in \mathbb{N}$ such that

$$
\left\|f_{s}\right\|_{\infty}^{p} \cdot \sup _{a \in \mathbb{D}} \int_{\mathbb{D}}(k \cdots(k-n+1))^{p}\left|\varphi^{k-n}(z)\right|^{p}|g(z)|^{p}\left(1-|z|^{2}\right)^{q} K(g(z, a)) d A(z)<\varepsilon
$$

whenever $k \geq N>n$. Hence, for $0<r<1$,

$$
\begin{align*}
& (N \cdots(N-n+1))^{p} \sup _{a \in \mathbb{D}} \int_{\mathbb{D}}\left|\varphi^{N-n}(z)\right|^{p}|g(z)|^{p}\left(1-|z|^{2}\right)^{q} K(g(z, a)) d A(z) \\
\geq & (N \cdots(N-n+1))^{p} \sup _{a \in \mathbb{D}} \int_{|\varphi(z)|>r}\left|\varphi^{N-n}(z)\right|^{p}|g(z)|^{p}\left(1-|z|^{2}\right)^{q} K(g(z, a)) d A(z) \\
\geq & (N \cdots(N-n+1))^{p} r^{p(N-n)} \sup _{a \in \mathbb{D}} \int_{|\varphi(z)|>r}|g(z)|^{p}\left(1-|z|^{2}\right)^{q} K(g(z, a)) d A(z) . \tag{6}
\end{align*}
$$

Therefore, for $r \geq[N \cdots(N-n+1)]^{-\frac{1}{N-n}}$, we have

$$
\left\|f_{s}\right\|_{\infty}^{p} \cdot \sup _{a \in \mathbb{D}} \int_{|\varphi(z)|>r}|g(z)|^{p}\left(1-|z|^{2}\right)^{q} K(g(z, a)) d A(z)<\varepsilon .
$$

Thus we have proved that for any $\varepsilon>0$ and for each $f \in \mathbb{B}_{\mathcal{B}_{0}}$ there exists a $\delta=\delta(\varepsilon, f)$ such that

$$
\sup _{a \in \mathbb{D}} \int_{|\varphi(z)|>r}\left|f^{(n)}(\varphi(z))\right|^{p}|g(z)|^{p}\left(1-|z|^{2}\right)^{q} K(g(z, a)) d A(z)<\varepsilon
$$

holds whenever $\delta<r<1$.
The rest of the proof can be completed by using the finite covering property of the set $C_{\varphi, g}^{n}\left(\mathbb{B}_{\mathcal{B}_{0}}\right)$ which is relatively compact in $Q_{K}(p, q)$ (see, e.g., [24]), and hence we omit it. The proof of this theorem is completed.

By modifying the proof of Theorem 3.5 of [10], we can prove the following lemma. We omit the details.
Lemma 3. Let $p>0, q>-2$ and K be a nonnegative nondecreasing function on $[0, \infty)$. Assume that φ is an analytic self-map of $\mathbb{D}, g \in H(\mathbb{D})$ and n is a positive integer. Then $C_{\varphi, g}^{n}: \mathcal{B} \rightarrow Q_{K, 0}(p, q)$ is compact if and only if $C_{\varphi, g}^{n}: \mathcal{B} \rightarrow Q_{K, 0}(p, q)$ is bounded and

$$
\begin{equation*}
\lim _{|a| \rightarrow 1} \sup _{\|f\|_{s \leq 1} \leq 1} \int_{\mathbb{D}}\left|\left(C_{\varphi, g}^{n} f\right)^{\prime}(z)\right|^{p}\left(1-|z|^{2}\right)^{q} K(g(z, a)) d A(z)=0 . \tag{7}
\end{equation*}
$$

Let $L: X \rightarrow Y$ be a linear operator, where X and Y are Banach spaces. Then L is said to be weakly compact if for every bounded sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in $X,\left(L\left(x_{n}\right)\right)_{n \in \mathbb{N}}$ has a weakly convergent subsequence, i.e., there is a subsequence $\left(x_{n_{m}}\right)_{m \in \mathbb{N}}$ such that for every $\Lambda \in Y^{*}, \Lambda\left(L\left(x_{n_{m}}\right)\right)_{m \in \mathbb{N}}$ converges (see [2]). Let A^{1} denote the space of all $f \in H(\mathbb{D})$ such that $\int_{\mathbb{D}}|f(z)| d A(z)<\infty$. From [32], we know that $\left(\mathcal{B}_{0}\right)^{*}=A^{1}$ and $\left(A^{1}\right)^{*}=\mathcal{B}$. We also know that $A^{1} \cong l^{1}$. Since l^{1} has the Schur property, we get the following proposition.
Proposition 1. Let $p>0, q>-2$ and K be a nonnegative nondecreasing function on $[0, \infty)$. Assume that φ is an analytic self-map of $\mathbb{D}, g \in H(\mathbb{D})$ and n is a positive integer. Then $C_{\varphi, g}^{n}: \mathcal{B}_{0} \rightarrow Q_{K}(p, q)\left(Q_{K, 0}(p, q)\right)$ is weakly compact if and only if $C_{\varphi, g}^{n}: \mathcal{B}_{0} \rightarrow Q_{K}(p, q)\left(Q_{K, 0}(p, q)\right)$ is compact.
Proposition 2. Let $p>0, q>-2$ and K be a nonnegative nondecreasing function on $[0, \infty)$. Assume that φ is an analytic self-map of $\mathbb{D}, g \in H(\mathbb{D})$ and n is a positive integer. Then $C_{\varphi, g}^{n}: \mathcal{B}_{0} \rightarrow Q_{K, 0}(p, q)$ is compact if and only if $C_{\varphi, g}^{n}: \mathcal{B} \rightarrow Q_{K, 0}(p, q)$ is bounded.
Proof. From Gantmacher's theorem (see [2]), we know that an operator $L: X \rightarrow Y$ is weakly compact if and only if $L^{* *}\left(X^{* *}\right) \subset Y$, where $L^{* *}$ and $X^{* *}$ is the second adjoint of L and X respectively. From Proposition 1, we see that $C_{\varphi, g}^{n}: \mathcal{B}_{0} \rightarrow Q_{K, 0}(p, q)$ is compact if and only if $C_{\varphi, g}^{n}\left(\left(\mathcal{B}_{0}\right)^{* *}\right) \subset Q_{K, 0}(p, q)$. Since $\left(\mathcal{B}_{0}\right)^{* *} \cong \mathcal{B}$, the result follows.

Theorem 1. Let $p>0, q>-2$ and K be a nonnegative nondecreasing function on $[0, \infty)$. Assume that φ is an analytic self-map of $\mathbb{D}, g \in H(\mathbb{D})$ and n is a positive integer. Then the following statements are equivalent.
(i) $C_{\varphi, g}^{n}: \mathcal{B} \rightarrow Q_{K}(p, q)$ is bounded;
(ii) $C_{\varphi, g}^{n}: \mathcal{B}_{0} \rightarrow Q_{K}(p, q)$ is bounded;
(iii)

$$
\begin{equation*}
\sup _{a \in \mathbb{D}} \int_{\mathbb{D}} \frac{|g(z)|^{p}}{\left(1-|\varphi(z)|^{2}\right)^{n p}}\left(1-|z|^{2}\right)^{q} K(g(z, a)) d A(z)<\infty . \tag{8}
\end{equation*}
$$

Proof. (i) \Rightarrow (ii). It is obvious.
(ii) \Rightarrow (iii). Let $f \in \mathcal{B}$. Set $f_{s}(z)=f(s z)$ for $0<s<1$, then we get $f_{s} \in \mathcal{B}_{0}$ and $\left\|f_{s}\right\|_{b} \leq\|f\|_{b}$. Thus, by the assumption for all $f \in \mathcal{B}$ we have

$$
\begin{equation*}
\left\|C_{\varphi, g}^{n} f_{s}\right\|_{Q_{k}(p, q)} \leq\left\|C_{\varphi, g}^{n}\left|\| \| f_{s}\left\|_{b} \leq\right\| C_{\varphi, g}^{n}\| \|\right| f\right\|_{b} \tag{9}
\end{equation*}
$$

By [14], there exist two Bloch functions f_{1} and f_{2} satisfying

$$
\frac{1}{1-|z|^{2}} \leq\left|f_{1}^{\prime}(z)\right|+\left|f_{2}^{\prime}(z)\right|, \quad z \in \mathbb{D}
$$

We choose $g_{1}(z)=f_{1}(z)-z f_{1}^{\prime}(0), g_{2}(z)=f_{2}(z)-z f_{2}^{\prime}(0)$. By the well-known result (see [33])

$$
\left(1-|z|^{2}\right)^{2}\left|f^{\prime \prime}(z)\right|+\left|f^{\prime}(0)\right| \asymp\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right|
$$

we see that $g_{1}, g_{2} \in \mathcal{B}$ and

$$
\frac{1}{\left(1-|z|^{2}\right)^{2}} \leq\left|g_{1}^{\prime \prime}(z)\right|+\left|g_{2}^{\prime \prime}(z)\right|, \quad z \in \mathbb{D}
$$

Following this rule, we see that there exist $h_{1}, h_{2} \in \mathcal{B}$ and

$$
\frac{1}{\left(1-|z|^{2}\right)^{n}} \leq\left|h_{1}^{(n)}(z)\right|+\left|h_{2}^{(n)}(z)\right|, \quad z \in \mathbb{D}
$$

Replacing f in (9) by h_{1} and h_{2} respectively and using the following elementary inequality

$$
\left(a_{1}+a_{2}\right)^{p} \leq\left\{\begin{array}{cc}
a_{1}^{p}+a_{2}^{p} \\
2^{p-1}\left(a_{1}^{p}+a_{2}^{p}\right) & , \quad p \in(0,1]
\end{array}, \quad a_{i} \geq 0, \quad i=1,2\right.
$$

we obtain that

$$
\begin{align*}
& \int_{\mathbb{D}} \frac{\left|s^{n} g(z)\right|^{p}}{\left(1-|s \varphi(z)|^{2}\right)^{n p}}\left(1-|z|^{2}\right)^{q} K(g(z, a)) d A(z) \\
\leq & C \int_{\mathbb{D}}\left(\left|h_{1}^{(n)}(s \varphi(z))\right|^{p}+\left|h_{2}^{(n)}(s \varphi(z))\right|^{p}\right)\left|s^{n} g(z)\right|^{p}\left(1-|z|^{2}\right)^{q} K(g(z, a)) d A(z) \\
= & C \int_{\mathbb{D}}\left(\left|\left(C_{\varphi, g}^{n} h_{1 s}\right)^{\prime}(z)\right|^{p}+\left|\left(C_{\varphi, g}^{n} h_{2 s}\right)^{\prime}(z)\right|^{p}\right)\left(1-|z|^{2}\right)^{q} K(g(z, a)) d A(z) \\
= & C\left\|C_{\varphi, g}^{n} h_{1 s}\right\|_{Q_{k}(p, q)}^{p}+C\left\|C_{\varphi, g}^{n} h_{2 s}\right\|_{Q_{k}(p, q)}^{p} \\
\leq & C\left\|C_{\varphi, g}^{n}\right\|^{p}\left(\left\|h_{1}\right\|_{\mathcal{B}}^{p}+\left\|h_{2}\right\|_{\mathcal{B}}^{p}\right)<\infty \tag{10}
\end{align*}
$$

hold for all $a \in \mathbb{D}$ and $s \in(0,1)$. This estimate and Fatou's Lemma give (8).
(iii) $\Rightarrow($ i $)$. By the following well-known result (see [33])

$$
\begin{equation*}
\left|f^{(n)}(z)\right| \leq \frac{C\|f\|_{\mathcal{B}}}{\left(1-|z|^{2}\right)^{n}}, \quad f \in \mathcal{B} \tag{11}
\end{equation*}
$$

we see that (iii) implies (i). This completes the proof of Theorem 1.
Theorem 2. Let $p>0, q>-2$ and K be a nonnegative nondecreasing function on $[0, \infty)$. Assume that φ is an analytic self-map of $\mathbb{D}, g \in H(\mathbb{D})$ and n is a positive integer. Then the following statements are equivalent:
(i) $C_{\varphi, g}^{n}: \mathcal{B} \rightarrow Q_{K}(p, q)$ is compact;
(ii) $C_{\varphi, g}^{n}: \mathcal{B}_{0} \rightarrow Q_{K}(p, q)$ is compact;
(iii) $C_{\varphi, g}^{n}: \mathcal{B}_{0} \rightarrow Q_{K}(p, q)$ is weakly compact;
(iv)

$$
\begin{equation*}
\sup _{a \in \mathbb{D}} \int_{\mathbb{D}}|g(z)|^{p}\left(1-|z|^{2}\right)^{q} K(g(z, a)) d A(z)<\infty \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{r \rightarrow 1} \sup _{a \in \mathbb{D}} \int_{|\varphi(z)|>r} \frac{|g(z)|^{p}}{\left(1-|\varphi(z)|^{2}\right)^{n p}}\left(1-|z|^{2}\right)^{q} K(g(z, a)) d A(z)=0 . \tag{13}
\end{equation*}
$$

Proof. (i) \Rightarrow (ii). It is obvious.
(ii) \Leftrightarrow (iii). It follows from Proposition 1.
(ii) $\Rightarrow(i v)$. Assume that $C_{\varphi, g}^{n}: \mathcal{B}_{0} \rightarrow Q_{K}(p, q)$ is compact. By taking $f=\frac{1}{n!} z^{n} \in \mathcal{B}_{0}$ we get (12). Now we choose the function $f(z)=\frac{1}{4} \sum_{k=m}^{\infty} z^{2^{k}}$, where $m=\left[\frac{\operatorname{lnn}}{\ln 2}\right]+1$. Then by [24], we see that $f \in \mathbb{B}_{\mathcal{B}}$. Choose a sequence $\left\{\lambda_{j}\right\}$ in \mathbb{D} which converges to 1 as $j \rightarrow \infty$, and let $f_{j}(z)=f\left(\lambda_{j} z\right)$ for $j \in \mathbb{N}$. Then, $f_{j} \in \mathbb{B}_{\mathcal{B}_{0}}$ for all $j \in \mathbb{N}$ and $\left\|f_{j}\right\|_{\mathcal{B}} \leq C$. Let $f_{j, \theta}(z)=f_{j}\left(e^{i \theta} z\right)$. Then $f_{j, \theta} \in \mathbb{B}_{\mathcal{B}_{0}}$. Replace f by $f_{j, \theta}$ in (2) and then integrate both sides
with respect to θ. By Fubini's Theorem, Parseval's identity and the inequality $2^{k} \cdots\left(2^{k}-n+1\right) \geq\left(2^{k}-n\right)^{n}$, we obtain

$$
\begin{align*}
& \varepsilon \geq \frac{1}{2 \pi} \int_{|\varphi(z)|>r}\left(\int_{0}^{2 \pi}\left|f_{j}^{(n)}\left(e^{i \theta} \varphi(z)\right)\right|^{p} d \theta\right)|g(z)|^{p}\left(1-|z|^{2}\right)^{q} K(g(z, a)) d A(z) \\
= & \left.\frac{1}{4^{p} 2 \pi} \int_{|\varphi(z)|>r} \int_{0}^{2 \pi} \sum_{k=\left[\log _{2} n\right]+1}^{\infty} 2^{k} \cdots\left(2^{k}-n+1\right)\left(\lambda_{j} \varphi(z)\right)^{2^{k}-n} e^{i \theta\left(2^{k}-n\right)}\right|^{p} d \theta\left|\lambda_{j}\right|^{n p}|g(z)|^{p}\left(1-|z|^{2}\right)^{q} K(g(z, a)) d A(z) \\
= & \frac{1}{4^{p}} \int_{|\varphi(z)|>r}\left(\sum_{k=\left[\log _{2} n\right]+1}^{\infty}\left[2^{k} \cdots\left(2^{k}-n+1\right)\right]^{p} \mid \lambda_{j} \varphi(z)^{\left.\right|^{p}\left(2^{k}-n\right)}\right)\left|\lambda_{j}\right|^{n p}|g(z)|^{p}\left(1-|z|^{2}\right)^{q} K(g(z, a)) d A(z) \\
\geq & \frac{1}{4^{p}} \int_{|\varphi(z)|>r}\left(\sum_{k=\left[\log _{2} n\right]+1}^{\infty}\left(2^{k}-n\right)^{n p}\left|\lambda_{j} \varphi(z)\right|^{p\left(2^{k}-n\right)}\right)\left|\lambda_{j}\right|^{n p}|g(z)|^{p}\left(1-|z|^{2}\right)^{q} K(g(z, a)) d A(z) \tag{14}
\end{align*}
$$

Let

$$
G(r)=\sum_{k=\left[\log _{2} n\right]+1}^{\infty}\left(2^{k}-n\right)^{n p} r^{p\left(2^{k}-n\right)}
$$

Since $\log r \geq 2(r-1)$ in the interval $\left[\frac{1}{2}, 1\right)$, we get

$$
r^{p\left(2^{k}-n\right)} \geq \exp \left\{2 p\left(2^{k}-n\right)(r-1)\right\}, \quad r \in\left[\frac{1}{2}, 1\right)
$$

Hence

$$
\begin{align*}
G(r) & \geq \sum_{k=\left[\log _{2} n\right]+1}^{\infty}\left(2^{k}-n\right)^{n p} \exp \left\{2 p\left(2^{k}-n\right)(r-1)\right\} \\
& =(1-r)^{-n p} \sum_{k=\left[\log _{2} n\right]+1}^{\infty}\left[\left(2^{k}-n\right)(1-r)\right]^{n p} \exp \left\{-2 p\left(2^{k}-n\right)(1-r)\right\} \tag{15}
\end{align*}
$$

After some calculations, we see that there exists a positive constant c_{0} such that

$$
G(r) \geq c_{0}(1-r)^{-n p}, \quad r \in\left[\frac{3}{4}, 1\right)
$$

Therefore, for $\delta<r<1$ and for sufficiently large j, (14) gives

$$
\sup _{a \in \mathbb{D}} \int_{|\varphi(z)|>r} \frac{\left|\lambda_{j}\right|^{n p}|g(z)|^{p}}{\left(1-\left|\lambda_{j} \varphi(z)\right|^{2}\right)^{n p}}\left(1-|z|^{2}\right)^{q} K(g(z, a)) d A(z)<C \varepsilon .
$$

By Fatou's Lemma we get (13).
$(i v) \Rightarrow(i)$. Assume that (12) and (13) hold. Let $\left\{f_{j}\right\}$ be a sequence in $\mathbb{B}_{\mathcal{B}}$ which converges to 0 uniformly on compact subsets of \mathbb{D}. We need to show that $\left\{C_{\varphi, g}^{n} f_{j}\right\}$ converges to 0 in $Q_{K}(p, q)$ norm. By (13) for given $\varepsilon>0$ there is an r, such that

$$
\sup _{a \in \mathbb{D}} \int_{|\varphi(z)|>r} \frac{|g(z)|^{p}}{\left(1-|\varphi(z)|^{2}\right)^{n p}}\left(1-|z|^{2}\right)^{q} K(g(z, a)) d A(z)<\varepsilon
$$

when $0<r<1$. Therefore, by (10) we have

$$
\begin{align*}
& \int_{\mathbb{D}}\left|\left(C_{\varphi, g}^{n} f_{j}\right)^{\prime}(z)\right|^{p}\left(1-|z|^{2}\right)^{q} K(g(z, a)) d A(z) \\
= & \left\{\int_{|\varphi(z)| \leq r}+\int_{|\varphi(z)| \mid r}\right\}\left|f_{j}^{(n)}(\varphi(z))\right|^{p}|g(z)|^{p}\left(1-|z|^{2}\right)^{q} K(g(z, a)) d A(z) \\
\leq & \|\left. f_{j}\right|^{p} \mathcal{B} \varepsilon+\sup _{|v| \leq r}\left|f_{j}^{(n)}(w)\right|^{p} \sup _{a \in \mathbb{D}} \int_{\mathbb{D}}|g(z)|^{p}\left(1-|z|^{2}\right)^{q} K(g(z, a)) d A(z) . \tag{16}
\end{align*}
$$

¿From the assumption, we see that $\left\{f_{j}^{(n)}\right\}$ also converges to 0 uniformly on compact subsets of \mathbb{D} by Cauchy's estimates. It follows that $\left\|C_{\varphi, g}^{n} f_{j}\right\|_{Q_{K}(p, q)} \rightarrow 0$ since $\sup _{|k v| \leq r}\left|f_{j}^{(n)}(w)\right|^{p} \rightarrow 0$ as $j \rightarrow \infty$. Thus

$$
\left\|C_{\varphi, g}^{n} f_{j}\right\|_{Q_{k}(p, q)}^{p}=\left\|C_{\varphi, g}^{n} f_{j j}\right\|^{p} \rightarrow 0, \text { as } j \rightarrow \infty .
$$

By Lemma $1, C_{\varphi, g}^{n}: \mathcal{B} \rightarrow Q_{K}(p, q)$ is compact.
Theorem 3. Let $p>0, q>-2$ and K be a nonnegative nondecreasing function on $[0, \infty)$. Assume that φ is an analytic self-map of $\mathbb{D}, g \in H(\mathbb{D})$ and n is a positive integer. Then the following statements are equivalent:
(i) $C_{\varphi, g}^{n}: \mathcal{B}_{0} \rightarrow Q_{K, 0}(p, q)$ is bounded;
(ii)

$$
\begin{equation*}
\lim _{|a| \rightarrow 1} \int_{\mathbb{D}} \mid g(z)^{p}\left(1-|z|^{2}\right)^{q} K(g(z, a)) d A(z)=0 \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{a \in \mathbb{D}} \int_{\mathbb{D}} \frac{\mid g\left(\left.z\right|^{p}\right.}{\left(1-|\varphi(z)|^{2}\right)^{n p}}\left(1-|z|^{2}\right)^{q} K(g(z, a)) d A(z)<\infty . \tag{18}
\end{equation*}
$$

Proof. (i) \Rightarrow (ii). Assume that $C_{\varphi, g}^{n}: \mathcal{B}_{0} \rightarrow Q_{K, 0}(p, q)$ is bounded. Then it is obvious that $C_{\varphi, g}^{n}: \mathcal{B}_{0} \rightarrow Q_{K}(p, q)$ is bounded. By Theorem 1,(18) holds. Taking $f(z)=\frac{1}{n!} z^{n}$ and using the boundness of $C_{\varphi, g}^{n}: \mathcal{B}_{0} \rightarrow Q_{K, 0}(p, q)$, we get (17).
(ii) \Rightarrow (i). Suppose that (17) and (18) hold. From Theorem 1, we see that $C_{\varphi, g}^{n}: \mathcal{B}_{0} \rightarrow Q_{K}(p, q)$ is bounded. To prove that $C_{\varphi, g}^{n}: \mathcal{B}_{0} \rightarrow Q_{K, 0}(p, q)$ is bounded, it suffices to prove that $C_{\varphi, q}^{n} f \in Q_{K, 0}(p, q)$ for any $f \in \mathcal{B}_{0}$. Let $f \in \mathcal{B}_{0}$. For every $\varepsilon>0$, we can choose $\rho \in(0,1)$ such that $\left|f^{(n)}(w)\right|\left(1-|w|^{2}\right)^{n}<\varepsilon$ for all $w \in \mathbb{D} \backslash \rho \overline{\mathbb{D}}$. Then by (11) we have

$$
\begin{aligned}
& \int_{\mathbb{D}}\left|\left(C_{\varphi, g}^{n} f\right)^{\prime}(z)\right|^{p}\left(1-|z|^{2}\right)^{q} K(g(z, a)) d A(z) \\
= & \left(\int_{|\varphi(z)|>\rho}+\int_{|\varphi(z)| \leq \rho}\right)\left|f^{(n)}(\varphi(z))\right|^{p} \mid g(z)^{p}\left(1-|z|^{2}\right)^{q} K(g(z, a)) d A(z) \\
\leq & \left.\varepsilon \int_{|\varphi(z)|>\rho} \frac{\mid g(z)^{p}}{\left(1-|\varphi(z)|^{2}\right)^{n p}}\left(1-|z|^{2}\right)^{q} K(g(z, a)) d A(z)+\frac{\|\left. f\right|_{\mathcal{B}} ^{p}}{\left(1-\rho^{2}\right)^{n p}} \int_{|\varphi(z)| \leq \rho} \right\rvert\, g(z)^{p}\left(1-|z|^{2}\right)^{q} K(g(z, a)) d A(z),
\end{aligned}
$$

which together with the assumed conditions imply the desired result.
Theorem 4. Let $p>0, q>-2$ and K be a nonnegative nondecreasing function on $[0, \infty)$. Assume that φ is an analytic self-map of $\mathbb{D}, g \in H(\mathbb{D})$ and n is a positive integer. Then the following statements are equivalent:
(i) $C_{\varphi, g}^{n}: \mathcal{B} \rightarrow Q_{K, 0}(p, q)$ is bounded;
(ii) $C_{\varphi, g}^{n}: \mathcal{B} \rightarrow Q_{K, 0}(p, q)$ is compact;
(iii) $C_{\varphi, g}^{n}: \mathcal{B}_{0} \rightarrow Q_{K, 0}(p, q)$ is compact;
(iv) $C_{\varphi, g}^{n}: \mathcal{B}_{0} \rightarrow Q_{K, 0}(p, q)$ is weakly compact;
(v)

$$
\begin{equation*}
\lim _{|a| \rightarrow 1} \int_{\mathbb{D}} \frac{|g(z)|^{p}}{\left(1-|\varphi(z)|^{2}\right)^{n p}}\left(1-|z|^{2}\right)^{q} K(g(z, a)) d A(z)=0 \tag{19}
\end{equation*}
$$

Proof. By Proposition 2 we see that $(i) \Leftrightarrow(i i i)$. By Proposition 1 we see that $(i i i) \Leftrightarrow(i v)$. (ii) $\Rightarrow(i)$ is obvious. Now we prove that $(i) \Rightarrow(v) \Rightarrow(i i)$.

First assume that $C_{\varphi, g}^{n}: \mathcal{B} \rightarrow Q_{K, 0}(p, q)$ is bounded. From the proof of Theorem 1, we choose functions $f_{1}, f_{2} \in \mathcal{B}$ such that

$$
\begin{equation*}
\frac{1}{\left(1-|z|^{2}\right)^{n}} \leq\left|f_{1}^{(n)}(z)\right|+\left|f_{2}^{(n)}(z)\right|, \quad z \in \mathbb{D} \tag{20}
\end{equation*}
$$

¿From the assumption we get $C_{\varphi, g}^{n} f_{1}, C_{\varphi, g}^{n} f_{2} \in Q_{K, 0}(p, q)$. Therefore, by (??) and (20) we have

$$
\begin{aligned}
& \lim _{|a| \rightarrow 1} \int_{\mathbb{D}} \frac{|g(z)|^{p}}{\left(1-|\varphi(z)|^{2}\right)^{n p}}\left(1-|z|^{2}\right)^{q} K(g(z, a)) d A(z) \\
\leq & \lim _{|a| \rightarrow 1} \int_{\mathbb{D}}\left(\left|f_{1}^{(n)}(\varphi(z))\right|+\left.\left|f_{2}^{(n)}(\varphi(z))\right|\right|^{p}|g(z)|^{p}\left(1-|z|^{2}\right)^{q} K(g(z, a)) d A(z)\right. \\
\leq & C \lim _{|a| \rightarrow 1} \int_{\mathbb{D}}\left(\left|f_{1}^{(n)}(\varphi(z))\right|^{p}+\left|f_{2}^{(n)}(\varphi(z))\right|^{p}\right)|g(z)|^{p}\left(1-|z|^{2}\right)^{q} K(g(z, a)) d A(z) \\
= & C \lim _{|a| \rightarrow 1} \int_{\mathbb{D}}\left(\left|\left(C_{\varphi, g}^{n} f_{1}\right)^{\prime}(z)\right|^{p}+\left|\left(C_{\varphi, g}^{n} f_{2}\right)^{\prime}(z)\right|^{p}\right)\left(1-|z|^{2}\right)^{q} K(g(z, a)) d A(z) \\
= & 0,
\end{aligned}
$$

which implies the desired result.
Assume that (19) holds. Let

$$
h_{p, q, \varphi, K}(a)=\int_{\mathbb{D}} \frac{|g(z)|^{p}}{\left(1-|\varphi(z)|^{2}\right)^{n p}}\left(1-|z|^{2}\right)^{q} K(g(z, a)) d A(z) .
$$

By the assumption, we have that for every $\varepsilon>0$, there is a $t \in(0,1)$ such that for $|a|>t, h_{p, q, \varphi, K}(a)<\varepsilon$. Similarly to the proof of Lemma 2.3 of [12], we see that $h_{p, q, \varphi, K}$ is continuous on $|a| \leq t$, hence is bounded on $|a| \leq t$. Therefore $h_{p, q, \varphi, K}$ is bounded on \mathbb{D}. From Theorem $1, C_{\varphi, q}^{n}: \mathcal{B} \rightarrow Q_{K}(p, q)$ is bounded. We first prove that $C_{\varphi, g}^{n}: \mathcal{B} \rightarrow Q_{K, 0}(p, q)$ is bounded. For any $f \in \mathcal{B}$, by (10) we have

$$
\begin{equation*}
\int_{\mathbb{D}}\left|\left(C_{\varphi, g}^{n} f\right)^{\prime}(z)\right|^{p}\left(1-|z|^{2}\right)^{q} K(g(z, a)) d A(z) \leq\|f\|_{\mathcal{B}}^{p} \int_{\mathbb{D}} \frac{|g(z)|^{p}}{\left(1-|\varphi(z)|^{2}\right)^{n p}}\left(1-|z|^{2}\right)^{q} K(g(z, a)) d A(z), \tag{21}
\end{equation*}
$$

which together with (19) imply that $C_{\varphi, g}^{n}: \mathcal{B} \rightarrow Q_{K, 0}(p, q)$ is bounded. Fix $f \in \mathbb{B}_{\mathcal{B}}$. The righthand side of (21) tends to 0 , as $|a| \rightarrow 1$ by (19). From Lemma 3, we see that $C_{\varphi, g}^{n}: \mathcal{B} \rightarrow Q_{K, 0}(p, q)$ is compact. The proof of the theorem is completed.

References

[1] C. C. Cowen, B. D. MacCluer, Composition Operators on Spaces of Analytic Functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, 1995.
[2] N. Dunford, J. Schwartz, Linear operators, Vol 1, Interscience, New York, 1958.
[3] M. Essén, H. Wulan, On analytic, meromorphic functions, spaces of Q_{K}-type, Illinois J. Math. 46 (2002) 1233-1258.
[4] M. Essén, H. Wulan, J. Xiao, Several function theortic characterization of Q_{K} spaces, J. Func. Anal. 230 (2006) 78-115.
[5] S. Li, Volterra composition operator between weighted Bergman space, Bloch type space, J. Korea Math. Soc. 45 (2008) $229-248$.
[6] S. Li, S. Stević, Generalized composition operators on Zygmund spaces, Bloch type spaces, J. Math. Anal. Appl. 338 (2008) 1282-1295.
[7] S. Li, S. Stević, Products of Volterra type operator, composition operator from H^{∞}, Bloch spaces to the Zygmund space, J. Math. Anal. Appl. 345 (2008) 40-52.
[8] S. Li, S. Stević, Products of integral-type operators, composition operators between Bloch-type spaces, J. Math. Anal. Appl. 349 (2009) 596-610.
[9] S. Li, S. Stević, On an integral-type operator from iterated logarithmic Bloch spaces into Bloch-type spaces, Appl. Math. Comput. 215 (2009) 3106-3115.
[10] S. Li, H. Wulan, Composition operators on Q_{K} spaces, J. Math. Anal. Appl. 327 (2007) 948-958.
[11] X. Meng, Some sufficient conditions for analytic functions to belong to $Q_{K, 0}(p, q)$ space, Abstr. Appl. Anal. Volume 2008 (2008) Article ID 404636, 9 pages.
[12] W. Smith, R. Zhao, Composition operators mapping into Q_{p} space, Analysis 17 (1997) 239-262.
[13] C. Pan, On an integral-type operator from $Q_{K}(p, q)$ spaces to α-Bloch space, Filomat 25 (3) (2011) 163-173.
[14] W. Ramey, D. Ullrich, Bounded mean osillation of Bloch pull-backs, Math. Ann. 91 (1991) 591-606.
[15] S. Stević, On a new operator from H^{∞} to the Bloch-type space on the unit ball, Util. Math. 77 (2008) 257-263.
[16] S. Stević, Generalized composition operators between mixed norm space, some weighted spaces, Numer. Funct. Anal. Opt. 29 (2008) 959-978.
[17] S. Stević, Generalized composition operators from logarithmic Bloch spaces to mixed-norm spaces, Util. Math. 77 (2008) 167-172.
[18] S. Stević, On a new integral-type operator from the Bloch space to Bloch-type spaces on the unit ball, J. Math. Anal. Appl. 354 (2009) 426-434.
[19] S. Stević, Products of integral-type operators, composition operators from the mixed norm space to Bloch-type spaces, Siberian Math. J. 50 (4) (2009) 726-736.
[20] S. Stević, On an integral operator between Bloch-type spaces on the unit ball, Bull. Sci. Math. 134 (2010) 329-339.
[21] S. Stević, On an integral-type operator from Zygmund-type spaces to mixed-norm spaces on the unit ball, Abstr. Appl. Anal. Vol. 2010, Article ID 198608, (2010) 7 pages.
[22] S. Stević, S. Ueki, On an integral-type operator between weighted-type spaces, Bloch-type spaces on the unit ball, Appl. Math. Comput. 217 (2010) 3127-3136.
[23] P. Wu, H. Wulan, Composition operators from the Bloch space into the spaces Q_{K}, Int. J. Math. Math. Sci. 31 (2003) 1973-1979.
[24] H. Wulan, Compactness of the composition operators from the Bloch space \mathcal{B} to Q_{K} spaces, Acta. Math. Sinica, 21 (2005) 1415-1424.
[25] H. Wulan, P. Wu, Characterizations of Q_{T} spaces, J. Math. Anal. Appl. 254 (2001) 484-497.
[26] H. Wulan, J. Zhou, Q_{K} type spaces of analytic functions, J. Funct. Spaces Appl. 4 (2006) 73-84.
[27] H. Wulan, K. Zhu, Derivative-free characterizations of Q_{K} spaces, J. Austra Math. 82 (2007) 283-295.
[28] H. Wulan, K. Zhu, Lacunary series in Q_{K} spaces, Studia Math. 178 (2007) 217-230.
[29] H. Wulan, K. Zhu, Q_{K} spaces via higher order derivatives, Rocky Mountain J. Math. 38 (2008) 329-350.
[30] W. Yang, Products of composition, differentiation operators from $Q_{K}(p, q)$ spaces to Bloch-type spaces, Abstr. Appl. Anal. Vol. 2009, no. 1, Article ID 741920, 14 pages, 2009.
[31] F. Zhang, Y. Liu, Generalized compositions operators from Bloch type spaces to Q_{K} type spaces, J. Funct. Spaces Appl. 8 (1) (2010) 55-66.
[32] K. Zhu, Operator Theory in Function Spaces, Marcel Dekker, New York, Basel, 1990.
[33] K. Zhu, Bloch type spaces of analytic functions, Rocky Mountain J. Math. 23 (1993) 1143-1177.

[^0]: 2010 Mathematics Subject Classification. Primary 47B35; Secondary 30H05
 Keywords. Integral-type operator, Bloch space, $Q_{K}(p, q)$ space.
 Received: 6 May 2011; Accepted: 20 August 2011
 Communicated by Dragana Cvetković Ilić
 Research supported by the NNSF of China(No.11001107), NSF of Guangdong Province, China(No.10451401501004305).
 Email address: jyulsx@163.com (Songxiao Li)

