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Available at: http://www.pmf.ni.ac.rs/filomat

Perturbation bounds for the Moore-Penrose inverse of operators

Xiaoji Liua, Yonghui Qinb, Dragana S. Cvetković-Ilićc
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Abstract. We consider the perturbation bounds for the Moore-Penrose inverse of a given operator on
Hilbert space and apply these results to the relative errors of the minimum norm least squares solution of
the equation Ax = b.

1. The first section

Perturbation bounds for the Moore-Penrose inverse of matrices or operators have been investigated
in many recent papers [1, 3, 15, 17–20, 23, 24]. P. A. Wedin [24] presented some perturbation bounds for
the Moore-Penrose inverse of matrices under general unitarily invariant norm, the spectral norm and the
Frobenius norm. L. Meng and B. Zheng [16] obtained the optimal perturbation bounds for the Moore-
Penrose inverse of matrices under the Frobenius norm using singular value decomposition and these
results extended the results from [24]. C. Deng and Y. Wei [6] considered the perturbation bound for the
Moore-Penrose inverse of operators on Hilbert spaces while the perturbation bounds of linear operators on
Banach spaces have been considered in [18, 26]. In this paper, we consider the perturbation bound for the
Moore-Penrose inverse of linear operator on Hilbert space using generalized Neumman lemma.

Let H, K be Hilbert spaces and let L(H,K) be the set of all bound linear operators from H to K. The
symbols A∗, r(A), R(A) and N(A) stand for the conjugate transpose, the spectral radius, the range and the
null space of A ∈ L(H,K), respectively.

Let A ∈ L(H,K) has a closed range. Then there is a unique operator B ∈ L(K,H) such that

ABA = A, (1)
BAB = B, (2)
(AB)∗ = AB, (3)
(BA)∗ = BA.
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B is called the Moore-Penrose inverse of A and it is denoted by A†.
If B satisfies the equation (1), i.e. ABA = A, then B is the {1}-inverse of A, where A{1} denotes the set of all

{1}-inverses of A. Similarly, we have the notations A{2}, A{1, 2}, A{1, 3} and A{1, 4}, etc.
Let A ∈ L(H,K) has a closed range. Then,

A =

[
A1 0
0 0

]
:
(

R(A∗)
N(A)

)
→

(
R(A)
N(A∗)

)
(4)

and

A† =
[

A−1
1 0
0 0

]
:
(

R(A)
N(A∗)

)
→

(
R(A∗)
N(A)

)
, (5)

where A1 is invertible.
First, we state a definition which is given for Banach spaces but it can be used also for Hilbert spaces:

Definition 1.1. ([11]) Let X,Y and Z be Banach spaces, T ∈ L(X,Y), A ∈ L(X,Z) and D(T) ⊂ D(A). If for some
nonnegative constants a and b and every u ∈ D(T),

||Au|| ≤ a||u|| + b||Tu||,

then A is said to be T-bounded.

The next generalized Neumman Lemma [7] is a main tool in this paper. It is proved in [7] in the case
when X,Y are Banach spaces but it is also valid when X,Y are Hilbert spaces.

Lemma 1.2. ([7]) Let P ∈ B(X) be such that for λ1 < 1, λ2 < 1 and every x ∈ X,

||Px|| ≤ λ1||x|| + λ2||(I + P)x||.

Then λ1 ∈ (−1, 1), λ2 ∈ (−1, 1) and I + P is a bijective mapping. Moreover,

1 − λ1

1 + λ2
||x|| ≤ ||(I + P)x|| ≤ 1 + λ1

1 − λ2
||x||, for every x ∈ X

and

1 − λ2

1 + λ1
||y|| ≤ ||(I + P)−1y|| ≤ 1 + λ2

1 − λ1
||y||, for every y ∈ Y.

Also, we sate a useful lemma which is proved in the matrix case in [5]. The proof is similar but we will
give it for the completeness.

Lemma 1.3. Let A ∈ L(H,K) be represented by

A =
[

A11 A12
A21 A22

]
and R(A) is closed. If A11 is invertible and SA11 (A) is a Moore-Penrose invertible, then

A† =
[

A−1
11 + A−1

11 A12SA11 (A)†A21A−1
11 −A−1

11 A12SA11 (A)†

−SA11 (A)†A21A−1
11 SA11 (A)†

]
(6)

if and only if

N(SA11 (A)) ⊂ N(A12), R(A21) ⊂ R(SA11 (A)), N(SA11 (A)) ⊂ N(A22), (7)

where SA11 (A) = A22 − A21A−1
11 A12 is a Schur complement of A11 in A.
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Proof. R(A) is closed, so A† exists. Suppose that (7) holds. We will prove that A† is given by (6).
Denoting by T the right side of (6). From N(SA11 (A)) ⊂ N(A12), we get that A12

(
I − SA11 (A)†SA11 (A)

)
= 0

which implies that

TA =
[

I 0
0 SA11 (A)†SA11 (A)

]
,

i.e. T ∈ A{4}.
Similarly, applying R(A21) ⊂ R(SA11 (A)), we get(

I − SA11 (A)SA11 (A)†
)
A21 = 0 (8)

which induce that

AT =
[

I 0
0 SA11 (A)SA11 (A)†

]
,

i.e. T ∈ A{3}.
Analogously, we get ATA = A and TAT = T, so T = A†.
Conversely, if T = A†, then from (TA)∗ = TA we have that (8) holds which is equivalent with R(A21) ⊂

R(SA11 (A)). Similarly, we get that the other two conditions hold.

2. Perturbation bounds for the Moore-Penrose inverse of an operator

In this section, we will consider the perturbation bounds for the Moore-Penrose inverse of a given
operator. Let A ∈ L(H,K) and let E ∈ L(H,K) be the perturbation operator of A. Suppose that E is given by

E =
[

E11 E12
E21 E22

]
:
(

R(A∗)
N(A)

)
→

(
R(A)
N(A∗)

)
. (9)

Now, from (4), we have that

A + E =
[

A1 + E11 E12
E21 E22

]
:
(

R(A∗)
N(A)

)
→

(
R(A)
N(A∗)

)
.

In the following theorem, we investigate the perturbation bound of ∥(A+ E)† −A†∥ in the case when the
Moore-Penrose of A + E exists.

Theorem 2.1. Let A,E ∈ L(H,K) be such that A,A + E have a closed ranges and let A, E be given by (4) and (9),
respectively. Suppose that for some λ1 < 1, λ2 < 1 and every x ∈ H,

||EA†x|| ≤ λ1||x|| + λ2||(I + EA†)x|| (10)

and that S = E22 − E21(A1 + E11)−1E12 is a Moore-Penrose invertible. Then

(A + E)† =
[
∆−1 + ∆−1E12S†E21∆

−1 −∆−1E12S†

−S†E21∆
−1 S†

]
(11)

if and only if N(S) ⊂ N(E12), R(E21) ⊂ R(S), N(S) ⊂ N(E22), where ∆ = A1 + E11. In this case,

||(A + E)† − A†|| ≤ 1 + λ2

1 − λ1
∥A−1

1 ∥
[
∥A−1

1 E11∥ +
1 + λ2

1 − λ1
∥A−1

1 ∥∥E12S†E21∥
]

+
1 + λ2

1 − λ1
∥A−1

1 ∥
[
∥E12S†∥ + ∥E21S†∥

]
+ ∥S†∥

||(A + E)(A + E)† − AA†|| ≤ 1 + λ2

1 − λ1
∥A−1

1 ∥
[
1 + ∥A−1

1 E11∥ + 2
1 + λ2

1 − λ1
∥A−1

1 ∥∥E12S†E21∥
]

+2
1 + λ2

1 − λ1
∥A−1

1 ∥
[
∥E12S†∥ + 2∥E21S†∥

]
+ 2∥S†∥.
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Proof. Since R(A) is closed we can suppose that A and A† are given by (4) and (5), respectively. Also, suppose
that E is given by (9). From the Moore-Penrose invertibility of the Schur complement S and by Lemma 1.3
we obtain that (A + E)† is given by (11) if and only if N(S) ⊂ N(E12), R(E21) ⊂ R(S), and N(S) ⊂ N(E22).

From (10) and Lemma 1.2, we have that I + EA† is invertible and

∥A†(I + EA†)−1∥ =
∥∥∥∥∥∥
[

A−1
1 (I + E11A−1

1 )−1 0
0 0

]∥∥∥∥∥∥ ≤ ∥A†∥||(I + EA†)−1∥ ≤ 1 + λ2

1 − λ1
∥A†∥. (12)

It implies that A1 +E11 is invertible and ∥(A1 +E11)−1∥ ≤ 1+λ2
1−λ1
∥A−1

1 ∥. Now, we will consider the perturbation
bound of ∥(A + E)† − A†∥.

Note that

∆−1 − A−1
1 = A−1

1 (I + E11A−1
1 )−1 − A−1

1 = −A−1
1 E11A−1

1 (I + E11A−1
1 )−1 = −A−1

1 E11∆
−1. (13)

According to (12) and (13), we prove that

∥∆−1 − A−1
1 ∥ ≤ ∥A−1

1 E11∥∥A−1
1 (I + E11A−1

1 )−1∥ ≤ 1 + λ2

1 − λ1
∥A−1

1 E11∥∥A−1
1 ∥.

Now,

∥A−1
1 E11∆

−1 + ∆−1E12S†E21∆
−1∥ ≤ 1 + λ2

1 − λ1
∥A−1

1 ∥
[
∥A−1

1 E11∥ +
1 + λ2

1 − λ1
∥A−1

1 ∥∥E12S†E21∥
]
, (14)

∥ − ∆−1E12S†∥ ≤ 1 + λ2

1 − λ1
∥E12S†∥∥A−1

1 ∥, (15)

and

∥ − ∆−1E21S†∥ ≤ 1 + λ2

1 − λ1
∥E21S†∥∥A−1

1 ∥. (16)

By (5),(11) and (13), we easily obtain

(A + E)† − A† =
[
∆−1 − A−1

1 + ∆
−1E12S†E21∆

−1 −∆−1E12S†

−S†E21∆
−1 S†

]
=

[
−A−1

1 E11∆
−1 + ∆−1E12S†E21∆

−1 −∆−1E12S†

−S†E21∆
−1 S†

]
. (17)

From (11), (14)–(17), we have

∥(A + E)†∥ =
∥∥∥∥∥∥
[
∆−1 + ∆−1E12S†E21∆

−1 −∆−1E12S†

−S†E21∆
−1 S†

]∥∥∥∥∥∥
≤

∥∥∥∆−1 + ∆−1E12S†E21∆
−1

∥∥∥ + ∥∥∥∆−1E12S†
∥∥∥ + ∥∥∥S†E21∆

−1
∥∥∥ + ∥∥∥S†

∥∥∥
≤ 1 + λ2

1 − λ1
∥A−1

1 ∥
[
1 +

1 + λ2

1 − λ1
∥A−1

1 ∥∥E12S†E21∥
]

+
1 + λ2

1 − λ1
∥A−1

1 ∥
[
∥E12S†∥ + ∥E21S†∥

]
+ ∥S†∥ (18)

and

∥(A + E)† − A†∥ =
∥∥∥∥∥∥
[
−A−1

1 E11∆
−1 + ∆−1E12S†E21∆

−1 −∆−1E12S†

−S†E21∆
−1 S†

]∥∥∥∥∥∥
≤ 1 + λ2

1 − λ1
∥A−1

1 ∥
[
∥A−1

1 E11∥ +
1 + λ2

1 − λ1
∥A−1

1 ∥∥E12S†E21∥
]

+
1 + λ2

1 − λ1
∥A−1

1 ∥
[
∥E12S†∥ + ∥E21S†∥

]
+ ∥S†∥. (19)
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Finally, we will consider the perturbation bound of projection in the following. Obviously, we have the
following result

(A + E)(A + E)† − AA† = A(A + E)† + E(A + E)† − AA† = A
[
(A + E)† − A†

]
+ E(A + E)† (20)

According to (18)–(20), we show that

∥(A + E)(A + E)† − AA†∥ =
∥∥∥∥A

[
(A + E)† − A†

]
+ E(A + E)†

∥∥∥∥
≤ ∥A∥∥(A + E)† − A†∥ + ∥E∥∥(A + E)†∥

≤ 1 + λ2

1 − λ1
k(A1)

[
1 + ∥A−1

1 E11∥ + 2
1 + λ2

1 − λ1
∥A−1

1 ∥∥E12S†E21∥
]

+2
1 + λ2

1 − λ1
∥A−1

1 ∥
[
∥E12S†∥ + ∥E21S†∥

]
+ 2∥S†∥.

where k(A1) = ∥A−1
1 ∥∥A∥ = ∥A−1

1 ∥∥A1∥.
Therefore, we have finished the proof.

In the following theorem, we will give the perturbation bound of ∥(A+E)†−A†∥ under certain condition.
At first, we will give Theorem 2.2 and Theorem 2.3 before investigating the perturbation bound of ∥(A +
E)† − A†∥.

Theorem 2.2. Let A ∈ L(H,K) has a closed range and let R(E) ⊆ R(A). If E, A† satisfy (10), then

A†(I + EA†)−1 = (I + A†E)−1A† ∈ A{1, 2, 3}

and

||A†(I + EA†)−1|| ≤ 1 + λ2

1 − λ1
||A†||

∥A†(I + EA†)−1 − A†∥ ≤ 1 + λ2

1 − λ1

λ1 + λ2

1 − λ2
||A†||

∥(A + E)A†(I + EA†)−1 − AA†∥ ≤ 1 + λ2

1 − λ1
||A†||

[1 + λ2

1 − λ1
∥A∥ + ∥E∥

]
.

where λ1 < 1, λ2 < 1.

Proof. Since E,A† satisfy the condition (10) and by Lemma 1.2, we obtain that (I + EA†)−1 exists and

||(I + EA†)−1|| ≤ 1 + λ2

1 − λ1
. (21)

Let T = A†(I + EA†)−1. By Lemma 2.3 [14], we get that I + A†E is invertible and

T = (I + A†E)−1A†. (22)

Now, we will prove that T ∈ (A + E)(1,2,3). So we only need to verify the equations (1), (2), (3) of four
Moore-Penrose equations. Note that

T(A + E)T = A†(I + EA†)−1(A + E)A†(I + EA†)−1

= A†(I + EA†)−1(AA† + EA†)(I + EA†)−1

= A†(I + EA†)−1(I + EA†)AA†(I + EA†)−1

= T.

It implies that T is a {2}-inverse of A + E.
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On the other hand, by R(E) ⊂ R(A) and R(A) = R(AA†), we easily prove that

(A + E)T = (A + E)A†(I + EA†)−1

= (AA† + AA†EA†)(I + EA†)−1

= AA†(I + EA†)(I + EA†)−1

= AA†. (23)

Thus [(A + E)T]∗ = (A + E)T. i.e. T ∈ (A + E){3}. According to (23), we also prove that T satisfies the first
Moore-Penrose equation as follow

(A + E)T(A + E) = (A + E)A†(I + EA†)−1(A + E)
= AA†(A + E)
= AA†A + AA†E
= A + E.

Therefore T ∈ (A + E){1}. Thus, we prove that T is a element of the set (A + E){1, 2, 3}. From (22), we have
R(T) = R(A†) and N(T) = N(A†).

Also,

||T|| = ∥(I + A†E)−1A†∥ ≤ 1 + λ2

1 − λ1
||A†||. (24)

From (10), we have ||EA†x|| ≤ λ1||x|| + λ2||x|| + λ2||EA†x||,∀x ∈ H. Therefore,

||EA†x|| ≤ λ1 + λ2

1 − λ2
. (25)

According (21) and (25), we can compute that

∥T − A†∥ = ∥A†(I + EA†)−1 − A†∥
= ∥A†(I + EA†)−1(I − (I + EA†)∥
≤ ∥A†∥∥(I + EA†)−1∥∥EA†)∥

≤ 1 + λ2

1 − λ1
· λ1 + λ2

1 − λ2
||A†||. (26)

In the following, we consider the perturbation bound of ∥(A + E)T − AA†∥. It easily follows that

(A + E)T − AA† = AT + ET − AA† = A
[
T − A†

]
+ ET

Therefore, from (24) and (26) we get

∥(A + E)T − AA†∥ ≤ ∥A∥∥T − A†∥ + ∥E∥∥T∥ ≤ 1 + λ2

1 − λ1

λ1 + λ2

1 − λ2
∥A∥||A†|| + 1 + λ2

1 − λ1
∥E∥||A†||.

Thus, we have finished the proof.

If the condition R(E) ⊆ R(A) in Theorem 2.2 is replaced by N(A) ⊆ N(E), we have the following theorem:

Theorem 2.3. Let A ∈ L(H,K) has a closed range and let N(A) ⊆ N(E). If E, A† satisfy (10), then

A†(I + EA†)−1 = (I + A†E)−1A† ∈ A{1, 2, 4}
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and

||A†(I + EA†)−1|| ≤ 1 + λ2

1 − λ1
||A†|| (27)

∥A†(I + EA†)−1 − A†∥ ≤ 1 + λ2

1 − λ1

λ1 + λ2

1 − λ2
||A†||

∥(A + E)A†(I + EA†)−1 − AA†∥ ≤ 1 + λ2

1 − λ1
||A†||

[1 + λ2

1 − λ1
∥A∥ + ∥E∥

]
where λ1 < 1, λ2 < 1.

Proof. The proof is similar as in the Theorem 2.2.

From Theorem 2.2 and Theorem 2.3, we obtain the perturbation bound of ∥(A + E)† − A†∥:

Theorem 2.4. Let A ∈ L(H,K) has a closed range and let R(E) ⊆ R(A) and N(A) ⊆ N(E). If E, A† satisfy (10), then

(A + E)† = A†(I + EA†)−1 = (I + A†E)−1A†

and

||(A + E)†|| ≤ 1 + λ2

1 − λ1
||A†|| (28)

∥(A + E)† − A†∥ ≤ 1 + λ2

1 − λ1

λ1 + λ2

1 − λ2
||A†|| (29)

∥(A + E)(A + E)† − AA†∥ ≤ 1 + λ2

1 − λ1
||A†||

[1 + λ2

1 − λ1
∥A∥ + ∥E∥

]
,

where λ1 < 1, λ2 < 1.

3. Applications

In this section, we present the perturbation bound of the least squares solution of minimal norm for the
linear operator equation (see [22, Chapter 9])

Ax = b. (30)

Let A ∈ L(H,K) has a close range and b ∈ K. The minimum norm least squares problem is presented by

minx∈H∥x∥ such that ∥b − Ax∥ = minz∈H∥b − Az∥ (31)

where ∥ · ∥ is the norm of H or K induced by its inner product (·, ·). It is well-known that x = A†b is the least
squares solution of minimal norm of (30). Let E and f be perturbed operator of A and b, respectively. Then
the equation (31) reduces to the following equation

(A + E)x = b + f (32)

and in this case equivalent problem is presented by

minx∈H∥x∥ such that ∥b + f − (A + E)z∥ = minz∈H∥b + f − (A + E)z∥. (33)

Evidently, if R(A + E) is closed a unique solution of (33) is given by x̄ = (A + E)†(b + f ).

Theorem 3.1. Let A,E ∈ L(H,K) be such that A,A + E have a close ranges. Suppose that for some λ1 < 1, λ2 < 1
and every x ∈ H,

||EA†x|| ≤ λ1||x|| + λ2||(I + EA†)x||
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and that S = E22 − E21(A1 + E11)−1E12 is a Moore-Penrose invertible. Then the least square solutions of minimal
norm for equations (30) and (32) exist and

∥x̄ − x∥
∥x∥ ≤ 1 + λ2

1 − λ1
k(A1)

[
∥A−1

1 E11∥ +
1 + λ2

1 − λ1
∥A−1

1 ∥∥E12S†E21∥
]

+
1 + λ2

1 − λ1
k(A1)

[
∥E12S†∥ + ∥E21S†∥

]
+ ∥S†∥∥A1∥

+
1 + λ2

1 − λ1
k(A1)

[
1 +

1 + λ2

1 − λ1
∥A−1

1 ∥∥E12S†E21∥
] ∥ f ∥
∥b∥

+
{1 + λ2

1 − λ1
k(A1)

[
∥E12S†∥ + ∥E21S†∥

]
+ ∥S†∥∥A1∥

} ∥ f ∥
∥b∥ .

where k(A1) = ∥A−1
1 ∥∥A∥ = ∥A−1

1 ∥∥A1∥ and

A1 = PAAPA,E11 = PAEPA,E12 = PAEP⊥A,E21 = P⊥AEPA, (34)

E22 = P⊥AEP⊥A,S = E22 − E21(A1 + E11)−1E12.

Proof. Since R(A) and R(A + E) are closed, it follows that x = A†b and x̄ = (A + E)†(b + f ).
Note that

x̄ − x = (A + E)†(b + f ) − A†b =
[
(A + E)† − A†

]
b − (A + E)† f . (35)

Since Ax = b and according to (35), we have

∥Ax∥ = ∥b∥ ≤ ∥A∥∥x∥, ∥b∥∥A∥ ≤ ∥x∥ (36)

and

∥x̄ − x∥ ≤
∣∣∣∣[(A + E)† − A†

]∥∥∥∥ ∥b∥ + ∥(A + E)†∥∥ f ∥. (37)

From (18), (19) and (37), we obtain

∥x̄ − x∥ ≤
∥∥∥∥[(A + E)† − A†

]∥∥∥∥ ∥b∥ + ∥(A + E)†∥∥ f ∥

≤ 1 + λ2

1 − λ1
∥A−1

1 ∥
[
∥A−1

1 E11∥ +
1 + λ2

1 − λ1
∥A−1

1 ∥∥E12S†E21∥
]
∥b∥

+
{1 + λ2

1 − λ1
∥A−1

1 ∥
[
∥E12S†∥ + ∥E21S†∥

]
+ ∥S†∥

}
∥b∥

+
1 + λ2

1 − λ1
∥A−1

1 ∥
[
1 +

1 + λ2

1 − λ1
∥A−1

1 ∥∥E12S†E21∥
]
∥ f ∥

+
{1 + λ2

1 − λ1
∥A−1

1 ∥
[
∥E12S†∥ + ∥E21S†∥

]
+ ∥S†∥

}
∥ f ∥.

where A1,E11,E12,E21,E22,S are given by (34).
Applying (36), we get

∥x̄ − x∥
∥x∥ ≤ 1 + λ2

1 − λ1
k(A1)

[
∥A−1

1 E11∥ +
1 + λ2

1 − λ1
∥A−1

1 ∥∥E12S†E21∥
]

+
1 + λ2

1 − λ1
k(A1)

[
∥E12S†∥ + ∥E21S†∥

]
+ ∥S†∥∥A1∥

+
1 + λ2

1 − λ1
k(A1)

[
1 +

1 + λ2

1 − λ1
∥A−1

1 ∥∥E12S†E21∥
] ∥ f ∥
∥b∥

+
{1 + λ2

1 − λ1
k(A1)

[
∥E12S†∥ + ∥E21S†∥

]
+ ∥S†∥∥A1∥

} ∥ f ∥
∥b∥ .
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where k(A1) = ∥A−1
1 ∥∥A∥ = ∥A−1

1 ∥∥A1∥.
Therefore, we have finished the proof.

Theorem 3.2. Let A,E ∈ L(H,K) be such that R(A) and R(A+E) are closed and let R(E) ⊆ R(A) and N(A) ⊆ N(E).
If (10) holds, then the least squares solutions of minimal norm for equations (30) and (32) exist and

∥x̄ − x∥
∥x∥ ≤ k(A)

1 + λ2

1 − λ1

{
λ1 + λ2

1 − λ2
+
∥ f ∥
∥b∥

}
where k(A) = ||A†||∥A∥ is the condition number.

Proof. Similarly as in Theorem 3.1, we have x = A†b, x̄ = (A + E)†(b + f ) and

x̄ − x =
[
(A + E)† − A†

]
b − (A + E)† f . (38)

According to the inequalities in (28), (29) and from (38), (36), we obtain

∥x̄ − x∥
∥x∥ ≤

∥∥∥∥[(A + E)† − A†
]∥∥∥∥ ∥b∥ + ∥(A + E)†∥∥ f ∥

≤ 1 + λ2

1 − λ1
· λ1 + λ2

1 − λ2
||A†||∥b∥ + 1 + λ2

1 − λ1
||A†||∥ f ∥

≤ k(A) · 1 + λ2

1 − λ1

{
λ1 + λ2

1 − λ2
+
∥ f ∥
∥b∥

}
,

where k(A) = ||A†||∥A∥ is condition number.
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