Filomat 26:2 (2012), 243–252 DOI 10.2298/FIL1202243J Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

BCC-algebras with pseudo-valuations

Young Bae Jun^a, Sun Shin Ahn^{b,*}, Eun Hwan Roh^c

^aDepartment of Mathematics Education (and RINS), Gyeongsang National University, Chinju 660-701, Korea
 ^bDepartment of Mathematics Education, Dongguk University, Seoul 100-715, Korea
 ^cDepartment of Mathematics Education, Chinju National University of Education, Chinju 660-756, Korea

Abstract. The notion of pseudo-valuations (valuations) on a BCC-algebra is introduced by using the Buşneag's model ([1–3]), and a pseudo-metric is induced by a pseudo-valuation on BCC-algebras. Conditions for a real-valued function to be an BCK-pseudo-valuation are provided. The fact that the binary operation in BCC-algebras is uniformly continuous is provided based on the notion of (pseudo) valuation.

1. Introduction

In 1966, Y. Imai and K. Iséki (cf. [8]) defined a class of algebras of type (2, 0) called *BCK-algebras* which generalizes on one hand the notion of algebra of sets with the set subtraction as the only fundamental non-nullary operation, on the other hand the notion of implication algebra (cf. [8]). The class of all BCK-algebras is a quasivariety. K. Iséki posed an interesting problem (solved by A. Wroński [12]) whether the class of BCK-algebras is a variety. In connection with this problem, Y. Komori (cf. [10]) introduced a notion of BCC-algebras, and W. A. Dudek (cf. [4, 5]) redefined the notion of BCC-algebras by using a dual form of the ordinary definition in the sense of Y. Komori. In [7], W. A. Dudek and X. H. Zhang introduced a new notion of ideals in BCC-algebras and described connections between such ideals and congruences. Buşneag [2] defined a pseudo-valuation on a Hilbert algebra, and proved that every pseudo-valuation induces a pseudo metric on a Hilbert algebra. Also, Buşneag [3] provided several theorems on extensions of pseudo-valuations. Buşneag [1] introduced the notions of pseudo-valuations (valuations) on residuated lattices, and proved some theorems of extension for these (using the model of Hilbert algebras ([3])).

In this paper, using the Buşneag's model, we introduce the notion of (BCK, BCC, strong BCC)-pseudovaluations (valuations) on BCC-algebras, and we induce a pseudo-metric by using a BCK-pseudo-valuation on BCC-algebras. We provide conditions for a real-valued function on a BCC-algebra X to be a BCK-pseudopseudo-valuation on X. Based on the notion of (pseudo) valuation, we show that the binary operation * in BCC-algebras is uniformly continuous.

²⁰¹⁰ Mathematics Subject Classification. Primary 06F35; Secondary 03G25, 03C05

Keywords. Weak pseudo-valuation, (BCK, BCC, strong BCC)-pseudo-valuation, pseudo-metric induced by BCK-pseudo-valuation, BCK/BCC-valuation

Received: 21 June 2011; Accepted: 11 August 2011

Communicated by Miroslav Ćirić

^{*}Corresponding author.

Email addresses: skywine@gmail.com (Young Bae Jun), sunshine@dongguk.edu (Sun Shin Ahn), idealmath@gmail.com (Eun Hwan Roh)

2. Preliminaries

Recall that a *BCC-algebra* is an algebra (X, *, 0) of type (2,0) satisfying the following axioms:

- (C1) ((x * y) * (z * y)) * (x * z) = 0,
- (C2) 0 * x = 0,
- (C3) x * 0 = x,
- (C4) x * y = 0 and y * x = 0 imply x = y

for every $x, y, z \in X$. For any BCC-algebra X, the relation \leq defined by $x \leq y$ if and only if x * y = 0 is a partial order on X. In a BCC-algebra X, the following holds:

- (a1) $(\forall x \in X) (x * x = 0),$
- (a2) $(\forall x, y \in X) (x * y \le x),$
- (a3) $(\forall x, y, z \in X) (x \le y \implies x * z \le y * z, z * y \le z * x).$

A subset *I* of a BCC-algebra *X* is called a *BCK-ideal* if it satisfies:

- (i) $0 \in I$,
- (ii) $(\forall x \in X) (\forall y \in I) (x * y \in I \implies x \in I)$.

A subset *I* of a BCC-algebra *X* is called a *BCC-ideal* if it satisfies:

(i) $0 \in I$, (ii) $(\forall x, z \in X) (\forall y \in I) ((x * y) * z \in I \implies x * z \in I)$.

3. Pseudo-valuations on BCC-algebras

Definition 3.1. A real-valued function φ on a BCC-algebra X is called a *weak pseudo-valuation* on X if it satisfies the following condition:

$$(\forall x, y \in X) \ (\varphi(x * y) \le \varphi(x) + \varphi(y)). \tag{1}$$

Definition 3.2. A real-valued function φ on a BCC-algebra *X* is called a *BCK-pseudo-valuation* on *X* if it satisfies the following condition:

$$\varphi(0) = 0, \tag{2}$$

$$(\forall x, y \in X) \ (\varphi(x * y) \ge \varphi(x) - \varphi(y)). \tag{3}$$

Example 3.3. Let $X := \{0, 1, 2, 3, 4\}$ be a BCC-algebra ([7]), which is not a BCK-algebra, with *-operation given by Table 1. Let φ be a real-valued function on X defined by

$$\varphi = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 1 & 3 & 4 & 5 \end{pmatrix}.$$

It is easy to check that φ is both a weak pseudo-valuation and a BCK-pseudo-valuation on X.

Proposition 3.4. For a weak pseudo-valuation φ on a BCC-algebra X, we have

$$(\forall x \in X) \ (\varphi(x) \ge 0). \tag{4}$$

Proof. For any $x \in X$, we have $\varphi(0) = \varphi(0 * x) \le \varphi(0) + \varphi(x)$, and so $\varphi(x) \ge 0$. \Box

Table 1: *-operation

*	0	1	2	3	4
0	0	0	0	0	0
1	1	0	1	0	0
2 3	2	2	0	0	0
3	3	3	1	0	0
4	4	3	4	3	0

Theorem 3.5. Let *S* be a subalgebra of a BCC-algebra X. For any real numbers t_1 and t_2 with $0 \le t_1 < t_2$, let φ_S be a real-valued function on X defined by

$$\varphi_S(x) = \begin{cases} t_1 & \text{if } x \in S, \\ t_2 & \text{if } x \notin S \end{cases}$$

for all $x \in X$. Then φ_S is a weak pseudo-valuation on X.

Proof. Straightforward. \Box

Given an element *a* of a BCC-algebra *X*, the set $A(a) := \{x \in X \mid x \le a\}$ is called the *initial section* of *X* determined by *a*.

Corollary 3.6. Let X be a BCC-algebra. For any $a \in X$, let φ be a real-valued function on X defined by

$$\varphi_a(x) = \begin{cases} t_1 & \text{if } x \in A(a), \\ t_2 & \text{if } x \notin A(a) \end{cases}$$

for all $x \in X$ where t_1 and t_2 are real numbers with $t_2 > t_1 \ge 0$ and A(a) is the initial section of X determined by a. Then φ_a is a weak pseudo-valuation on X.

Theorem 3.7. In a BCC-algebra, every BCK-pseudo-valuation is a weak pseudo-valuation.

Proof. Let φ be a *BCK*-pseudo valuation on a *BCC*-algebra *X*. Using (a2) and (C2), we have ((x * y) * x) * y = 0 * y = 0 for all $x, y \in X$. Hence

$$0 = \varphi(0) = \varphi(((x * y) * x) * y)$$

$$\geq \varphi((x * y) * x) - \varphi(y)$$

$$\geq \varphi(x * y) - \varphi(x) - \varphi(y),$$

and so $\varphi(x * y) \le \varphi(x) + \varphi(y)$ for all $x, y \in X$. Therefore φ is a weak pseudo-valuation on X. \Box

The following example shows that the converse of Theorem 3.7 is not true.

Example 3.8. Consider the BCC-algebra *X* which is given in Example 3.3. Let θ be a real-valued function on *X* defined by

 $\theta = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 4 & 5 \end{pmatrix}.$

It is easy to show that θ is a weak pseudo-valuation , but not a BCK-pseudo-valuation on X since

 $\theta(3) = 4 \nleq 3 = 1 + 2 = \theta(1) + \theta(2) = \theta(3 * 2) + \theta(2).$

Definition 3.9. A real-valued function φ on a BCC-algebra X is called a *BCC-pseudo-valuation* on X if it satisfies (2) and

$$(\forall x, y, z \in X) (\varphi((x * y) * z) \ge \varphi(x * z) - \varphi(y)).$$
(5)

Example 3.10. Consider the set $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$ where \mathbb{N} is the set of natural numbers. Define a binary operation * on \mathbb{N}_0 by

$$(\forall x, y \in \mathbb{N}_0) \left(x * y := \left\{ \begin{array}{ll} 0 & \text{if } x \le y \\ x - y & \text{if } x > y \end{array} \right).$$

Then $(\mathbb{N}_0; *, 0)$ is a BCK-algebra with the unique small atom 1, and so it is a BCC-algebra. Define

$$\varphi : \mathbb{N}_0 \to \mathbb{R}, \ x \mapsto \begin{cases} 0 & \text{if } x = 0, \\ 2x + 1 & \text{otherwise.} \end{cases}$$

It is routine to verify that φ is a BCC-pseudo-valuation on \mathbb{N}_0 .

Putting z = 0 in (5) and using (C3), we get $\varphi(x * y) \ge \varphi(x) - \varphi(y)$ for all $x, y \in X$. Thus we know that every BCC-pseudo-valuation is a BCK-pseudo-valuation. We will state this as a theorem.

Theorem 3.11. In a BCC-algebra, every BCC-pseudo-valuation is a BCK-pseudo-valuation.

The converse of Theorem 3.11 is not true as seen in the following example.

Example 3.12. Consider the BCC-algebra *X* which is given in Example 3.3. Let φ be as in Example 3.3. Then φ is a BCK-pseudo-valuation, but not a BCC-pseudo-valuation on *X* since

 $\varphi((4*1)*2) = \varphi(1) = 1 \not\geq 4 = \varphi(4*2) - \varphi(1).$

Theorem 3.13. In a BCK-algebra, every BCK-pseudo-valuation is a BCC-pseudo-valuation.

Proof. Let φ be a BCK-pseudo-valuation on a BCK-algebra *X* and let *x*, *y*, *z* \in *X*. Then

 $\varphi(x * z) \le \varphi((x * z) * y) + \varphi(y) = \varphi((x * y) * z) + \varphi(y)$

and so φ is a BCC-pseudo-valuation on *X*.

Lemma 3.14. Let φ be a BCC-pseudo-valuation on a BCC-algebra X. If $x \le y$ then $\varphi(x) \le \varphi(y)$ for all $x, y \in X$.

Proof. Let $x, y \in X$ be such that $x \le y$. Then x * y = 0, and so

$$\begin{aligned} \varphi(x) &= \varphi(x * 0) \le \varphi((x * y) * 0) + \varphi(y) \\ &= \varphi(x * y) + \varphi(y) = \varphi(0) + \varphi(y) = \varphi(y). \end{aligned}$$

This completes the proof. \Box

Lemma 3.15. Every BCC-pseudo-valuation on a BCC-algebra X is a weak pseudo-valuation on X.

Proof. It is clear. \Box

Corollary 3.16. Every BCC-pseudo-valuation on a BCC-algebra X satisfies the following assertions: for all $x, y, z \in X$,

(a) $\varphi(x * y) \leq \varphi(x)$,

- (b) $\varphi(x * (y * z)) \le \varphi(x) + \varphi(y) + \varphi(z)$,
- (c) $\varphi((x * y) * (z * y)) \le \varphi(x * z)$,

247

(d) $x \le y \implies \varphi(x * z) \le \varphi(y * z), \ \varphi(z * y) \le \varphi(z * x).$

The following example shows that the converse of Lemma 3.15 is not true.

Example 3.17. Consider the BCC-algebra X which is given in Example 3.3. Let φ be a real-valued function on X defined by

 $\varphi = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ 1 & 1 & 2 & 3 & 3 \end{pmatrix}.$

It is easy to check that φ is a weak pseudo-valuation, but not a BCK-pseudo-valuation since $\varphi(0) \neq 0$. Also it is not a BCC-pseudo-valuation since

 $\varphi((4*1)*2) \not\geq \varphi(4*2) - \varphi(1).$

Proposition 3.18. Every BCC-pseudo-valuation on a BCC-algebra X satisfies the following implication:

$$(\forall x, y, z, a \in X) ((x * y) * z \le a \implies \varphi(x * z) \le \varphi(y) + \varphi(a)).$$
(6)

Proof. Let $x, y, z, a \in X$ be such that $(x * y) * z \le a$. It follows from Lemma 3.14 that $\varphi((x * y) * z) \le \varphi(a)$ so from (5) that

$$\varphi(x * z) \le \varphi((x * y) * z) + \varphi(y) \le \varphi(a) + \varphi(y).$$

This completes the proof. \Box

We provide a condition for a real-valued function φ on a BCC-algebra X to be a BCC-pseudo-valuation on X.

Theorem 3.19. Let φ be a real-valued function on a BCC-algebra X. If φ satisfies conditions (2) and (6), then φ is a BCC-pseudo-valuation on X.

Proof. Assume that φ satisfies conditions (2) and (6). We note that $(x * y) * z \le (x * y) * z$ for all $x, y, z \in X$, and so $\varphi(x * z) \le \varphi((x * y) * z) + \varphi(y)$. Therefore φ is a BCC-pseudo-valuation on X.

Definition 3.20. A real-valued function φ on a BCC-algebra *X* is called a *strong BCC-pseudo-valuation* on *X* if it satisfies (2) and

$$(\forall x, y, z \in X) \ (\varphi((x * y) * z) \ge \varphi(x) - \varphi(y)). \tag{7}$$

Lemma 3.21. Every strong BCC-pseudo-valuation φ on a BCC-algebra X is order preserving.

Proof. Let $x, y \in X$ be such that $x \le y$. Then x * y = 0, and so

 $\varphi(x) \le \varphi((x * y) * 0) + \varphi(y) = \varphi(0 * 0) + \varphi(y) = \varphi(0) + \varphi(y) = \varphi(y)$

by (7), (2) and (a1). Hence φ is order preserving.

Theorem 3.22. Every strong BCC-pseudo-valuation φ on a BCC-algebra X is a BCC-pseudo-valuation on X.

Proof. By (a2) and Lemma 3.21, we have $\varphi(x * z) \leq \varphi(x)$ for all $x, z \in X$. It follows from (7) that

$$\varphi((x * y) * z) \ge \varphi(x) - \varphi(y) \ge \varphi(x * z) - \varphi(y). \tag{8}$$

Hence φ is a BCC-pseudo-valuation on *X*.

The following example shows that the converse of Theorem 3.22 may not be true.

Table 2:	*-operation
----------	-------------

*		1			4	5
0	0 1 2 3 4 5	0	0	0	0	0
1	1	0	0	0	0	
2	2	2	0	0	1	1
3	3	2	1	0	1	1
4	4	4	4	4	0	1
5	5	5	5	5	5	0

Example 3.23. Let $X := \{0, 1, 2, 3, 4, 5\}$ be a BCC-algebra ([7]), which is not a BCK-algebra, with *-operation given by Table 2. Let φ be a real-valued function on X defined by

 $\varphi = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 1 & 1 & 1 & 7 \end{pmatrix}.$

It is easy to check that φ is a BCC-pseudo-valuation on *X*, but not a strong BCC-pseudo-valuation on *X*, since $\varphi((1 * 0) * 1) = 0 \not\ge 1 = 1 - 0 = \varphi(1) - \varphi(0)$.

Definition 3.24. ([6])A non-zero element *a* of a BCC-algebra X is called an *atom* of X if for any $x \in X$, $x \le a$ implies x = 0 or x = a.

Lemma 3.25. ([6]) Let a and b be atoms of a BCC-algebra X. If $a \neq b$, then a * b = a.

We provide a condition for a BCC-pseudo-valuation to be a strong BCC-pseudo-valuation.

Theorem 3.26. In a BCC-algebra containing only atoms, every BCC-pseudo-valuation is a strong BCC-pseudo-valuation.

Proof. Let *X* be a BCC-algebra containing only atoms and let φ be a BCC-pseudo-valuation on *X*. Using Lemma 3.25 and (5), we have

 $\varphi(x) = \varphi(x * z) \le \varphi((x * y) * z) + \varphi(y)$

for all $x, y, z \in X$. Hence φ is a strong BCC-pseudo-valuation on X. \Box

Proposition 3.27. For any BCK-pseudo-valuation φ on a BCC-algebra X, we have the following assertions:

- (a) φ is order preserving,
- (b) $(\forall x, y \in X)(\varphi(x * y) + \varphi(y * x) \ge 0),$
- (c) $(\forall x, y, z \in X)(\varphi(x * y) \le \varphi(x * z) + \varphi(z * y)).$

Proof. (a) Let $x, y \in X$ be such that $x \le y$. Then x * y = 0, and so $\varphi(x) \le \varphi(x * y) + \varphi(y) = \varphi(0) + \varphi(y) = \varphi(y)$. (b) Let $x, y \in X$. Using (3), we have $\varphi(x * y) \ge \varphi(x) - \varphi(y)$ and $\varphi(y * x) \ge \varphi(y) - \varphi(x)$. It follows that $\varphi(x * y) + \varphi(y * x) \ge 0$.

(c) Let $x, y, z \in X$. Since φ is order preserving, it follows from (C1) and (3) that

$$\varphi(x*z) \ge \varphi((x*y)*(z*y)) \ge \varphi(x*y) - \varphi(z*y).$$

Hence (c) is valid. \Box

249

Corollary 3.28. Every BCC-pseudo-valuation φ on a BCC-algebra X satisfies conditions (a), (b) and (c) in Proposition 3.27.

Theorem 3.29. If a real-valued function φ on a BCC-algebra X satisfies the condition (2) and

$$(\forall x, y, z \in X)(\varphi(((x * y) * y) * z) \ge \varphi(x * y) - \varphi(z)$$
(9)

then φ is a BCK-pseudo-valuation on X.

Proof. Taking y = 0 in (9) and using (C3), we have

 $\varphi(x * z) = \varphi(((x * 0) * 0) * z) \ge \varphi(x * 0) - \varphi(z) = \varphi(x) - \varphi(z).$

Hence φ is a *BCK*-pseudo-valuation on *X*.

Corollary 3.30. Let φ be a real-valued function on a BCK-algebra X. If φ satisfies conditions (2) and (9), then φ is a BCC-pseudo-valuation on X.

By a *pseudo-metric space* we mean an ordered pair (*M*, *d*), where *M* is a non-empty set and $d : M \times M \to \mathbb{R}$ is a positive function satisfying the following properties: d(x, x) = 0, d(x, y) = d(y, x) and $d(x, z) \le d(x, y) + d(y, z)$ for every $x, y, z \in M$. If in the pseudo-metric space (*M*, *d*) the implication $d(x, y) = 0 \Rightarrow x = y$ hold, then (*M*, *d*) is called a *metric space*. For a real-valued function φ on a BCC-algebra *X*, define a mapping $d_{\varphi} : X \times X \to \mathbb{R}$ by $d_{\varphi}(x, y) = \varphi(x * y) + \varphi(y * x)$ for all $(x, y) \in X \times X$.

Theorem 3.31. If a real-valued function φ on a BCC-algebra X is a BCK-pseudo-valuation on X, then (X, d_{φ}) is a pseudo-metric space.

We say d_{φ} is the *pseudo-metric* induced by a BCK-pseudo-valuation φ on a BCC-algebra X.

Proof. Obviously, $d_{\varphi}(x, y) \ge 0$, $d_{\varphi}(x, x) = 0$ and $d_{\varphi}(x, y) = d_{\varphi}(y, x)$ for all $x, y \in X$. Let $x, y, z \in X$. Using Proposition 3.27(c), we have

$$\begin{aligned} d_{\varphi}(x,y) + d_{\varphi}(y,z) &= [\varphi(x*y) + \varphi(y*z)] + [\varphi(y*z) + \varphi(z*y)] \\ &= [\varphi(x*y) + \varphi(y*z)] + [\varphi(z*y) + \varphi(y*z)] \\ &\geq \varphi(x*z) + \varphi(z*x) = d_{\varphi}(x,z). \end{aligned}$$

Therefore (*X*, d_{φ}) is a pseudo-metric space. \Box

The following example illustrates Theorem 3.31.

Example 3.32. Consider the BCC-pseudo-valuation φ on \mathbb{N}_0 which is described in Example 3.10. Using Theorem 3.11, we know that φ is a BCK-pseudo-valuation on \mathbb{N}_0 . The pseudo-metric d_{φ} induced by φ is given as follows:

$$d_{\varphi}(x, y) = \begin{cases} 0 & \text{if } x = y, \\ 2y + 1 & \text{if } x = 0 \text{ and } y \neq 0, \\ 2x + 1 & \text{if } x \neq 0 \text{ and } y = 0, \\ 2(y * x) + 1 & \text{if } \begin{cases} x * y = 0 \\ y * x \neq 0 \end{cases} \text{ for } 0 \neq x \neq y \neq 0, \\ 2(x * y) + 1 & \text{if } \begin{cases} x * y \neq 0 \\ y * x = 0 \end{cases} \text{ for } 0 \neq x \neq y \neq 0, \\ 2(x * y) + 2(y * x) + 2 & \text{if } \begin{cases} x * y \neq 0 \\ y * x \neq 0 \end{cases} \text{ for } 0 \neq x \neq y \neq 0, \end{cases}$$

and $(\mathbb{N}_0, d_{\varphi})$ is a pseudo-metric space.

Proposition 3.33. Let φ be a BCK-pseudo-valuation on a BCC-algebra X. Then every pseudo-metric d_{φ} induced by φ satisfies the following inequalities:

- (a) $d_{\varphi}(x, y) \ge \max\{d_{\varphi}(x * a, y * a), d_{\varphi}(a * x, a * y)\},\$
- (b) $d_{\varphi}(x * y, a * b) \le d_{\varphi}(x * y, a * y) + d_{\varphi}(a * y, a * b)$

for all $x, y, a, b \in X$.

Proof. (a) Let $x, y, a \in X$. Since

((y * a) * (x * a)) * (y * x) = 0 and ((x * a) * (y * a)) * (x * y) = 0,

it follows from Proposition 3.27(a) that $\varphi(y * x) \ge \varphi((y * a) * (x * a))$ and $\varphi(x * y) \ge \varphi((x * a) * (y * a))$ so that

$$d_{\varphi}(x, y) = \varphi(x * y) + \varphi(y * x)$$

$$\geq \varphi((x * a) * (y * a)) + \varphi((y * a) * (x * a))$$

$$= d_{\varphi}(x * a, y * a).$$

Similarly, we have $d_{\varphi}(x, y) \ge d_{\varphi}(a * x, a * y)$. Hence (a) is valid.

(b) Using Proposition 3.27(c), we have

$$\varphi((x*y)*(a*b)) \leq \varphi((x*y)*(a*y)) + \varphi((a*y)*(a*b)),$$

$$\varphi((a * b) * (x * y)) \le \varphi((a * b) * (a * y)) + \varphi((a * y) * (x * y))$$

for all $x, y, a, b \in X$. Hence

$$\begin{aligned} d_{\varphi}(x * y, a * b) &= \varphi((x * y) * (a * b)) + \varphi((a * b) * (x * y)) \\ &\leq [\varphi((x * y) * (a * y)) + \varphi((a * y) * (a * b))] \\ &+ [\varphi((a * b) * (a * y)) + \varphi((a * y) * (x * y))] \\ &= [\varphi((x * y) * (a * y)) + \varphi((a * y) * (x * y))] \\ &+ [\varphi((a * b) * (a * y)) + \varphi((a * y) * (a * b))] \\ &= d_{\varphi}(x * y, a * y) + d_{\varphi}(a * y, a * b) \end{aligned}$$

for all $x, y, a, b \in X$. \Box

Theorem 3.34. For a real-valued function φ on a BCC-algebra X, if d_{φ} is a pseudo-metric on X, then $(X \times X, d_{\varphi}^*)$ is a pseudo-metric space, where

$$d_{\varphi}^{*}((x,y),(a,b)) = \max\{d_{\varphi}(x,a), d_{\varphi}(y,b)\}$$
(10)

for all $(x, y), (a, b) \in X \times X$.

Proof. Suppose d_{φ} is a pseudo-metric on *X*. For any (x, y), $(a, b) \in X \times X$, we have

 $d_{\varphi}^{*}((x, y), (x, y)) = \max\{d_{\varphi}(x, x), d_{\varphi}(y, y)\} = 0$

and

$$\begin{aligned} d_{\varphi}^{*}((x, y), (a, b)) &= \max\{d_{\varphi}(x, a), d_{\varphi}(y, b)\} \\ &= \max\{d_{\varphi}(a, x), d_{\varphi}(b, y)\} \\ &= d_{\varphi}^{*}((a, b), (x, y)). \end{aligned}$$

Now let (x, y), (a, b), $(u, v) \in X \times X$. Then

 $d_{\varphi}^{*}((x, y), (u, v)) + d_{\varphi}^{*}((u, v), (a, b))$ $= \max\{d_{\varphi}(x, u), d_{\varphi}(y, v)\} + \max\{d_{\varphi}(u, a), d_{\varphi}(v, b)\}$ $\geq \max\{d_{\varphi}(x, u) + d_{\varphi}(u, a), d_{\varphi}(y, v) + d_{\varphi}(v, b)\}$ $\geq \max\{d_{\varphi}(x, a), d_{\varphi}(y, b)\}$ $= d_{\varphi}^{*}((x, y), (a, b)).$

Therefore $(X \times X, d_{\varphi}^*)$ is a pseudo-metric space. \Box

Corollary 3.35. If $\varphi : X \to \mathbb{R}$ is a BCK-pseudo-valuation on a BCC-algebra X, then $(X \times X, d_{\varphi}^*)$ is a pseudo-metric space.

A BCK/BCC-pseudo-valuation φ on a BCC-algebra X satisfying the following condition:

 $(\forall x \in X) \ (x \neq 0 \implies \varphi(x) \neq 0) \tag{11}$

is called a BCK/BCC-valuation on X.

Theorem 3.36. If $\varphi : X \to \mathbb{R}$ is a BCK-valuation on a BCC-algebra X, then (X, d_{φ}) is a metric space.

Proof. Suppose φ is a BCK-valuation on a BCC-algebra *X*. Then (X, d_{φ}) is a pseudo-metric space by Theorem 3.31. Let $x, y \in X$ be such that $d_{\varphi}(x, y) = 0$. Then $0 = d_{\varphi}(x, y) = \varphi(x * y) + \varphi(y * x)$, and so $\varphi(x * y) = 0$ and $\varphi(y * x) = 0$. It follows from (11) that x * y = 0 and y * x = 0 so from (C4) that x = y. Therefore (X, d_{φ}) is a metric space. \Box

Theorem 3.37. If $\varphi : X \to \mathbb{R}$ is a BCK-valuation on a BCC-algebra X, then $(X \times X, d_{\omega}^*)$ is a metric space.

Proof. Note from Corollary 3.35 that $(X \times X, d_{\varphi}^*)$ is a pseudo-metric space. Let $(x, y), (a, b) \in X \times X$ be such that $d_{\varphi}^*((x, y), (a, b)) = 0$. Then

$$0 = d_{\varphi}^{*}((x, y), (a, b)) = \max\{d_{\varphi}(x, a), d_{\varphi}(y, b)\},\$$

and so $d_{\varphi}(x, a) = 0 = d_{\varphi}(y, b)$ since $d_{\varphi}(x, y) \ge 0$ for all $(x, y) \in X \times X$. Hence

$$0 = d_{\varphi}(x, a) = \varphi(x * a) + \varphi(a * x)$$

and

$$0 = d_{\varphi}(y, b) = \varphi(y * b) + \varphi(b * y).$$

It follows that $\varphi(x * a) = 0 = \varphi(a * x)$ and $\varphi(y * b) = 0 = \varphi(b * y)$ so that x * a = 0 = a * x and y * b = 0 = b * y. Using (C4), we have a = x and b = y, and so (x, y) = (a, b). Therefore $(X \times X, d_{\varphi}^*)$ is a metric space. \Box

Theorem 3.38. *If* φ : $X \to \mathbb{R}$ *is a BCK-valuation on a BCC-algebra* X*, then the operation * in the BCC-algebra* X *is uniformly continuous.*

Proof. For any $\varepsilon > 0$, if $d_{\varphi}^*((x, y), (a, b)) < \frac{\varepsilon}{2}$, then $d_{\varphi}(x, a) < \frac{\varepsilon}{2}$ and $d_{\varphi}(y, b) < \frac{\varepsilon}{2}$. Using Proposition 3.33, we have

$$\begin{aligned} d_{\varphi}(x*y,y*a) &\leq d_{\varphi}((x,y),(a*y)+d_{\varphi}(a*y,a*b) \\ &\leq d_{\varphi}(x,a)+d_{\varphi}(y,b) < \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon. \end{aligned}$$

Therefore the operation $* : X \times X \rightarrow X$ is uniformly continuous. \Box

Table 3:	*-operation
----------	-------------

*	0	а	b	С
0	0	0	0	0
а	a	0	0	0
b	b	а	0	0
С	С	b	b	0

The following example illustrates Theorem 3.38.

Example 3.39. Let $X = \{0, a, b, c\}$ be a set with the *-operation given by Table 3. Then (X, *, 0) is a proper BCC-algebra. Let φ be a real-valued function on X defined by

$$\varphi = \begin{pmatrix} 0 & a & b & c \\ 0 & 3 & 4 & 5 \end{pmatrix}.$$

Then φ is a BCK-valuation on X and (X, d_{φ}) is a metric space where

$$d_{\varphi} = \begin{pmatrix} (0,0) & (0,a) & (0,b) & (0,c) & (a,a) & (a,b) & (a,c) & (b,b) & (b,c) & (c,c) \\ 0 & 3 & 4 & 5 & 0 & 3 & 4 & 0 & 4 & 0 \end{pmatrix}.$$

Also, $(X \times X, d_{\omega}^*)$ is a metric space where d_{ω}^* is obtained by (10), for example,

$$\begin{aligned} d_{\varphi}^{*}((0,b),(a,c)) &= \max\{d_{\varphi}(0,a), d_{\varphi}(b,c)\} = \max\{3,4\} = 4, \\ d_{\varphi}^{*}((a,b),(c,a)) &= \max\{d_{\varphi}(a,c), d_{\varphi}(b,a)\} = \max\{4,3\} = 4, \\ d_{\varphi}^{*}((c,a),(0,0)) &= \max\{d_{\varphi}(c,0), d_{\varphi}(a,0)\} = \max\{5,3\} = 5, \\ d_{\varphi}^{*}((a,c),(b,0)) &= \max\{d_{\varphi}(a,b), d_{\varphi}(c,0)\} = \max\{3,5\} = 5, \\ d_{\varphi}^{*}((a,c),(b,c)) &= \max\{d_{\varphi}(a,b), d_{\varphi}(c,c)\} = \max\{3,0\} = 3, \end{aligned}$$

and so on. Now, it is routine to verify that the operation * in the BCC-algebra X

$$*: X \times X \to X, (x, y) \mapsto x * y$$

is uniformly continuous.

Acknowledgements

The authors wish to thank the anonymous reviewers for their valuable suggestions.

References

- [1] C. Buşneag, Valuations on residuated lattices, An. Univ. Craiova Ser. Mat. Inform. 34 (2007) 21-28.
- [2] D. Buşneag, Hilbert algebras with valuations, Discrete Math. 263 (2003) 11-24.
- [3] D. Buşneag, On extensions of pseudo-valuations on Hilbert algebras, Discrete Math. 263 (2003) 11–24.
- [4] W. A. Dudek, The number of subalgebras of finite BCC-algebras, Bull. Inst. Math. Academia Sinica 20 (1992) 129–136.
- [5] W. A. Dudek, On proper BCC-algebras, Bull. Inst. Math. Academia Sinica 20 (1992) 137–150.
- [6] W. A. Dudek, X. H. Zhang, On atoms in BCC-algebras, Discussiones Mathematica-Algebra and Stochastic Methods 15 (1995) 81–85.
- [7] W. A. Dudek, X. H. Zhang, On ideals and congruences in BCC-algebras, Czech. Math. J. 48 (123)(1998) 21–29.
- [8] Y. Imai, K. Iséki, On axiom system of propositional calculi XIV, Proc. Japan Academy 42 (1966) 19-22.
- [9] K. Iséki, S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japon. 23 (1978) 1-26.
- [10] Y. Komori, The class of BCC-algebras in not a variety, Math. Japon. 29(1984) 391–394.
- [11] J. Meng, Y. B. Jun, BCK-algebras, Kyungmoon Sa Co., Seoul, 1994.
- [12] A. Wroński, BCK-algebras do not form a variety, Math. Japon. 28 (1983) 211-213.