On the torsion graph and von Neumann regular rings

P. Malakooti Rad ${ }^{\text {a }}$, Sh. Ghalandarzadeh ${ }^{\text {b }}$, S. Shirinkam ${ }^{\text {c }}$
${ }^{a}$ Department of Mathematics, K. N. Toosi University of Technology P. O. Box 16315 - 1618, Tehran, Iran.
${ }^{b}$ Department of Mathematics, Faculty of Science, K. N. Toosi University of Technology P. O. Box 16315-1618, Tehran, Iran.
${ }^{\text {c }}$ Faculty of Electronic and Computer and IT, Islamic Azad University, Qazvin Branch, Qazvin, Iran

Abstract

Let R be a commutative ring with identity and M be a unitary R-module. A torsion graph of M, denoted by $\Gamma(M)$, is a graph whose vertices are the non-zero torsion elements of M, and two distinct vertices x and y are adjacent if and only if $[x: M][y: M] M=0$. In this paper, we investigate the relationship between the diameters of $\Gamma(M)$ and $\Gamma(R)$, and give some properties of minimal prime submodules of a multiplication R-module M over a von Neumann regular ring. In particular, we show that for a multiplication R-module M over a Bézout ring R the diameter of $\Gamma(M)$ and $\Gamma(R)$ is equal, where $M \neq T(M)$. Also, we prove that, for a faithful multiplication R-module M with $|M| \neq 4, \Gamma(M)$ is a complete graph if and only if $\Gamma(R)$ is a complete graph.

1. Introduction

In 1999 Anderson and Livingston [1], introduced and studied the zero-divisor graph of a commutative ring with identity whose vertices are nonzero zero-divisors while $x-y$ is an edge whenever $x y=0$. Since then, the concept of zero-divisor graphs has been studied extensively by many authors including Badawi and Anderson [7], Anderson, Levy and Shapiro [2] and Mulay [17]. This concept has also been introduced and studied for near-rings, semigroups, and non-commutative rings by Cannon, Neuerburg and Redmond [9], DeMeyer, McKenzie and Schneider [10] and Redmond [18]. For recent developments on graphs of commutative rings see Anderson and Badawi [4], and Anderson, Axtell and Stickles [5].

In 2009, the concept of the zero-divisor graph for a ring has been extended to module theory by Ghalandarzadeh and Malakooti Rad [12]. They defined the torsion graph of an R-module M whose vertices are the nonzero torsion elements of M such that two distinct vertices x and y are adjacent if and only if $[x: M][y: M] M=0$. For a multiplication R-module M, they proved that, $\Gamma(M)$ and $\Gamma\left(S^{-1} M\right)$ are isomorphic, where $S=R \backslash Z(M)$. Also, they showed that, $\Gamma(M)$ is connected and $\operatorname{diam}(\Gamma(M)) \leq 3$ for a faithful R-module M, see [13].

Let R be a commutative ring with identity and M be a unitary multiplication R-module. In this paper, we will investigate the concept of a torsion graph and minimal prime submodules of an R-module. Also, we study the relationship among the diameters of $\Gamma(M)$ and $\Gamma(R)$, and minimal prime submodules of a multiplication R-module M over a von Neumann regular ring. In particular, we show that for a multiplication R-module M over a Bézout ring R the diameter of $\Gamma(M)$ and $\Gamma(R)$ is equal, where $M \neq T(M)$.

[^0]Also, we prove that, if $\Gamma(M)$ is a complete graph, then $\Gamma(R)$ is a complete graph for a multiplication R-module M with $|M| \neq 4$. The converse is true if we assume further that M is faithful.

An element m of M is called a torsion element if and only if it has a non-zero annihilator in R. Let $T(M)$ be the set of torsion elements of M. It is clear that if R is an integral domain, then $T(M)$ is a submodule of M, which is called a torsion submodule of M. If $T(M)=0$, then the module M is said to be torsion-free, and it is called a torsion module if $T(M)=M$. Thus, $\Gamma(M)$ is an empty graph if and only if M is a torsion-free R-module. An R-module M is called a multiplication R-module if for every submodule N of M, there exists an ideal I of R such that $N=I M$, Barnard [8]. Also, a ring R is called reduced if $\operatorname{Nil}(R)=0$, and an R-module M is called a reduced module if $r m=0$ implies that $r M \cap R m=0$, where $r \in R$ and $m \in M$. It is clear that M is a reduced module if $r^{2} m=0$ for $r \in R, m \in M$ implies that $r m=0$. Also by the proof of Lemma 3.7, step 1, in Ghalandarzadeh and Malakooti Rad [12], we can check that a multiplication R-module M is reduced if and only if $\operatorname{Nil}(M)=0$. Also, a ring R is a von Neumann regular ring if for each $a \in R$, there exists an element $b \in R$ such that $a=a^{2} b$. It is clear that every von Neumann regular ring is reduced. A submodule N of an R-module M is called a pure submodule of M if $I M \cap N=I N$ for every ideal I of R Ribenboim [19]. Following Kash ([14], p. 105), an R-module M is called a von Neumann regular module if and only if every cyclic submodule of M is a direct summand in M. If N is a direct summand in M, then N is pure but not conversely Matsumara ([16], Example. 2, p. 54) and Ribenboim ([19], Example. 14, p. 100). And so every von Neumann regular module is reduced. A proper submodule N of M is called a prime submodule of M, whenever $r m \in N$ implies that $m \in N$ or $r \in[N: M]$, where $r \in R$ and $m \in M$. Also, a prime submodule N of M is called a minimal prime submodule of a submodule H of M, if it contains H and there is no smaller prime submodule with this property. A minimal prime submodule of the zero submodule is also known as a minimal prime submodule of the module M. Recall that a ring R is called Bézout if every finitely generated ideal I of R is principal. We know that every von Neumann regular ring is Bézout.

A G is connected if there is a path between any two distinct vertices. The distance $d(x, y)$ between connected vertices x and y is the length of a shortest path from x to $y(d(x, y)=\infty$ if there is no such path). The diameter of G is the diameter of a connected graph, which is the supremum of the distances between vertices. The diameter is 0 if the graph consists of a single vertex. Also, a complete graph is a simple graph whose vertices are pairwise adjacent; the complete graph with n vertices is denoted by K_{n}.

Throughout, R is a commutative ring with identity and M is a unitary R-module. The symbol $\operatorname{Nil(R)}$ will be the ideal consisting of nilpotent elements of R. In addition, $\operatorname{Spec}(M)$ and $\operatorname{Min}(M)$ will denote the set of the prime submodules of M and minimal prime submodules of M, respectively. And $\operatorname{Nil}(M):=\cap_{N \in \operatorname{Spec}(M)} N$ will denote the nilradical of M. We shall often use $[x: M]$ and $[0: M]=\operatorname{Ann}(M)$ to denote the residual of $R x$ by M and the annihilator of an R-module M, respectively. The set $Z(M):=\{r \in R \mid r m=0$ for some $0 \neq m \in M\}$ will denote the zero-divisors of M. As usual, the rings of integers and integers modulo n will be denoted by \mathbb{Z} and \mathbb{Z}_{n}, respectively.

2. Minimal prime submodules

In this section, we investigate some properties of the class of minimal prime submodules of a multiplication R-module M. Multiplication R - modules have been studied in El-Bast and Smith [11]. In the mentioned paper they have proved the following theorem.

Theorem 2.1. Let M be a non-zero multiplication R-module. Then
(1) every proper submodule of M is contained in a maximal submodule of M, and
(2) K is maximal submodule of M if and only if there exists a maximal ideal P of R such that $K=P M \neq M$.

Proof. El-Bast and Smith (Theorem 2.5, [11]).
A consequence of the above theorem is that every non-zero multiplication R-module has a maximal submodule, since 0 is a proper submodule of M. Therefore every non-zero multiplication R-module has a prime submodule.

Lemma 2.2. Let M be a multiplication R-module. Suppose that S be a non empty multiplicatively closed subset of R, and H be a proper submodule of M such that $[H: M]$ dose not meet S. Then there exists a prime submodule N of M which contains H and $[N: M] \cap S=\emptyset$.

Proof. Let S be a non empty multiplicatively closed subset of R and H be a proper submodule of M such that $[H: M]$ dose not meet S. Set

$$
\Omega:=\{[K: M] \mid K<M,[H: M] \subseteq[K: M],[K: M] \cap S=\emptyset\} .
$$

Since $[H: M] \in \Omega$, we have $\Omega \neq \emptyset$. Of course, the relation of inclusion, \subseteq, is a a partial order on Ω. Let Δ be a non-empty totally ordered subset of Ω and $G=\bigcup_{[K: M] \in \Delta}[K: M]$. It is clear that $G \in \Omega$; then by Zorn's Lemma Ω has a maximal element say $[N: M]$. We show that $N=[N: M] M \in \operatorname{Spec}(M)$. Assume $r m \in N$ for some $r \in R$ and $m \in M$, but neither $r \in[N: M]$ nor $m \in N$. Hence $r M \nsubseteq N$, and so there is $m_{0} \in M$ such that $r m_{0} \notin N$. Therefore $N \subset H_{1}=R r m_{0}+N$, and $N \subset H_{2}=R m+N$. Hence $[N: M] \subset\left[H_{1}: M\right]$ and $[N: M] \subset H_{2}$. Consequently $\left[H_{1}: M\right]$ and $\left[H_{2}: M\right]$ are not elements of Ω. So $\left[H_{1}: M\right] \cap S \neq \emptyset$ and $\left[H_{2}: M\right] \cap S \neq \emptyset$. Thus there are two elements $s_{1}, s_{2} \in S$ such that $s_{1} M \subseteq H_{1}$ and $s_{2} M \subseteq H_{2}$. Hence

$$
s_{2} s_{1} M \subseteq s_{2} H_{1} \subseteq s_{2}\left(R r m_{0}+N\right)
$$

so

$$
s_{2} s_{1} M \subseteq R r s_{2} m_{0}+s_{2} N \subseteq R r(R m+N)+N \subseteq N
$$

Therefore $s_{2} s_{1} \in[N: M] \cap S$, and we have derived the required contradiction. Consequently N is a prime submodule of M.

Lemma 2.3. Let M be an R-module with $\operatorname{Spec}(M) \neq \emptyset$, and H be a submodule of M. Let H be contained in a prime submodule N of M, then N contains a minimal prime submodule of H.

Proof. Suppose that $\Omega=\{K \mid K \in \operatorname{Spec}(M), H \subseteq K \subseteq N\}$. Clearly $N \in \Omega$, and so Ω is not empty. If N^{\prime} and $N^{\prime \prime}$ belong to Ω, then we shall write $N^{\prime} \leq N^{\prime \prime}$ if $N^{\prime \prime} \subseteq N^{\prime}$. This gives a partial order on Ω. Now by Zorn's Lemma Ω has a maximal element, say N^{*}. Since $N^{*} \in \Omega, N^{*}$ is a prime submodule of M. We show that N^{*} is a minimal prime submodule of H. Let $H \subseteq N_{1} \subseteq N^{*}$. So $N^{*} \leq N_{1}$, and since N^{*} is a maximal in $\Omega, N^{*}=N_{1}$. Consequently N^{*} is minimal with $H \subseteq N^{*} \subseteq N$.

Theorem 2.4. Let M be a multiplication R-module. Then $\operatorname{Nil}(M)=\bigcap_{N \in \operatorname{Min}(M)} N$.
Proof. Clearly $\operatorname{Nil}(M) \subseteq \bigcap_{N \in \operatorname{Min}(M)} N$. To establish the reverse inclusion, let $x \notin \operatorname{Nil}(M)$. We show that there is a minimal prime submodule which dose not contain x. Since $x \notin \operatorname{Nil}(M)$, there is a prime submodule N of M such that $x \notin N$. If for all $0 \neq \alpha \in[x: M]$ there exists $n \in \mathbb{N}$ such that $\alpha^{n} x=0$, then $x \in N$; which is a contradiction. Thus there exists non-zero element $\alpha \in[x: M]$ such that $\alpha^{n} x \neq 0$ for all $n \in \mathbb{N}$. Let $S=\left\{\alpha^{n} \mid n \geq 0\right\}$. It is clear that S is a multiplicatively closed subset of R, and $0 \notin S$. A simple check yields that $S \cap[0: M]=\emptyset$. By Lemma 2.2, there exists a prime submodule N of M such that $0 \subseteq N$ and $[N: M] \cap S=\emptyset$. Therefore by Lemma 2.3, there exists a minimal prime submodule N^{*} of M such that $0 \subseteq N^{*} \subseteq N$. Since $x \notin N$, we have $x \notin N^{*}$. Consequently $\operatorname{Nil}(M)=\bigcap_{N \in \operatorname{Min}(M)} N$.

Lemma 2.5. Let R be a von Neumann regular ring. Then every R-module is reduced.
Proof. Let R be a von Neumann regular ring. So any finitely generated ideal is generated by an idempotent, and therefore any R-module is reduced.

Proposition 2.6. Let R be a von Neumann regular ring, and M be a multiplication R-module. Suppose that $\Gamma(M)$ be a connected graph, and $\Gamma(M) \neq K_{1}$. Then $T(M)=\bigcup_{N \in \operatorname{Min}(M)} N$.

Proof. Let N be a prime submodule of M such that $N \nsubseteq T(M)$. It will be sufficient to show that $N \notin \operatorname{Min}(M)$. Since $N \nsubseteq T(M)$, we may suppose that there exists an element $x \in N$ such that $x \notin T(M)$. Since M is a multiplication module, we may assume $x=\sum_{i=1}^{n} \alpha_{i} m_{i}$. Since R is a von Neumann regular ring, we have $\sum_{i=1}^{n} R \alpha_{i}=R e$ for some non-zero idempotent element e of R. Therefore there exists $m \in M$ such that $x=e m$. Now put $\Omega=\left\{e^{i} \beta \mid i=0,1\right.$ and $\left.\beta \in R \backslash[N: M]\right\}$. Since $x=e m \notin T(M)$, we have $R \backslash[N: M] \subset \Omega$, and $0 \notin \Omega$. Now a simple check shows that Ω and $R \backslash[N: M]$ are multiplicatively closed subsets of R. Let $\Delta=\{S \mid S$ is a multiplicatively closed subset of $R\} . R \backslash[N: M]$ is not a maximal element of Δ, Since $R \backslash[N: M] \subset \Omega$. Thus [$N: M$] is not a minimal prime ideal of R, and so there exists a prime ideal h_{1} of R such that $h_{1} M \subset N$. Therefore $h_{1} M \neq M$ and by El-Bast and Smith (Corollary 2.11, [11]), $h_{1} M$ is a prime submodule of M. Therefore $h_{1} M \subset N=[N: M] M$, thus $N \notin \operatorname{Min}(M)$. Accordingly $\bigcup_{N \in \operatorname{Min}(M)} N \subseteq T(M)$.

Now let $x \in T(M)^{*}$ but, $x \notin \bigcup_{N \in \operatorname{Min}(M)} N$. Therefore $x \notin N$ for all minimal prime submodules N of M. Since $\Gamma(M)$ is connected and $\Gamma(M) \neq K_{1}$, there is $y \in T(M)^{*}$ such that $x \neq y$ and $[x: M][y: M] M=0$ and so $\operatorname{Ann}(x) \neq \operatorname{Ann}(M)$. So there is a non-zero element $r \in \operatorname{Ann}(x)$ such that $r \notin \operatorname{Ann}(M)$. Thus $r x=0 \in N$ for all minimal prime submodules N of M. Since $x \notin N$, then $r M \subseteq \bigcap_{N \in M i n(M)} N$. Now by Theorem 2.4, $r M \subseteq \operatorname{Nil}(M)$ and since R is a von Neumann regular ring, by Lemma $2.5, M$ is a reduced module and $\operatorname{Nil}(M)=0$. Hence $r \in \operatorname{Ann}(M)$, which is a contradiction. Therefore, $x \in \bigcup_{N \in \operatorname{Min}(M)} N$.

The next result give some properties and characterizations of multiplication von Neumann regular modules as a generalization of von Neumann regular rings.

Proposition 2.7. Let M be a multiplication R-module.
(1) If R be a von Neumann regular ring, then M is a von Neumann regular module.
(2) If R be a von Neumann regular ring, then $S^{-1} M$ is a von Neumann regular module, and $\operatorname{Nil}\left(S^{-1} M\right)=0$, where $S=R \backslash Z(M)$.
Proof. (1) Let $0 \neq x=\sum_{i=1}^{n} \alpha_{i} m_{i} \in M$, where $\alpha_{i} \in[x: M], m_{i} \in M$. Since R is a von Neumann regular ring, we have $\sum_{i=1}^{n} R \alpha_{i}=R e$ for some non-zero idempotent element e of R; therefore there exists $m \in M$ such that $x=e m$ and $e \in[x: M]$. So $1=e+1-e$, thus

$$
M=e M+(1-e) M \subseteq R x+M(1-e)
$$

Now, let $y \in R x \cap M(1-e)$. Hence $y=r_{1} x=(1-e) m$ for some $r_{1} \in R$ and $m \in M$; so $y=e y=r_{1} e m_{1}=$ $e(1-e) m=0$. Therefore $M=R x \oplus M(1-e)$ and M is a von Neumann regular module.
(2) We show that $s M=M$ for all $s \in S$, where $S=R \backslash Z(M)$. Since R is a von Neumann regular ring, for any $s \in S$ there exists $t \in S$ such that $s+t=u$ is a regular element of R and $s t=0$. So u is a unit of R; hence $u M=M$. Since $s t=0$ and $s \notin Z(M), t M=0$. Therefore $M=s M$ for all $s \in S$. Thus $S^{-1} M=M$. By (1), $S^{-1} M$ is a von Neumann regular module.

3. The diameter of torsion graphs

In this section we establish some basic and important results on the diameter of torsion graphs over a multiplication module. Moreover, we investigate the relationship between the diameter of $\Gamma(M)$ and $\Gamma(R)$.

Theorem 3.1. Let M be a multiplication R-module with $|M| \neq 4$. If $\Gamma(M)$ is a complete graph, then $\Gamma(R)$ is a complete graph. The converse is true if we assume further that M is faithful.

Proof. Let $\Gamma(M)$ be a complete graph. By Ghalandarzadeh and Malakooti (Theorem 2.11, [13]), Nil(M) = $T(M)$. Also by Theorem 2.4, $\operatorname{Nil}(M)=\bigcap_{N \in \operatorname{Min}(M)} N$, so $T(M) \neq M$. Hence there exists $m \in M$ such that $\operatorname{Ann}(m)=0$. Suppose that α, β are two vertices of $\Gamma(R)$. One can easily check that $\alpha m, \beta m \in T(M)^{*}$. Therefore $[\alpha m: M][\beta m: M] M=0$, so $\alpha \beta=0$. Consequently $\Gamma(R)$ is a complete graph.

Now, let $\Gamma(R)$ be a complete graph, and $m, n \in T(M)^{*}$. So $\operatorname{Ann}(m) \neq 0$ and $\operatorname{Ann}(n) \neq 0$. Suppose that $0 \neq \alpha \in[m: M]$ and $0 \neq \beta \in[n: M]$. Since M is a faithful, R-module then α and β are the vertices $\Gamma(R)$. Therefore $\alpha \beta=0$, and so $[m: M][n: M] M=0$. Hence $\Gamma(M)$ is a complete graph.

The following example shows that the multiplication condition in the above theorem is not superfluous.
Example 3.2. Let $R=\mathbb{Z}$ and $M=\mathbb{Z} \oplus \mathbb{Z}_{6}$. So by El-Bast and Smith (Corollary 2.3, [11]), M is not a multiplication R-module. Also $\Gamma(M)$ is a complete graph, but $V(\Gamma(R))=\emptyset$.

Corollary 3.3. Let M be a faithful multiplication R-module with $|M| \neq 4$. If $\Gamma(R)$ is a complete graph, then $R \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ or $\operatorname{Nil}(M)=\operatorname{Nil}(R) M=Z(R) M=T(M)$.

Proof. Let $\Gamma(M)$ be a faithful multiplication R-module. By Theorem 3.1, $\Gamma(M)$ is a complete graph, and by Ghalandarzadeh and Malakooti (Theorem 2.11, [13]), $\operatorname{Nil}(M)=T(M)$. Let $R \not \approx \mathbb{Z}_{2} \times \mathbb{Z}_{2}$, by Anderson and Livingston (Theorem 2.8, [1]), $\operatorname{Nil}(R)=Z(R)$. Hence $Z(R)$ is an ideal of R and $T(M)=Z(R) M$. Therefore, we have that $\operatorname{Nil}(M)=\operatorname{Nil}(R) M=Z(R) M=T(M)$.

Corollary 3.4. Let M be a faithful multiplication R-module with $|M| \neq 4$. If $\Gamma(R)$ is a complete graph, then $|\operatorname{Min}(M)|=1$.

Proof. Let M be a faithful multiplication R-module. By Theorem 3.1, $\Gamma(M)$ is a complete graph.Thus $T(M)$ is a submodule of M. We show that $\bigcup_{N \in \operatorname{Min}(M)} N \subseteq T(M)$. Suppose that N be a prime submodule of M, such that $N \nsubseteq T(M)$. It will be sufficient to show that $N \notin \operatorname{Min}(M)$. Since $N \nsubseteq T(M)$ there exists an element $x \in N$ such that $x \notin T(M)$. So there are $\alpha \in[x: M]$ and $m \in M$ such that $\alpha m \notin T(M)$. Now by puting $\Omega=\left\{\alpha^{i} \beta \mid i \geq 0\right.$ and $\beta \in R \backslash[N: M]\}$, and similar to the proof of Proposition 2.6, one can check that $\bigcup_{N \in M i n(M)} N \subseteq T(M)$. By Ghalandarzadeh and Malakooti (Theorem 2.11, [13]) and Theorem 2.4, we have

$$
\bigcup_{N \in \operatorname{Min}(M)} N \subseteq T(M)=\operatorname{Nil}(M)=\bigcap_{N \in \operatorname{Min}(M)} N,
$$

which completes the proof.
Theorem 3.5. Let R be a Bézout ring and M be a multiplication R module such that $|M| \neq 4$ and $M \neq T(M)$; then $\operatorname{diam}(\Gamma(M))=\operatorname{diam}(\Gamma(R))$.

Proof. Let R be a Bézout ring and M be a multiplication R-module. By Theorem 3.1, $\operatorname{diam}(\Gamma(M))=1$ if and only if $\operatorname{diam}(\Gamma(R))=1$. Suppose that $\operatorname{diam}(\Gamma(R))=2$ and $x, y \in T(M)^{*}$ such that $d(x, y) \neq 1$. Let $x=\sum_{i=1}^{n} \alpha_{i} m_{i}$ and $y=\sum_{j=1}^{m} \beta_{j} m_{j}$, where $0 \neq \alpha_{i} \in[x: M], 0 \neq \beta_{j} \in[y: M]$. Since R is a Bézout ring, $\sum_{i=1}^{n} R \alpha_{i}=R \alpha$ and $\sum_{j=1}^{m} R \beta_{j}=R \beta$, for some $\alpha, \beta \in R$. Hence there exist $m, m_{0} \in M$ such that $x=\alpha m, y=\beta m_{0}$. Thus $\alpha, \beta \in Z(R)$. If $d(\alpha, \beta)=1$, then $d(x, y)=1$, and so we have a contradiction. Thus $d(\alpha, \beta)=2$, so there exists $\gamma \in Z(R)^{*}$ such that $\alpha-\gamma-\beta$ is a path of length 2 . Since $M \neq T(M)$, then there is $n \in M$ such that $\gamma n \in T(M)^{*}$. Therefore $\alpha m=x-\gamma n-y=\beta m$. is a path of length 2 . So $d(x, y)=2$ and $\operatorname{diam}(\Gamma(M))=2$.

Suppose that $\operatorname{diam}(\Gamma(M))=2$ and $\alpha, \beta \in Z(R)$ such that $d(\alpha, \beta) \neq 1$. So $\alpha \beta \neq 0$; since $M \neq T(M)$, then there is $n \in M$ such that $\alpha \beta n \neq 0$. Hence $\beta n \neq \alpha n \in T(M)^{*}$. If $d(\alpha n, \beta n)=1$, then $[\alpha n: M] \beta n=0$. So $\alpha \beta n=0$, which is a contradiction. So $d(\alpha n, \beta n)=2$, and there is $z=\gamma n \in T(M)^{*}$ such that $\alpha n-\gamma n-\beta n$, is a path of length 2. Thus $[\alpha n: M] \gamma n=0=[\beta n: M] \gamma n$, so $\alpha \gamma=0=\beta \gamma$ and $\alpha-\gamma-\beta$ is a path of length 2. Therefore $\operatorname{diam}(\Gamma(R))=2$.

Now, let $\operatorname{diam}(\Gamma(R))=3$, so $\operatorname{diam}(\Gamma(M)) \geq 3$, and by Ghalandarzadeh and Malakooti (Theorem 2.6, [13]), $\operatorname{diam}(\Gamma(M)) \leq 3$. Therefore $\operatorname{diam}(\Gamma(M))=3$. If $\operatorname{diam}(\Gamma(M))=3$, then $\operatorname{diam}(\Gamma(R)) \geq 3$, and by Anderson and Livingston, (Theorem 2.3, [1]), $\operatorname{diam}(\Gamma(R)) \leq 3$. Therefore $\operatorname{diam}(\Gamma(R))=3$. Consequently $\operatorname{diam}(\Gamma(M))=\operatorname{diam}(\Gamma(R))$.

Lemma 3.6. Let M be a reduced multiplication R-module and H be a finitely generated submodule of M. Then Ann $(H) M \neq 0$ if and only if $H \subseteq N$ for some $N \in \operatorname{Min}(M)$.

Proof. Let $\operatorname{Ann}(H) M \neq 0$, so $\operatorname{Ann}(H) M \nsubseteq \operatorname{Nil}(M)=\bigcap_{N \in \operatorname{Min}(M)} N$. Thus there exists $N_{0} \in \operatorname{Min}(M)$ such that $\operatorname{Ann}(H) M \nsubseteq N_{0}$. Assume that $r \in R$ and $m \in M$ and $r m \in \operatorname{Ann}(H) M$, but $r m \notin N_{0}$. Therefore $r m[H: M]=0 \subseteq N_{0}$. Since $r m \notin N_{0}$, we have $H \subseteq N_{0}$.

To establish the reverse, let $N=P M \in \operatorname{Min}(M)$, where $P=[N: M]$, and $H \subseteq N$. Since M is a reduced R-module, M_{P} will be a reduced R_{P}-module. We show that M_{P} has exactly one maximal submodule. Let M_{P} has two maximal submodules $S^{-1} H_{1}$ and $S^{-1} H_{2}$; so there exist two ideals $S^{-1} h_{1}$ and $S^{-1} h_{2}$ of $\operatorname{Max}\left(S^{-1} R\right)$, such that $S^{-1} H_{1}=S^{-1} h_{1} S^{-1} M$ and $S^{-1} H_{2}=S^{-1} h_{2} S^{-1} M$. Since R_{P} is a local ring, $S^{-1} H_{1}=S^{-1} H_{2}$. We know that $S^{-1} N$ is a proper submodule of $S^{-1} M$, and so by Theorem $2.1, S^{-1} P S^{-1} M=S^{-1} N$ is the unique maximal submodule of M_{P}. Also, if $S^{-1} H_{0}$ is a prime submodule of M_{P}, then by Theorem 2.1, $S^{-1} H_{0} \subseteq S^{-1} N$. By a routine argument $H_{0} \subseteq N$, so $H_{0}=N$; hence $S^{-1} H_{0}=S^{-1} N$. Therefore by Theorem 2.4, $\operatorname{Nil}\left(M_{P}\right)=S^{-1} N$. Since M_{P} is reduced, $\operatorname{Nil}\left(M_{P}\right)=0$. Thus $S^{-1} N=0$. On the other hand, $H \subseteq N$; hence $S^{-1} H=0$. Suppose that $H=\sum_{i=1}^{n} R h_{i}$; so $\frac{h_{i}}{1}=0$ for all $1 \leq i \leq n$. Hence there exists $s_{i} \in R \backslash P$ such that $s_{i} h_{i}=0$. Let $s=s_{1} s_{2} \cdots s_{n}$, thus $s H=0$. If $s M=0$ then $s \in[N: M]=P$, which is a contradiction. So there is an element $m \in M$ such that $0 \neq s m \in \operatorname{Ann}(H) M$.

Theorem 2.6 in [15] characterizes the diameter of $\Gamma(R)$ in terms of the ideals of R. Our results obtained in Theorems 3.7 and 3.8 specifies the diameter of $\Gamma(M)$ in terms of minimal prime submodules of a multiplication module M over a von Neumann regular ring.

Theorem 3.7. Let R be a von Neumann regular ring and M be a multiplication R-module. If M has more than two minimal prime submodules and $T(M)$ is not a submodule of M, then $\operatorname{diam}(\Gamma(M))=3$.

Proof. Let m, n be two distinct elements of $T(M)^{*}$ and $A n n(R m+R n)=0$. Hence M is faithful. First, suppose that $[m: M][n: M] M \neq 0$, so $d(m, n) \neq 1$. If $d(m, n)=2$, then there exists a vertex $x \in T(M)^{*}$ such that $m-x-n$ is a path. Thus

$$
[m: M][x: M] M=0=[x: M][n: M] M
$$

Accordingly $[x: M](R m+R n)=0$, and so $[x: M] \subseteq A n n(R m+R n)=0$. Which is a contradiction. We shall now assume that $d(m, n) \neq 2$. By Ghalandarzadeh and Malakooti (Theorem 2.6, [13]), $\Gamma(M)$ is connected with $\operatorname{diam}(\Gamma(M)) \leq 3$; therefore $d(m, n)=3$. Next, assume $[m: M][n: M] M=0$, then by Proposition 2.6, $m, n \in \bigcup_{N \in \operatorname{Min}(M)} N$. Since $A n n(R m+R n) M=0$, by Lemma 3.6, m and n belong to two distinct minimal prime submodules. Suppose that P, N and Q are distinct minimal prime submodules of M such that $m \in P \backslash(Q \cup N)$ and $n \in(Q \cap N) \backslash P$. Hence $[m: M] M \nsubseteq N$; thus $\alpha m \notin N$ for some $\alpha \in[m: M]$ and $m \in M$. Let $x \in(Q \cap P) \backslash N$. A simple check yields that $\alpha^{2} x \neq 0$. On the other hand, since $[m: M][n: M] M=0$, we have $\alpha(n+\alpha x)=\alpha^{2} x$. Therefore $0 \neq \alpha^{2} x \in[m: M][n+\alpha x: M] M$. Also, by a routine argument, we have $R m+R n=R m+R(n+\alpha x)$
. So $\operatorname{Ann}(R m+R(n+\alpha x))=0$. Similar to the above argument, we have $d(m,(n+\alpha x))=3$. Consequently $\operatorname{diam}(\Gamma(M))=3$.

Theorem 3.8. Let R be a von Neumann regular ring and M be a multiplication R-module. If $T(M)$ is not a submodule of M, then $\operatorname{diam}(\Gamma(M)) \leq 2$ if and only if M has exactly two minimal prime submodules.
Proof. Suppose that $\operatorname{diam}(\Gamma(M)) \leq 2$, and $T(M)$ is not a submodule of M, so there exist $m, n \in T(M)^{*}$ with $\operatorname{Ann}(R m+R n)=0$. So M is faithful and by Ghalandarzadeh and Malakooti (Theorem 2.6, [13]), $\Gamma(M)$ is connected. Now since $\Gamma(M)$ is a connected graph and $T(M)$ is not a submodule of M, by Proposition 2.6 and Lemma 3.6, there are at least two distinct minimal prime submodules P and Q of M such that $m \in P \backslash Q$ and $n \in Q \backslash P$. On the other hand, by Theorem 3.7, M can not have more than two minimal prime submodules; therefore M has exactly two minimal prime submodules. Conversely, suppose that P and Q be only two minimal prime submodules of M. By Proposition 2.6, $T(M)=P \cup Q$. Assume that $m, n \in T(M)^{*}$ such that $m \in P \backslash Q$ and $n \in Q \backslash P$. Thus $[m: M][n: M] M \subseteq P \cap Q=\operatorname{Nil}(M)=0$, by Lemma 2.5. So $d(m, n)=1$. Also if $m, n \in P$, then $R m+R n \subseteq P$. By Lemma 3.6, $\operatorname{Ann}(R m+R n) M \neq 0$; therefore there is $0 \neq \alpha \in R$ such that $\alpha m=\alpha n=0$. On the other hand, there exists a non-zero element x of M such that $\alpha x \neq 0$ and so $m-\alpha x-n$ is a path; hence $d(m, n)=2$, thus $\operatorname{diam}(\Gamma(M)) \leq 2$. Moreover, if $n, m \in Q$, then similarly $\operatorname{diam}(\Gamma(M)) \leq 2$.

As an immediate consequence from Theorem 3.5 and Theorem 3.8, we obtain the following result.
Corollary 3.9. Let R be a von Neumann regular ring and let M be a multiplication R-module. If $T(M)$ is not a submodule of M, then M has exactly two minimal prime submodules if and only if R has exactly two minimal prime ideals.

References

[1] D. F. Anderson, P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999) 434-447.
[2] D. F. Anderson, R. Levy, J. Shapiro, Zero-divisor graphs, von Neumann regular rings, and Boolean algebras, J. Pure Appl. Algebra 180 (2003) 221-241.
[3] D. F. Anderson, A. Badawi, The total graph of a commutative ring, Journal of Algebra 320 (2003) 2706-2719.
[4] D. F. Anderson, A. Badawi, On the zero-divisor graph of a ring, Comm. Algebra 36 (2008) 3073-3092.
[5] D. F. Anderson, M. C. Axtell, J. A. Stickles, Zero-divisor graphs in commutative rings, in: M. Fontana, S. E. Kabbaj, B. Olberding, I. Swanson (eds.), Commutative Algebra, Noetherian and Non-Noetheiran Perspectives, Springer-Verlag, New York, 2011, $23-45$.
[6] M. F. Atiyah, I. G. Macdonald, Introduction to Commutative Algebra, AddisonWesley, Reading, MA, 1969.
[7] A. Badawi, D. F. Anderson, Divisibility conditions in commutative rings with zero divisors, Comm. Algebra 38 (2002) $4031-4047$.
[8] A. Barnard, Multiplication modules, Journal of Algebra 71 (1981) 174-178.
[9] A. Cannon, K. Neuerburg, S. P. Redmond, Zero-divisor graphs of nearrings and semigroups, in: H. Kiechle, A. Kreuzer, M. J. Thomsen (eds.), Nearrings and Nearfields, Springer, Dordrecht, 2005, 189-200.
[10] F. R. DeMeyer, T. McKenzie, K. Schneider, The zero-divisor graph of a commutative semigroup, Semigroup Forum 65 (2002) 206-214.
[11] Z. A. El-Bast, P. F. Smith, Multiplication modules, Comm. Algebra 16 (1988) 755-779.
[12] Sh. Ghalandarzadeh, P. Malakooti Rad, Torsion graph over multiplication modules, Extracta Mathematicae 24 (2009) $281-299$.
[13] Sh. Ghalandarzadeh, P. Malakooti Rad, Torsion graph of modules, Extracta Mathematicae, to appear.
[14] F. Kash, Modules and Rings, Academic Press, London, 1982.
[15] T. G. Lucas, The diameter of a zero divisor graph, Journal of Algebra 30 (2006) 174-193.
[16] H. Matsumara, Commutative Ring Theory, Cambridge University Pres, Cambridge, 1986.
[17] S. B. Mulay, Rings having zero-divisor graphs of small diameter or large girth, Bull. Austral. Math. Soc 72 (2005) 481-490.
[18] S. P. Redmond, The zero-divisor graph of a non-commutative ring, Internat. J. Commutative Rings 1 (2002) 203-211.
[19] P. Ribenboim, Algebraic Numbers, Wiley, 1972.

[^0]: 2010 Mathematics Subject Classification. Primary 05C99; Secondary 13C12, 13C13
 Keywords. Torsion graphs, von Neumann regular rings, multiplication modules
 Received: 2 July 2011; Accepted: 12 August 2011
 Communicated by Miroslav Ćirić
 Email addresses: pmalakooti@dena.kntu.ac.ir (P. Malakooti Rad), ghalandarzadeh@kntu.ac.ir (Sh. Ghalandarzadeh), sshirinkam@dena.kntu.ac.ir (S. Shirinkam)

