On the edge monophonic number of a graph

J. John ${ }^{\text {a }}$, P. Arul Paul Sudhahar ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, Government College of Engineering, Tirunelveli - 627 007, India
${ }^{b}$ Department of Mathematics, Alagappa Government Arts College, Karaikudi-630 004, India.

Abstract

For a connected graph $G=(V, E)$, an edge monophonic set of G is a set $M \subseteq V(G)$ such that every edge of G is contained in a monophonic path joining some pair of vertices in M. The edge monophonic number $m_{1}(G)$ of G is the minimum order of its edge monophonic sets and any edge monophonic set of order $m_{1}(G)$ is a minimum edge monophonic set of G. Connected graphs of order p with edge monophonic number p are characterized. Necessary condition for edge monophonic number to be $p-1$ is given. It is shown that for every two integers a and b such that $2 \leq a \leq b$, there exists a connected graph G with $m(G)=a$ and $m_{1}(G)=b$, where $m(G)$ is the monophonic number of G.

1. Introduction

By a graph $G=(V, E)$, we mean a finite undirected connected graph without loops or multiple edges. The order and size of G are denoted by p and q respectively. For basic graph theoretic terminology we refer to Harary [2]. A chord of a path $u_{0}, u_{1}, u_{2}, \ldots, u_{h}$ is an edge $u_{i} u_{j}$, with $j \geq i+2$. An $u-v$ path is called a monophonic path if it is a chordless path. The monophonic path in a connected graph is introduced in [8]. A monophonic set of G is a set $M \subseteq V(G)$ such that every vertex of G is contained in a monophonic path joining some pair of vertices in M. The monophonic number $m(G)$ of G is the minimum order of its monophonic sets and any monophonic set of order $m(G)$ is a minimum monophonic set of G. The monophonic number of a graph G is studied in [3-6]. It was shown that in [7] that determining the monophonic number of a graph is NP-complete. The edge geodetic number of a graph is introduced in [1] and further studied in [9]. An edge monophonic set of G is a set $M \subseteq V(G)$ such that every edge of G is contained in a monophonic path joining some pair of vertices in M. The edge monophonic number $m_{1}(G)$ of G is the minimum order of its edge monophonic sets and any edge monophonic set of order $m_{1}(G)$ is a minimum edge monophonic set of G. The maximum degree of G, denoted by $\Delta(G)$, is given by $\Delta(G)=$ $\max \left\{\operatorname{deg}_{G}(v): v \in V(G)\right\} . N(v)=\{u \in V(G): u v \in E(G)\}$ is called the neighborhood of the vertex v in G. For any set S of vertices of G, the induced subgraph $\langle S\rangle$ is the maximal subgraph of G with vertex set S. A vertex v is a simplicial vertex of a graph G if $<N(v)>$ is complete. A vertex v is an universal vertex of a graph G, if it is a full degree vertex of G. A graph G is geodetic if each pair of vertices in G is joined by a unique shortest path. The join of graphs G and H, denoted by $G+H$, is the graph with $V(G+H)=V(G) \cup V(H)$ and $E(G+H)=E(G) \cup E(H) \cup\{u v: u \in V(G)$ and $v \in V(H)\}$. For the graph G given in Figure 1.1, $M=\left\{v_{2}, v_{4}\right\}$ is a monophonic set of G so that $m(G)=2$ and $S=\left\{v_{1}, v_{3}, v_{6}, v_{7}\right\}$ is the minimum edge monophonic set for

[^0]G so that $m_{1}(G)=4$.

G
Figure 1.1

2. Some results on edge monophonic number of a graph

Definition 2.1. A vertex v in a connected graph G is said to be a semi-simplicial vertex of G if $\Delta(<N(v)>)=$ $|N(v)|-1$.

Remark 2.2. Every simplicial vertex of G is a semi-simplicial vertex of G but the converse is not true. For the graph G given in Figure 2.1, v_{1} and v_{5} are semi-simplicial vertices of G and also they are simplicial vertices of G. Now, v_{2} and v_{3} are semi-simplicial vertices of G but not simplicial vertices of G.

G
Figure 2.1
Theorem 2.3. Each semi-simplicial vertex of G belongs to every edge monophonic set of G.
Proof. Let M be an edge monophonic set of G. Let v be a semi-simplicial vertex of G. Suppose that $v \notin M$. Let u be a vertex of $\left\langle N(v)>\right.$ such that $\left.\operatorname{deg}_{\langle N(v)\rangle}(u)=\right| N(v) \mid-1$. Let $u_{1}, u_{2}, \ldots, u_{k}(k \geq 2)$ be the neighbors of u in $\langle N(v)\rangle$. Since M is an edge monophonic set of G, the edge $u v$ lies on the monophonic path $P: x, x_{1}, \ldots, u_{i}, u, v, u_{j}, \ldots, y$, where $x, y \in M$. Since v is a semi-simplicial vertex of G, u and u_{j} are adjacent in G and so P is not a monophonic path of G, which is a contradiction.

Corollary 2.4. Each simplicial vertex of G belongs to every edge monophonic set of G.
Proof. Since every simplicial vertex of G is a semi-simplicial vertex of G, the result follows from Theorem 2.3.

Theorem 2.5. Let G be a connected graph, v be a cut vertex of G and let M be an edge monophonic set of G. Then every component of $G-v$ contains an element of M.

Proof. Let v be a cut vertex of G and M be an edge monophonic set of G. Suppose there exists a component, say G_{1} of $G-v$ such that G_{1} contains no vertex of M. By Corollary $2.4, M$ contains all the simplicial vertices of G and hence it follows that G_{1} does not contains any simplicial vertex of G. Thus G_{1} contains at least one edge, say $x y$. Since M is an edge monophonic set, $x y$ lies on the $u-w$ monophonic path $P: u, u_{1}, u_{2}, \ldots, v, \ldots, x, y, \ldots, v_{1}, \ldots, v \ldots, w$. Since v is a cut vertex of G, the $u-x$ and $y-w$ sub paths of P both contains v and so P is not a path, which is a contradiction.

Theorem 2.6. No cut vertex of a connected graph G belongs to any minimum edge monophonic set of G.
Proof. Let M be a minimum edge monophonic set of G and $v \in M$ be any vertex. We claim that v is not a cut vertex of G. Suppose that v is a cut vertex of G. Let $G_{1}, G_{2}, \ldots, G_{r},(r \geq 2)$ be the components of $G-v$. By Theorem 2.5, each component $G_{i}(1 \leq i \leq r)$ contains an element of M. We claim that $M_{1}=M-\{v\}$ is also an edge monophonic set of G. Let $x y$ be an edge of G. Since M is an edge monophonic set, $x y$ lies on a monophonic path P joining a pair of vertices u and v of M. Assume without loss of generality that $u \in G_{1}$. Since v is adjacent to at least one vertex of each $G_{i}(1 \leq i \leq r)$, assume that v is adjacent to z in $G_{k}, k \neq 1$. Since M is an edge monophonic set, $v z$ lies on a monophonic path Q joining v and a vertex w of M such that w must necessarily belongs to G_{k}. Thus $w \neq v$. Now, since v is a cut vertex of G, the union $P \cup Q$ is a path joining u and w in M and thus the edge $x y$ lies on this monophonic path joining two vertices u and w of M_{1}. Thus we have proved that every edge that lies on a monophonic path joining a pair of vertices u and v of M also lies on a monophonic path joining two vertices of M_{1}. Hence it follows that every edge of G lies on a monophonic path joining two vertices of M_{1}, which shows that M_{1} is an edge monophonic set of G. Since $\left|M_{1}\right|=|M|-1$, this contradicts the fact that M is a minimum edge monophonic set of G. Hence $v \notin M$ so that no cut vertex of G belongs to any minimum edge monophonic set of G.

Corollary 2.7. For any non trivial tree T, the edge monophonic number $m_{1}(G)$ equals the number of end vertices in T. In fact, the set of all end vertices of T is the unique minimum edge monophonic set of T.

Proof. This follows from Corollary 2.4 and Theorem 2.6.
Corollary 2.8. For the complete graph $K_{p}(p \geq 2), m_{1}\left(K_{p}\right)=p$.
Proof. Since every vertex of the complete graph $K_{p}(p \geq 2)$ is a simplicial vertex, by Corollary 2.4, the vertex set of K_{p} is the unique edge monophonic set of K_{p}. Thus $m_{1}\left(K_{p}\right)=p$.

Corollary 2.9. For every pair k, p of integers with $2 \leq k \leq p$, there exists a connected graph G of order p such that $m_{1}(G)=k$.

Proof. For $k=p$, the result follows from Corollary 2.8. Also, for each pair of integers with $2 \leq k \leq p$, there exists a tree of order p with k end vertices. Hence the result follows from Corollary 2.7.

Theorem 2.10. For the cycle $C_{p}(p \geq 4), m_{1}\left(C_{p}\right)=2$.
Proof. Let $C_{p}: v_{1}, v_{2}, \ldots, v_{p}, v_{1}$ be the cycle. Let x, y be two non adjacent vertices of C_{p}. Then it is clear that $\{x, y\}$ is an edge monophonic set of C_{p} so that $m_{1}\left(C_{p}\right)=2$.

Theorem 2.11. For the complete bipartite graph $G=K_{m, n}$
(i) $m_{1}(G)=2$ if $m=n=1$
(ii) $m_{1}(G)=n$ if $n \geq 2, m=1$
(iii) $m_{1}(G)=\min \{m, n\}$ if $m, n \geq 2$.

Proof. (i) This follows from Corollary 2.8.
(ii) This follows from Corollary 2.7.
(iii) Let $m, n \geq 2$. First assume that $m<n$.

Let $U=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ and $W=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ be a bipartition of G.Let $M=U$. We prove that M is a minimum edge monophonic set of G. Any edge $u_{i} w_{j}(1 \leq i \leq m, 1 \leq j \leq n)$ lies on the monophonic path u_{i}, w_{j}, u_{k} for any $k \neq i$ so that M is an edge monophonic set of G. Let T be any set of vertices such that $|T|<|M|$. If $T \subseteq U$, there exists a vertex $u_{i} \in U$ such that $u_{i} \notin T$. Then for any edge $u_{i} w_{j}(1 \leq j<n)$, the only monophonic path containing $u_{i} w_{j}$ are $u_{i}, w_{j}, u_{k}(k \neq i)$ and $w_{j}, u_{i}, w_{l}(l \neq j)$ and so $u_{i} w_{j}$ cannot lie in a monophonic path joining two vertices of T. Thus T is not an edge monophonic set of G. If $T \subseteq W$, again T is not an edge monophonic set of G by a similar argument. If $T \subseteq U \cup W$ such that T contains at least one vertex from each of U and W, then, since $|T|<|M|$, there exist vertices $u_{i} \in U$ and $w_{j} \in W$ such that $u_{i} \notin T$ and $w_{j} \notin T$. Then clearly the edge $u_{i} w_{j}$ does not lie on a monophonic path connecting two vertices of T so that T is not an edge monophonic set. Thus in any case T is not an edge monophonic set of G. Hence M is a minimum edge monophonic set so that $m_{1}(G)=|M|=m$. Now, if $m=n$, we can prove similarly that $M=U$ or W is a minimum edge monophonic set of G. Thus the theorem follows.

Remark 2.12. For any connected graph G of order $p, 2 \leq m(G) \leq m_{1}(G) \leq p$.
Proof. A monophonic set needs at least two vertices and therefore $m(G) \geq 2$. Also every edge monophonic set is a monophonic set of G and then $m(G) \leq m_{1}(G)$. Clearly the set of all vertices of G is an edge monophonic set of G so that $m_{1}(G) \leq p$. Thus $2 \leq m(G) \leq m_{1}(G) \leq p$.

Remark 2.13. The bounds in Remark 2.12 are sharp. The set of the two end vertices of a path $P_{p}(p \geq 2)$ is its unique edge monophonic set so that $m_{1}\left(P_{p}\right)=2$. For any non trivial tree $T, m(T)=m_{1}(T)=$ number of end vertices of T. For the complete graph $G=K_{p}(p \geq 2), m_{1}(G)=p$. Also, the inequalities in the remark can be strict. For the graph G given in Figure 2.2, $m(G)=3, m_{1}(G)=4, p=5$ so that $2<m(G)<m_{1}(G)<p$.

G
Figure 2.2
Corollary 2.14. Let G be a connected graph with k semi-simplicial vertices. Then $\max (2, k) \leq m_{1}(G) \leq p$.
Proof. This follows from Theorem 2.3 and Remark 2.12.
Definition 2.15. A graph G is said to be a semi-simplicial graph if every vertices of G is a semi-simplicial vertex of G.

Remark 2.16. Complete graphs are semi-simplicial graphs. A graph with at least two universal vertex is also semi-simplicial graph. In fact, there are certain semi-simplicial graphs without any universal vertex as the following example shows.

A semi-complete graph G without any universal vertex Figure 2.3

Theorem 2.17. For a semi-simplicial graph $G, m_{1}(G)=p$.
Proof. This follows from Theorem 2.3.
The following Theorem characterizes graphs for which the edge monophonic number is p.
Theorem 2.18. Let G be a connected graph of order p. Then $m_{1}(G)=p$ if and only if G is a semi-simplicial graph.
Proof. If G is a semi-simplicial graph, then by Theorem $2.17, m_{1}(G)=p$. Conversely, let $m_{1}(G)=p$. We claim that G is a semi-simplicial graph. If not, let there exists a vertex v in G such that v is not a semi-simplicial vertex of G. Then for each $w \in N(v)$, there exists $z_{w} \in[N(v)-\{w\}]$ such that $w z_{w} \notin E(G)$. Let $M=V(G)-\{v\}$. Consider the edge $w v$. Since $w, z_{w} \in M$, the edge $w v$ lies on the monophonic path w, v, z_{w}. Then M is an edge monophonic set of G with $|M|=p-1$, which is a contradiction. Therefore, G is a semi-simplicial graph.

We give below necessary conditions on a graph G for which $m_{1}(G)=p-1$.
Theorem 2.19. Let G be a connected graph of order p. If there exists a unique vertex $v \in V(G)$ such that v is not a semi-simplicial vertex of G, then $m_{1}(G)=p-1$.

Proof. Suppose that there exists a unique vertex $v \in V(G)$ such that v is not a semi-simplicial vertex of G. Then by Theorem 2.3, $m_{1}(G) \geq p-1$. Let $M=V(G)-v$. Let $f, h \in V(G)$ such that $e=f h \in E(G)$. If $f, h \in M$, then the edge e lies on the monophonic path $f h$ itself. Therefore, any one of f or h is v, say $f=v$. Since v is not a semi-simplicial vertex of G, there exists $a \in N(v)$ such that $h a \notin E(G)$. Therefore, $e=f h$ is an edge of the monophonic path a, f, h. Hence M is an edge monophonic set of G and so $m_{1}(G) \leq p-1$. Therefore, $m_{1}(G)=p-1$. Hence the result.

Corollary 2.20. Let G be a connected graph of order $p \geq 3$. If G contains exactly one universal vertex, then $m_{1}(G)=p-1$.

Corollary 2.21. For the wheel $W_{1, p-1}(p \geq 4), m_{1}\left(W_{1, p-1}\right)=p-1$.
Theorem 2.22. Let G be a connected graph of order p_{1} with exactly one universal vertex and H be a connected graph of order p_{2} with exactly one universal vertex. Then $m_{1}(G+H)=p_{1}+p_{2}$.

Proof. Let $u \in V(G)$ and $v \in V(H)$ such that $\operatorname{deg}_{G}(u)=p_{1}-1$ and $\operatorname{deg}_{H}(v)=p_{2}-1$. Now, it is clear that $\operatorname{deg}_{G+H}(u)=p_{1}+p_{2}-1$ and $\operatorname{deg}_{G+H}(v)=p_{1}+p_{2}-1$. Then by Theorem 2.18, $m_{1}(G+H)=p_{1}+p_{2}$.

For the graph G given Figure 2.1 and in Corollaries 2.20 and 2.21, we see that $m_{1}(G)=p-1$. Also it is to be noted that G has unique non semi-simplicial vertex. So we have the following conjecture.

Conjecture 2.23. Let G be a connected graph of order $p \geq 3$ with $m_{1}(G)=p-1$. Then there exists a unique vertex $v \in V(G)$ such that v is not a semi-simplicial vertex of G.

3. Edge monophonic number of a geodetic graph

Theorem 3.1. If G is a non complete connected graph such that it has a minimum cutset of G consisting of i independent vertices, then $m_{1}(G) \leq p-i$.

Proof. Since G is non complete, it is clear that $1 \leq i \leq p-2$. Let $U=\left\{v_{1}, v_{2}, \ldots, v_{i}\right\}$ be a minimum independent cutset of vertices of G. Let $G_{1}, G_{2}, \ldots, G_{m}(m \geq 2)$ be the components of $G-U$ and let $M=V(G)-U$. Then every vertex $v_{j}(1 \leq j \leq i)$ is adjacent to at least one vertex of G_{t} for every $t(1 \leq t \leq m)$. Let $u v$ be an edge of G. If $u v$ lies in one of G_{t} for any $t(1 \leq t \leq m)$ then clearly $u v$ lies on the monophonic path ($u v$ itself) joining two vertices u and v of M. Otherwise, $u v$ is of the form $v_{j} u(1 \leq j \leq i)$, where $u \in G_{t}$ for some t such that $1 \leq t \leq m$. As $m \geq 2, v_{j}$ is adjacent to some w in G_{s} for some $s \neq t$ such that $1 \leq s \leq m$. Thus $v_{j} u$ lies on the monophonic path u, v_{j}, w. Thus M is an edge monophonic set of G so that $m_{1}(G) \leq|V(G)-U|=p-i$.

Corollary 3.2. If G is a connected non complete graph such that it has a minimum cutset of G consisting of i independent vertices, then $m_{1}(G) \leq p-\kappa$, where κ is the vertex connectivity of G.

Proof. By Theorem 3.1, $m_{1}(G) \leq p-i$. Since $\kappa \leq i$, it follows that $m_{1}(G) \leq p-\kappa$.
Theorem 3.3. If G is a non complete connected geodetic graph such that U a minimum cutset, then every element of U are independent.

Proof. Let $U=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$ be a cut set of G. Let $G_{1}, G_{2}, \ldots, G_{r},(r \geq 2)$ be the components of $G-U$. Suppose that u_{1} and u_{2} are adjacent. Let x, y be the vertices of G_{1} which are adjacent to u_{1} and u_{2} respectively. Let x_{1}, y_{1} be the vertices of G_{2} which are adjacent to u_{1} and u_{2} respectively.

Case 1. $x_{1}=y_{1}$.
Subcase 1a. $x=y$. Then $x, u_{2}, x_{1}, u_{1}, x$ is an even cycle of length four, which is a contradiction to G is a geodetic graph.
Subcase1b. $x y$ is an edge. Then $u_{1}, u_{2}, y, x, u_{1}$ is an even cycle of length four, which is a contradiction to G is a geodetic graph.
Subase 1c. $x-y$ is a path of length at least two in G_{1}. Let the $x-y$ path be $P: x, w_{1}, w_{2}, \ldots, w, y$. Then either $x_{1}, u_{1}, x, w_{1}, w_{2}, \ldots, w_{n}, y, u_{2}, x_{1}$ or $u_{1}, x, w_{1}, w_{2}, \ldots, w_{n}, y, u_{2}, u_{1}$ is an even cycle, which is a contradiction.

Case 2. $x-y$ is a path of length at least two in G_{1} and $x_{1}-y_{1}$ is a path of length at least two in G_{2}. Then by similar argument we get a contradiction. In all cases we get a contradiction. Therefore every element of U are independent.

Theorem 3.4. If G is a connected non complete geodetic graph, then $m_{1}(G) \leq p-\kappa$.
Proof. This follows from Theorems 3.2 and 3.3.
The following theorem shows that in a geodetic graph only the complete graph has the edge monophonic number p.

Theorem 3.5. If G is a geodetic graph. Then $m_{1}(G)=p$ if and only if $G=K_{p}$.
Proof. Let G be a geodetic graph and let $G=K_{p}$. Then it is clear that $m_{1}(G)=p$. Now, let $m_{1}(G)=p$. If $G \neq K_{p}$, then by Theorem 3.4, $m_{1}(G) \leq p-\kappa$, which is a contradiction. Therefore $G=K_{p}$.

In view of Remark 2.12, we have the following realization theorem.
Theorem 3.6. For any positive integers $2 \leq a \leq b$, there exists a connected graph G such that $m(G)=a$ and $m_{1}(G)=b$.

Proof. If $a=b$, take $G=K_{1, a}$. Then it is clear that the set of end vertices of G is the unique monophonic set of G so that $m(G)=a$. By Corollary 2.7, $m_{1}(G)=a$. If $a=2, b=3$, then for the graph G given in Figure 3.1, $m(G)=2$ and $m_{1}(G)=3$. If $a=2, b \geq 4$, let G be the graph given in Figure 3.2 obtained from the path on three vertices $P: u_{1}, u_{2}, u_{3}$ by adding $b-2$ new vertices $v_{1}, v_{2}, \ldots, v_{b-2}$ and joining each $v_{i}(1 \leq i \leq b-2)$ with u_{1}, u_{2}, u_{3}. It is clear that u_{1}, u_{3} is a monophonic set of G so that $m(G)=2=a$. Since u_{2} is the only universal vertex of G, it follows from Corollary 2.20 that $m_{1}(G)=b-2+3-1=b$.

G
Figure 3.1

G
Figure 3.2
If $a \geq 3, b \geq 4, b \neq a+1$, let G be the graph given in Figure 3.3 obtained from the path on three vertices $P: u_{1}, u_{2}, u_{3}$ by adding the new vertices $v_{1}, v_{2}, \ldots, v_{b-a-1}$ and $w_{1}, w_{2}, \ldots, w_{a-1}$ and joining each $v_{i}(1 \leq i \leq b-a-1)$ with u_{1}, u_{2}, u_{3} and also joining each $w_{i}(1 \leq i \leq a-1)$ with u_{1} and u_{2}. First we show that $m(G)=a$. Since each $w_{i}(1 \leq i \leq a-1)$ is a simplicial vertex of G, it is clear that each $w_{i}(1 \leq i \leq a-1)$ belongs to every monophonic set of G. Let $W=\left\{w_{1}, w_{2}, \ldots, w_{a-1}\right\}$. Then W is not a monophonic set of G. However, $W \cup\left\{u_{3}\right\}$ is a monophonic set of G and so $m(G)=a$. Next we show that $m_{1}(G)=b$. Since u_{2} is the only universal vertex
of G, it follows from Corollary 2.20 that $m_{1}(G)=b-a-1+a-1+3-1=b$.

G
Figure 3.3
If $a \geq 3, b \geq 4$ and $b=a+1$, consider the graph G given in Figure 3.4. Let $W=\left\{w_{1}, w_{2}, \ldots, w_{a-1}, v_{3}\right\}$ be the set of simplicial vertices of G. It is clear that W is contained in every monophonic set of G. It is easily seen that W is a monophonic set of G and so $m(G)=a$. By Theorem $2.3, W$ is contained in every edge monophonic set of G. But W is not an edge monophonic set of G. However, $W \cup\left\{v_{2}\right\}$ is an edge monophonic set of G so that $m_{1}(G)=b=a+1$.

G
Figure 3.4

References

[1] M. Atici, On the edge geodetic number of a graph. International Journal of Computer Mathematics, 80(2003), 853-861.
[2] F. Buckley and F. Harary, Distance in Graphs, Addison-Wesley, Redwood City, CA, 1990.
[3] Carmen Hernando, Tao Jiang, Merce Mora, Ignacio. M. Pelayo and Carlos Seara, On the Steiner, geodetic and hull number of graphs, Discrete Mathematics, 293 (2005), 139-154.
[4] Esamel M. Paluga, Sergio R. Canoy, Jr., Monophonic numbers of the join and Composition of connected graphs, Discrete Mathematics, 307 (2007) 1146-1154.
[5] J. John and S. Panchali, The upper monophonic number of a graph, International J. Math. Combin., 4 (2010), 46-52.
[6] Mitre C. Dourado, Fabio protti and Jayme. L. Szwarcfiter, Algorithmic Aspects of Monophonic Convexity, Electronic Notes in Discrete Mathematics, 30 (2008) 177-182.
[7] Mitre C. Dourado, Fabio Protti, Jame L. Szwarcfiter, Complexity results related to monophonic complexity, Discrete Applied Mathematics, 158(12)(2010), 1268-1274.
[8] Pierre Duchet, Convex sets in graphs, II. Minimal Path Convexity, Journal of Combinatorial Theory Series B, 44(3)(1987), $307-316$.
[9] A. P. Santhakumaran and J. John, Edge Geodetic Number of a Graph, Journal of Discrete Mathematical Sciences and Cryptography, 10(3)(2007), 415-432.

[^0]: 2010 Mathematics Subject Classification. 05C05
 Keywords. Monophonic path; Monophonic number; Edge monophonic number
 Received: 07 Feb 2011; Accepted: 07 March 2012
 Communicated by Dragan Stevanović
 Email addresses: johnramesh1971@yahoo.co.in (J. John), arulpaulsudhar@gmail.com (P. Arul Paul Sudhahar)

