Filomat 26:6 (2012), 1081–1089 DOI 10.2298/FIL1206081J Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

# On the edge monophonic number of a graph

J. John<sup>a</sup>, P. Arul Paul Sudhahar<sup>b</sup>

<sup>a</sup>Department of Mathematics, Government College of Engineering, Tirunelveli - 627 007, India <sup>b</sup>Department of Mathematics, Alagappa Government Arts College, Karaikudi-630 004, India.

**Abstract.** For a connected graph G = (V, E), an edge monophonic set of G is a set  $M \subseteq V(G)$  such that every edge of G is contained in a monophonic path joining some pair of vertices in M. The edge monophonic number  $m_1(G)$  of G is the minimum order of its edge monophonic sets and any edge monophonic set of order  $m_1(G)$  is a minimum edge monophonic set of G. Connected graphs of order p with edge monophonic number p are characterized. Necessary condition for edge monophonic number to be p - 1 is given. It is shown that for every two integers a and b such that  $2 \le a \le b$ , there exists a connected graph G with m(G) = a and  $m_1(G) = b$ , where m(G) is the monophonic number of G.

### 1. Introduction

By a graph G = (V, E), we mean a finite undirected connected graph without loops or multiple edges. The order and size of G are denoted by p and q respectively. For basic graph theoretic terminology we refer to Harary [2]. A chord of a path  $u_0, u_1, u_2, ..., u_h$  is an edge  $u_i u_j$ , with  $j \ge i + 2$ . An u - v path is called a monophonic path if it is a chordless path. The monophonic path in a connected graph is introduced in [8]. A monophonic set of G is a set  $M \subseteq V(G)$  such that every vertex of G is contained in a monophonic path joining some pair of vertices in M. The monophonic number m(G) of G is the minimum order of its monophonic sets and any monophonic set of order m(G) is a minimum monophonic set of G. The monophonic number of a graph G is studied in [3–6]. It was shown that in [7] that determining the monophonic number of a graph is NP-complete. The edge geodetic number of a graph is introduced in [1] and further studied in [9]. An edge monophonic set of G is a set  $M \subseteq V(G)$  such that every edge of G is contained in a monophonic path joining some pair of vertices in M. The edge monophonic number  $m_1(G)$ of G is the minimum order of its edge monophonic sets and any edge monophonic set of order  $m_1(G)$  is a minimum edge monophonic set of G. The maximum degree of G, denoted by  $\Delta(G)$ , is given by  $\Delta(G) =$  $\max\{deg_G(v) : v \in V(G)\}$ .  $N(v) = \{u \in V(G) : uv \in E(G)\}$  is called the neighborhood of the vertex v in G. For any set *S* of vertices of *G*, the induced subgraph  $\langle S \rangle$  is the maximal subgraph of *G* with vertex set *S*. A vertex v is a simplicial vertex of a graph G if < N(v) > is complete. A vertex v is an universal vertex of a graph G, if it is a full degree vertex of G. A graph G is geodetic if each pair of vertices in G is joined by a unique shortest path. The join of graphs G and H, denoted by G + H, is the graph with  $V(G + H) = V(G) \cup V(H)$ and  $E(G + H) = E(G) \cup E(H) \cup \{uv : u \in V(G) \text{ and } v \in V(H)\}$ . For the graph *G* given in Figure 1.1,  $M = \{v_2, v_4\}$ is a monophonic set of G so that m(G) = 2 and  $S = \{v_1, v_3, v_6, v_7\}$  is the minimum edge monophonic set for

<sup>2010</sup> Mathematics Subject Classification. 05C05

Keywords. Monophonic path; Monophonic number; Edge monophonic number

Received: 07 Feb 2011; Accepted: 07 March 2012

Communicated by Dragan Stevanović

Email addresses: johnramesh1971@yahoo.co.in (J. John), arulpaulsudhar@gmail.com (P. Arul Paul Sudhahar)

*G* so that  $m_1(G) = 4$ .



G Figure 1.1

### 2. Some results on edge monophonic number of a graph

**Definition 2.1.** A vertex v in a connected graph G is said to be a semi-simplicial vertex of G if  $\Delta(\langle N(v) \rangle) = |N(v)| - 1$ .

**Remark 2.2.** Every simplicial vertex of G is a semi-simplicial vertex of G but the converse is not true. For the graph G given in Figure 2.1,  $v_1$  and  $v_5$  are semi-simplicial vertices of G and also they are simplicial vertices of G. Now,  $v_2$  and  $v_3$  are semi-simplicial vertices of G but not simplicial vertices of G.



Figure 2.1

**Theorem 2.3.** *Each semi-simplicial vertex of G belongs to every edge monophonic set of G.* 

*Proof.* Let *M* be an edge monophonic set of *G*. Let *v* be a semi-simplicial vertex of *G*. Suppose that  $v \notin M$ . Let *u* be a vertex of < N(v) > such that  $deg_{<N(v)>}(u) = |N(v)| - 1$ . Let  $u_1, u_2, ..., u_k (k \ge 2)$  be the neighbors of *u* in < N(v) >. Since *M* is an edge monophonic set of *G*, the edge *uv* lies on the monophonic path  $P : x, x_1, ..., u_i, u, v, u_j, ..., y$ , where  $x, y \in M$ . Since *v* is a semi-simplicial vertex of *G*, *u* and  $u_j$  are adjacent in *G* and so *P* is not a monophonic path of *G*, which is a contradiction.  $\Box$ 

**Corollary 2.4.** Each simplicial vertex of G belongs to every edge monophonic set of G.

*Proof.* Since every simplicial vertex of *G* is a semi-simplicial vertex of *G*, the result follows from Theorem 2.3.  $\Box$ 

**Theorem 2.5.** Let G be a connected graph, v be a cut vertex of G and let M be an edge monophonic set of G. Then every component of G - v contains an element of M.

*Proof.* Let *v* be a cut vertex of *G* and *M* be an edge monophonic set of *G*. Suppose there exists a component, say  $G_1$  of G - v such that  $G_1$  contains no vertex of *M*. By Corollary 2.4, *M* contains all the simplicial vertices of *G* and hence it follows that  $G_1$  does not contains any simplicial vertex of *G*. Thus  $G_1$  contains at least one edge, say *xy*. Since *M* is an edge monophonic set, *xy* lies on the u - w monophonic path  $P : u, u_1, u_2, ..., v, ..., x, y, ..., v_1, ..., v_..., w$ . Since *v* is a cut vertex of *G*, the u - x and y - w sub paths of *P* both contains *v* and so *P* is not a path, which is a contradiction.  $\Box$ 

**Theorem 2.6.** No cut vertex of a connected graph G belongs to any minimum edge monophonic set of G.

*Proof.* Let *M* be a minimum edge monophonic set of *G* and  $v \in M$  be any vertex. We claim that *v* is not a cut vertex of *G*. Suppose that *v* is a cut vertex of *G*. Let  $G_1, G_2, ..., G_r, (r \ge 2)$  be the components of G - v. By Theorem 2.5, each component  $G_i(1 \le i \le r)$  contains an element of *M*. We claim that  $M_1 = M - \{v\}$  is also an edge monophonic set of *G*. Let *xy* be an edge of *G*. Since *M* is an edge monophonic set, *xy* lies on a monophonic path *P* joining a pair of vertices *u* and *v* of *M*. Assume without loss of generality that  $u \in G_1$ . Since *v* is adjacent to at least one vertex of each  $G_i(1 \le i \le r)$ , assume that *v* is adjacent to *z* in  $G_k, k \ne 1$ . Since *M* is an edge monophonic set, *vz* lies on a monophonic path *Q* joining *v* and a vertex *w* of *M* such that *w* must necessarily belongs to  $G_k$ . Thus  $w \ne v$ . Now, since *v* is a cut vertex of *G*, the union  $P \cup Q$  is a path joining *u* and *w* in *M* and thus the edge *xy* lies on this monophonic path joining a pair of vertices of  $M_1$ . Hence it follows that every edge of *G* lies on a monophonic path joining two vertices of  $M_1$ , which shows that  $M_1$  is an edge monophonic set of *G*. Since  $w \notin M$  so that no cut vertex of *G* belongs to any minimum edge monophonic set of *G*.

**Corollary 2.7.** For any non trivial tree T, the edge monophonic number  $m_1(G)$  equals the number of end vertices in T. In fact, the set of all end vertices of T is the unique minimum edge monophonic set of T.

*Proof.* This follows from Corollary 2.4 and Theorem 2.6.  $\Box$ 

**Corollary 2.8.** For the complete graph  $K_p(p \ge 2)$ ,  $m_1(K_p) = p$ .

*Proof.* Since every vertex of the complete graph  $K_p (p \ge 2)$  is a simplicial vertex, by Corollary 2.4, the vertex set of  $K_p$  is the unique edge monophonic set of  $K_p$ . Thus  $m_1(K_p) = p$ .  $\Box$ 

**Corollary 2.9.** For every pair k, p of integers with  $2 \le k \le p$ , there exists a connected graph G of order p such that  $m_1(G) = k$ .

*Proof.* For k = p, the result follows from Corollary 2.8. Also, for each pair of integers with  $2 \le k \le p$ , there exists a tree of order p with k end vertices. Hence the result follows from Corollary 2.7.  $\Box$ 

**Theorem 2.10.** *For the cycle*  $C_p(p \ge 4)$ *,*  $m_1(C_p) = 2$ *.* 

*Proof.* Let  $C_p : v_1, v_2, ..., v_p, v_1$  be the cycle. Let x, y be two non adjacent vertices of  $C_p$ . Then it is clear that  $\{x, y\}$  is an edge monophonic set of  $C_p$  so that  $m_1(C_p) = 2$ .  $\Box$ 

**Theorem 2.11.** For the complete bipartite graph  $G = K_{m,n}$ (i)  $m_1(G) = 2$  if m = n = 1(ii)  $m_1(G) = n$  if  $n \ge 2, m = 1$ (iii)  $m_1(G) = min\{m, n\}$  if  $m, n \ge 2$ . *Proof.* (i) This follows from Corollary 2.8.

(ii) This follows from Corollary 2.7.

(iii) Let  $m, n \ge 2$ . First assume that m < n.

Let  $U = \{u_1, u_2, ..., u_m\}$  and  $W = \{w_1, w_2, ..., w_n\}$  be a bipartition of *G*.Let M = U. We prove that *M* is a minimum edge monophonic set of *G*. Any edge  $u_i w_j (1 \le i \le m, 1 \le j \le n)$  lies on the monophonic path  $u_i, w_j, u_k$  for any  $k \ne i$  so that *M* is an edge monophonic set of *G*. Let *T* be any set of vertices such that |T| < |M|. If  $T \subseteq U$ , there exists a vertex  $u_i \in U$  such that  $u_i \notin T$ . Then for any edge  $u_i w_j (1 \le j < n)$ , the only monophonic path containing  $u_i w_j$  are  $u_i, w_j, u_k (k \ne i)$  and  $w_j, u_i, w_l (l \ne j)$  and so  $u_i w_j$  cannot lie in a monophonic path joining two vertices of *T*. Thus *T* is not an edge monophonic set of *G*. If  $T \subseteq W$ , again *T* is not an edge monophonic set of *G* by a similar argument. If  $T \subseteq U \cup W$  such that T contains at least one vertex from each of *U* and *W*, then, since |T| < |M|, there exist vertices  $u_i \in U$  and  $w_j \in W$  such that  $u_i \notin T$  and  $w_j \notin T$ . Then clearly the edge  $u_i w_j$  does not lie on a monophonic path connecting two vertices of *T* so that *T* is not an edge monophonic set of *G*. Hence *M* is a minimum edge monophonic set so that  $m_1(G) = |M| = m$ . Now, if m = n, we can prove similarly that M = U or *W* is a minimum edge monophonic set of *G*. Thus the theorem follows.  $\Box$ 

**Remark 2.12.** For any connected graph G of order  $p, 2 \le m(G) \le m_1(G) \le p$ .

*Proof.* A monophonic set needs at least two vertices and therefore  $m(G) \ge 2$ . Also every edge monophonic set is a monophonic set of *G* and then  $m(G) \le m_1(G)$ . Clearly the set of all vertices of *G* is an edge monophonic set of *G* so that  $m_1(G) \le p$ . Thus  $2 \le m(G) \le m_1(G) \le p$ .  $\Box$ 

**Remark 2.13.** The bounds in Remark 2.12 are sharp. The set of the two end vertices of a path  $P_p(p \ge 2)$  is its unique edge monophonic set so that  $m_1(P_p) = 2$ . For any non trivial tree T,  $m(T) = m_1(T) = number$  of end vertices of T. For the complete graph  $G = K_p(p \ge 2)$ ,  $m_1(G) = p$ . Also, the inequalities in the remark can be strict. For the graph G given in Figure 2.2, m(G) = 3,  $m_1(G) = 4$ , p = 5 so that  $2 < m(G) < m_1(G) < p$ .



G Figure 2.2

**Corollary 2.14.** *Let G be a connected graph with k semi-simplicial vertices. Then*  $max(2, k) \le m_1(G) \le p$ .

*Proof.* This follows from Theorem 2.3 and Remark 2.12.  $\Box$ 

**Definition 2.15.** *A graph G is said to be a semi-simplicial graph if every vertices of G is a semi-simplicial vertex of G.* 

**Remark 2.16.** *Complete graphs are semi-simplicial graphs. A graph with at least two universal vertex is also semi-simplicial graph. In fact, there are certain semi-simplicial graphs without any universal vertex as the following example shows.* 



A semi-complete graph *G* without any universal vertex Figure 2.3

**Theorem 2.17.** For a semi-simplicial graph  $G, m_1(G) = p$ .

*Proof.* This follows from Theorem 2.3.  $\Box$ 

The following Theorem characterizes graphs for which the edge monophonic number is *p*.

**Theorem 2.18.** Let G be a connected graph of order p. Then  $m_1(G) = p$  if and only if G is a semi-simplicial graph.

*Proof.* If *G* is a semi-simplicial graph, then by Theorem 2.17,  $m_1(G) = p$ . Conversely, let  $m_1(G) = p$ . We claim that *G* is a semi-simplicial graph. If not, let there exists a vertex *v* in *G* such that *v* is not a semi-simplicial vertex of *G*. Then for each  $w \in N(v)$ , there exists  $z_w \in [N(v) - \{w\}]$  such that  $wz_w \notin E(G)$ . Let  $M = V(G) - \{v\}$ . Consider the edge wv. Since  $w, z_w \in M$ , the edge wv lies on the monophonic path  $w, v, z_w$ . Then *M* is an edge monophonic set of *G* with |M| = p - 1, which is a contradiction. Therefore, *G* is a semi-simplicial graph.

We give below necessary conditions on a graph *G* for which  $m_1(G) = p - 1$ .

**Theorem 2.19.** Let G be a connected graph of order p. If there exists a unique vertex  $v \in V(G)$  such that v is not a semi-simplicial vertex of G, then  $m_1(G) = p - 1$ .

*Proof.* Suppose that there exists a unique vertex  $v \in V(G)$  such that v is not a semi-simplicial vertex of G. Then by Theorem 2.3,  $m_1(G) \ge p - 1$ . Let M = V(G) - v. Let  $f, h \in V(G)$  such that  $e = fh \in E(G)$ . If  $f, h \in M$ , then the edge e lies on the monophonic path fh itself. Therefore, any one of f or h is v, say f = v. Since v is not a semi-simplicial vertex of G, there exists  $a \in N(v)$  such that  $ha \notin E(G)$ . Therefore, e = fh is an edge of the monophonic path a, f, h. Hence M is an edge monophonic set of G and so  $m_1(G) \le p - 1$ . Therefore,  $m_1(G) = p - 1$ . Hence the result.  $\Box$ 

**Corollary 2.20.** Let G be a connected graph of order  $p \ge 3$ . If G contains exactly one universal vertex, then  $m_1(G) = p - 1$ .

**Corollary 2.21.** For the wheel  $W_{1,p-1}(p \ge 4)$ ,  $m_1(W_{1,p-1}) = p - 1$ .

**Theorem 2.22.** Let G be a connected graph of order  $p_1$  with exactly one universal vertex and H be a connected graph of order  $p_2$  with exactly one universal vertex. Then  $m_1(G + H) = p_1 + p_2$ .

*Proof.* Let  $u \in V(G)$  and  $v \in V(H)$  such that  $deg_G(u) = p_1 - 1$  and  $deg_H(v) = p_2 - 1$ . Now, it is clear that  $deg_{G+H}(u) = p_1 + p_2 - 1$  and  $deg_{G+H}(v) = p_1 + p_2 - 1$ . Then by Theorem 2.18,  $m_1(G + H) = p_1 + p_2$ .  $\Box$ 

For the graph *G* given Figure 2.1 and in Corollaries 2.20 and 2.21, we see that  $m_1(G) = p - 1$ . Also it is to be noted that *G* has unique non semi-simplicial vertex. So we have the following conjecture.

**Conjecture 2.23.** Let G be a connected graph of order  $p \ge 3$  with  $m_1(G) = p - 1$ . Then there exists a unique vertex  $v \in V(G)$  such that v is not a semi-simplicial vertex of G.

## 3. Edge monophonic number of a geodetic graph

**Theorem 3.1.** If G is a non complete connected graph such that it has a minimum cutset of G consisting of i independent vertices, then  $m_1(G) \le p - i$ .

*Proof.* Since *G* is non complete, it is clear that  $1 \le i \le p-2$ . Let  $U = \{v_1, v_2, ..., v_i\}$  be a minimum independent cutset of vertices of *G*. Let  $G_1, G_2, ..., G_m$   $(m \ge 2)$  be the components of G - U and let M = V(G) - U. Then every vertex  $v_j(1 \le j \le i)$  is adjacent to at least one vertex of  $G_t$  for every  $t(1 \le t \le m)$ . Let uv be an edge of *G*. If uv lies in one of  $G_t$  for any  $t(1 \le t \le m)$  then clearly uv lies on the monophonic path (uv itself) joining two vertices u and v of M. Otherwise, uv is of the form  $v_ju(1 \le j \le i)$ , where  $u \in G_t$  for some t such that  $1 \le t \le m$ . As  $m \ge 2$ ,  $v_j$  is adjacent to some w in  $G_s$  for some  $s \ne t$  such that  $1 \le s \le m$ . Thus  $v_ju$  lies on the monophonic path  $u, v_j, w$ . Thus M is an edge monophonic set of G so that  $m_1(G) \le |V(G) - U| = p - i$ .  $\Box$ 

**Corollary 3.2.** If G is a connected non complete graph such that it has a minimum cutset of G consisting of i independent vertices, then  $m_1(G) \le p - \kappa$ , where  $\kappa$  is the vertex connectivity of G.

*Proof.* By Theorem 3.1,  $m_1(G) \le p - i$ . Since  $\kappa \le i$ , it follows that  $m_1(G) \le p - \kappa$ .  $\Box$ 

**Theorem 3.3.** *If G is a non complete connected geodetic graph such that U a minimum cutset, then every element of U are independent.* 

*Proof.* Let  $U = \{u_1, u_2, ..., u_k\}$  be a cut set of *G*. Let  $G_1, G_2, ..., G_r, (r \ge 2)$  be the components of G - U. Suppose that  $u_1$  and  $u_2$  are adjacent. Let x, y be the vertices of  $G_1$  which are adjacent to  $u_1$  and  $u_2$  respectively. Let  $x_1, y_1$  be the vertices of  $G_2$  which are adjacent to  $u_1$  and  $u_2$  respectively.

**Case 1.**  $x_1 = y_1$ .

**Subcase 1a.** x = y. Then  $x, u_2, x_1, u_1, x$  is an even cycle of length four, which is a contradiction to *G* is a geodetic graph.

**Subcase1b.** *xy* is an edge. Then  $u_1, u_2, y, x, u_1$  is an even cycle of length four, which is a contradiction to *G* is a geodetic graph.

**Subase 1c.** x - y is a path of length at least two in  $G_1$ . Let the x - y path be  $P : x, w_1, w_2, ..., w, y$ . Then either  $x_1, u_1, x, w_1, w_2, ..., w_n, y, u_2, x_1$  or  $u_1, x, w_1, w_2, ..., w_n, y, u_2, u_1$  is an even cycle, which is a contradiction.

**Case 2.** x - y is a path of length at least two in  $G_1$  and  $x_1 - y_1$  is a path of length at least two in  $G_2$ . Then by similar argument we get a contradiction. In all cases we get a contradiction. Therefore every element of U are independent.  $\Box$ 

**Theorem 3.4.** If *G* is a connected non complete geodetic graph, then  $m_1(G) \le p - \kappa$ .

*Proof.* This follows from Theorems 3.2 and 3.3.  $\Box$ 

The following theorem shows that in a geodetic graph only the complete graph has the edge monophonic number *p*.

**Theorem 3.5.** If G is a geodetic graph. Then  $m_1(G) = p$  if and only if  $G = K_p$ .

*Proof.* Let *G* be a geodetic graph and let  $G = K_p$ . Then it is clear that  $m_1(G) = p$ . Now, let  $m_1(G) = p$ . If  $G \neq K_p$ , then by Theorem 3.4,  $m_1(G) \leq p - \kappa$ , which is a contradiction. Therefore  $G = K_p$ .  $\Box$ 

In view of Remark 2.12, we have the following realization theorem.

**Theorem 3.6.** For any positive integers  $2 \le a \le b$ , there exists a connected graph G such that m(G) = a and  $m_1(G) = b$ .

*Proof.* If a = b, take  $G = K_{1,a}$ . Then it is clear that the set of end vertices of G is the unique monophonic set of G so that m(G) = a. By Corollary 2.7,  $m_1(G) = a$ . If a = 2, b = 3, then for the graph G given in Figure 3.1, m(G) = 2 and  $m_1(G) = 3$ . If  $a = 2, b \ge 4$ , let G be the graph given in Figure 3.2 obtained from the path on three vertices  $P : u_1, u_2, u_3$  by adding b - 2 new vertices  $v_1, v_2, ..., v_{b-2}$  and joining each  $v_i(1 \le i \le b - 2)$  with  $u_1, u_2, u_3$ . It is clear that  $u_1, u_3$  is a monophonic set of G so that m(G) = 2 = a. Since  $u_2$  is the only universal vertex of G, it follows from Corollary 2.20 that  $m_1(G) = b - 2 + 3 - 1 = b$ .



G Figure 3.2

If  $a \ge 3, b \ge 4, b \ne a + 1$ , let *G* be the graph given in Figure 3.3 obtained from the path on three vertices  $P : u_1, u_2, u_3$  by adding the new vertices  $v_1, v_2, ..., v_{b-a-1}$  and  $w_1, w_2, ..., w_{a-1}$  and joining each  $v_i(1 \le i \le b-a-1)$  with  $u_1, u_2, u_3$  and also joining each  $w_i(1 \le i \le a - 1)$  with  $u_1$  and  $u_2$ . First we show that m(G) = a. Since each  $w_i(1 \le i \le a - 1)$  is a simplicial vertex of *G*, it is clear that each  $w_i(1 \le i \le a - 1)$  belongs to every monophonic set of *G*. Let  $W = \{w_1, w_2, ..., w_{a-1}\}$ . Then *W* is not a monophonic set of *G*. However,  $W \cup \{u_3\}$  is a monophonic set of *G* and so m(G) = a. Next we show that  $m_1(G) = b$ . Since  $u_2$  is the only universal vertex

of *G*, it follows from Corollary 2.20 that  $m_1(G) = b - a - 1 + a - 1 + 3 - 1 = b$ .



G Figure 3.3

If  $a \ge 3, b \ge 4$  and b = a + 1, consider the graph *G* given in Figure 3.4. Let  $W = \{w_1, w_2, ..., w_{a-1}, v_3\}$  be the set of simplicial vertices of *G*. It is clear that *W* is contained in every monophonic set of *G*. It is easily seen that *W* is a monophonic set of *G* and so m(G) = a. By Theorem 2.3, *W* is contained in every edge monophonic set of *G*. But *W* is not an edge monophonic set of *G*. However,  $W \cup \{v_2\}$  is an edge monophonic set of *G* so that  $m_1(G) = b = a + 1$ .  $\Box$ 



G Figure 3.4

### References

- [1] M. Atici, On the edge geodetic number of a graph. International Journal of Computer Mathematics, 80(2003), 853-861.
- [2] F. Buckley and F. Harary, Distance in Graphs, Addison-Wesley, Redwood City, CA, 1990.
- [3] Carmen Hernando, Tao Jiang, Merce Mora, Ignacio. M. Pelayo and Carlos Seara, On the Steiner, geodetic and hull number of graphs, Discrete Mathematics, 293 (2005), 139-154.
- [4] Esamel M. Paluga, Sergio R. Canoy, Jr., Monophonic numbers of the join and Composition of connected graphs, Discrete Mathematics, 307 (2007) 1146 1154.
- [5] J. John and S. Panchali, The upper monophonic number of a graph, International J. Math. Combin., 4 (2010), 46-52.
- [6] Mitre C. Dourado, Fabio protti and Jayme. L. Szwarcfiter, Algorithmic Aspects of Monophonic Convexity, Electronic Notes in Discrete Mathematics, 30 (2008) 177-182.
- [7] Mitre C. Dourado, Fabio Protti, Jame L. Szwarcfiter, Complexity results related to monophonic complexity, Discrete Applied Mathematics, 158(12)(2010), 1268-1274.
- [8] Pierre Duchet, Convex sets in graphs, II. Minimal Path Convexity, Journal of Combinatorial Theory Series B, 44(3)(1987), 307-316.
  [9] A. P. Santhakumaran and J. John, Edge Geodetic Number of a Graph, Journal of Discrete Mathematical Sciences and Cryptography, 10(3)(2007), 415-432.