The (*C*, α) integrability of functions by weighted mean methods

İbrahim Çanak^a, Ümit Totur^b

^aEge University, Department of Mathematics, 35100 Izmir, Turkey ^bAdnan Menderes University, Department of Mathematics, 09010 Aydin, Turkey

Abstract. Let p(x) be a nondecreasing continuous function on $[0, \infty)$ such that p(0) = 0 and $p(t) \to \infty$ as $t \to \infty$. For a continuous function f(x) on $[0, \infty)$, we define

$$s(t) = \int_0^t f(u) du \text{ and } \sigma_\alpha(t) = \int_0^t \left(1 - \frac{p(u)}{p(t)}\right)^\alpha f(u) du.$$

We say that a continuous function f(x) on $[0, \infty)$ is (C, α) integrable to *a* by the weighted mean method determined by the function p(x) for some $\alpha > -1$ if the limit $\lim_{t\to\infty} \sigma_{\alpha}(t) = a$ exists.

We prove that if the limit $\lim_{t\to\infty} \sigma_{\alpha}(t) = a$ exists for some $\alpha > -1$, then the limit $\lim_{t\to\infty} \sigma_{\alpha+h}(t) = a$ exists for all h > 0.

Next, we prove that if the limit $\lim_{t\to\infty} \sigma_{\alpha}(t) = a$ exists for some $\alpha > 0$ and

$$\frac{p(t)}{p'(t)}f(t)=O(1),\quad t\to\infty,$$

then the limit $\lim_{t\to\infty} \sigma_{\alpha-1}(t) = a$ exists.

1. Introduction

Let p(x) be a nondecreasing continuous function on $[0, \infty)$ such that p(0) = 0 and $p(t) \to \infty$ as $t \to \infty$. For a continuous function f(x) on $[0, \infty)$, we define

$$s(t) = \int_0^t f(u) du \text{ and } \sigma_\alpha(t) = \int_0^t \left(1 - \frac{p(u)}{p(t)}\right)^\alpha f(u) du.$$

A continuous function f(x) on $[0, \infty)$ is said to be (C, α) integrable to *a* by the weighted mean method determined by the function p(x) for some $\alpha > -1$ if the limit $\lim_{t\to\infty} \sigma_{\alpha}(t) = a$ exists.

If we take p(x) = x, we have the definition of (C, α) integrability of f(x) on $[0, \infty)$ given by Laforgia [1]. The (C, 0) integrability of f(x) is convergence of the improper integral $\int_0^{\infty} f(t)dt$. It will be shown as a corollary of our first result in this paper that convergence of the improper integral

It will be shown as a corollary of our first result in this paper that convergence of the improper integral $\int_0^{\infty} f(t)dt$ implies the existence of the limit $\lim_{t\to\infty} \sigma_{\alpha}(t)$ for $\alpha > 0$. However, there are some (*C*, α) integrable

Received: 10 March 2012; Accepted: 18 May 2012

²⁰¹⁰ Mathematics Subject Classification. Primary 40A10; Secondary 40C10, 40D05, 40G05

Keywords. Divergent integrals, Cesàro integrability, (C, α) integrability, Tauberian conditions and theorems

Communicated by Ljubiša D.R. Kočinac

Email addresses: ibrahimcanak@yahoo.com, ibrahim.canak@ege.edu.tr (İbrahim Çanak), utotur@yahoo.com, utotur@adu.edu.tr (Ümit Totur)

functions by the weighted mean method determined by the function p(x) which fail to converge as improper integrals. Adding some suitable condition, which is called a Tauberian condition, one may get the converse. Any theorem which states that convergence of the improper integral follows from the (*C*, α) integrability of f(x) by the weighted mean method determined by the function p(x) and a Tauberian condition is said to be a Tauberian theorem.

Çanak and Totur [2, 3] have recently proved the generalized Littlewood theorem and Hardy-Littlewood type Tauberian theorems for (*C*, 1) integrability of f(x) on $[0, \infty)$ by using the concept of the general control modulo analogous to the one defined by Dik [4]. Çanak and Totur [5] have also given alternative proofs of some classical type Tauberian theorems for (*C*, 1) integrability of f(x) on $[0, \infty)$.

In this paper we prove that if the limit $\lim_{t\to\infty} \sigma_{\alpha}(t) = a$ exists for some $\alpha > -1$, then the limit $\lim_{t\to\infty} \sigma_{\alpha+h}(t) = a$ exists for all h > 0. As a corollary to this result, we show that if $\int_0^{\infty} f(t)dt$ is convergent to a, then the limit $\lim_{t\to\infty} \sigma_h(t) = a$ for all h > 0. But, the converse of this implication might be true under some condition on p and f. Furthermore, we give conditions under which the limit $\lim_{t\to\infty} \sigma_{\alpha-1}(t) = a$ follows from the existence of the limit $\lim_{t\to\infty} \sigma_{\alpha}(t) = a$.

2. Results

The next two theorems given for (C, α) integrability of functions by weighted mean methods generalize Theorems 2.1 and 3.2 in Laforgia [1].

The following theorem shows that (*C*, α) integrability of *f*(*x*), where $\alpha > -1$, implies (*C*, $\alpha + h$) integrability of *f*(*x*), where h > 0.

Theorem 2.1. If the limit $\lim_{t\to\infty} \sigma_{\alpha}(t) = a$ exists for some $\alpha > -1$, then the limit $\lim_{t\to\infty} \sigma_{\alpha+h}(t) = a$ exists for all h > 0.

Proof. Consider

$$\int_0^t \varphi(u,t)\sigma_\alpha(t)du,\tag{1}$$

where

$$\varphi(u,t) = \frac{1}{B(\alpha+1,h)} \frac{p'(u)}{p(t)} \left(\frac{p(u)}{p(t)}\right)^{\alpha} \left(1 - \frac{p(u)}{p(t)}\right)^{h-1},$$
(2)

where *B* denotes the Beta function defined by

$$B(x, y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt, \qquad x > 0, y > 0.$$

If we let $v = \frac{p(u)}{p(t)}$ in (2), we have

$$\int_0^t \varphi(u, t) du = 1.$$
(3)

We need to prove that

$$\lim_{t \to \infty} \int_0^t \varphi(u, t) \sigma_\alpha(t) dt = a.$$
(4)

Since

$$\lim_{t \to \infty} \sigma_{\alpha}(t) = a \tag{5}$$

by the hypothesis, there exists a value t_{ε} for any given $\varepsilon > 0$ such that

$$|\sigma_{\alpha}(t) - a| < \varepsilon, \qquad t \ge t_{\varepsilon}. \tag{6}$$

It follows from (3) that

$$\int_0^t \varphi(u,t)\sigma_\alpha(t)du - a = \int_0^t \varphi(u,t)[\sigma_\alpha(t) - a]du.$$
(7)

To prove (4), it suffices to show that

$$\left| \int_{0}^{t} \varphi(u,t) \sigma_{\alpha}(t) du - a \right| < 2\varepsilon, \tag{8}$$

provided that *t* is large enough.

We notice that by the hypothesis, the function $\sigma_{\alpha}(t)$ is bounded on $[0, \infty)$, that is,

 $|\sigma_{\alpha}(t) - a| < K, \quad 0 \le t < \infty$

for some constant K. Using the inequalities (3) and (6), we obtain, by (7),

$$\begin{split} \left| \int_0^t \varphi(u,t) [\sigma_\alpha(t) - a] du \right| &\leq \int_0^{t_\varepsilon} \varphi(u,t) |\sigma_\alpha(t) - a| du + \varepsilon \int_{t_\varepsilon}^t \varphi(u,t) du \\ &< K \int_0^{t_\varepsilon} \varphi(u,t) du + \varepsilon \int_0^t \varphi(u,t) du \\ &= K \int_0^{t_\varepsilon} \varphi(u,t) du + \varepsilon. \end{split}$$

By the substitution $v = \frac{p(u)}{p(t)}$ and (2), we have

$$\int_{0}^{t_{\varepsilon}} \varphi(u,t) du = \frac{1}{B(\alpha+1,h)} \int_{0}^{t_{\varepsilon}} \frac{p'(u)}{p(t)} \left(\frac{p(u)}{p(t)}\right)^{\alpha} \left(1 - \frac{p(u)}{p(t)}\right)^{h-1} dt$$
$$= \frac{1}{B(\alpha+1,h)} \int_{0}^{p(t_{\varepsilon})/p(t)} v^{\alpha} (1-v)^{h-1} dv$$

which tends to zero when $t \to \infty$ for any fixed t_{ε} . Thus, there exists a $\hat{t_{\varepsilon}}$ such that

$$K\int_0^{t_{\varepsilon}}\varphi(u,t)dt < \varepsilon, \quad t > \widehat{t_{\varepsilon}}.$$

Hence, we have (8) for $t > \hat{t_{\varepsilon}}$, and this proves (4). We obtain

$$\int_0^t \varphi(u,t)\sigma_\alpha(t)du = \int_0^t \varphi(u,t)dt \int_0^u \left(1 - \frac{p(s)}{p(u)}\right)^\alpha f(s)ds$$
$$= \int_0^t f(s) \int_s^t \varphi(u,t) \left(1 - \frac{p(s)}{p(u)}\right)^\alpha duds$$
$$= \int_0^t f(s)I(s,t)ds.$$

Here, we write I(s, t) as

$$\begin{split} I(s,t) &= \frac{1}{B(\alpha+1,h)} \int_{s}^{t} \frac{1}{p(t)} \left(\frac{p(u)}{p(t)}\right)^{\alpha} \left(1 - \frac{p(u)}{p(t)}\right)^{h-1} p'(u) \left(1 - \frac{p(s)}{p(u)}\right)^{\alpha} du \\ &= \frac{1}{B(\alpha+1,h)} \frac{1}{(p(t))^{\alpha+1}} \int_{s}^{t} \left(1 - \frac{p(u)}{p(t)}\right)^{h-1} p'(u) (p(u) - p(s))^{\alpha} du \end{split}$$

by using (2). Substituting p(u) = p(t) - (p(t) - p(s))x in I(s, t), we have

$$\begin{split} I(s,t) &= \frac{1}{B(\alpha+1,h)} \frac{1}{(p(t))^{\alpha+h}} \int_0^1 (p(t) - p(s))^{h-1} x^{h-1} (p(t) - p(s))^{\alpha} (1-x)^{\alpha} (p(t) - p(s)) dx \\ &= \frac{1}{B(\alpha+1,h)} \frac{(p(t) - p(s))^{\alpha+h}}{(p(t))^{\alpha+h}} \int_0^1 x^{h-1} (1-x)^{\alpha} dx \\ &= \left(1 - \frac{p(s)}{p(t)}\right)^{\alpha+h}, \end{split}$$

which shows that

$$\int_0^t \varphi(u,t)\sigma_\alpha(t)du = \int_0^t \left(1 - \frac{p(u)}{p(t)}\right)^{\alpha+h} f(u)du.$$

This completes of the proof of Theorem 2.1. \Box

Corollary 2.2. If $\int_0^{\infty} f(t)dt$ converges to *a*, then the limit $\lim_{t\to\infty} \sigma_h(t) = a$ for all h > 0.

Proof. Take $\alpha = 0$ in Theorem 2.1. \Box

The next theorem is a Tauberian theorem for (C, α) integrability of f(x) continuous on $[0, \infty)$ by the weighted mean method determined by the function p(x) for some $\alpha > -1$.

Theorem 2.3. If the limit $\lim_{t\to\infty} \sigma_{\alpha}(t) = a$ exists for some $\alpha > 0$ and

$$\frac{p(t)}{p'(t)}f(t) = O(1), \quad t \to \infty,$$
(9)

then the limit $\lim_{t\to\infty} \sigma_{\alpha-1}(t) = a$ exists.

Proof. Let the function $\theta(t)$ be defined by

$$\theta(t) = \frac{1}{p(t)} \int_0^t \left(1 - \frac{p(u)}{p(t)} \right)^{\alpha - 1} p(u) f(u) du.$$
(10)

Then we have

...

 $\sigma_{\alpha-1}(t) = \sigma_{\alpha}(t) + \theta(t).$

To prove Theorem 2.3, it suffices to show that $\theta(t) \to 0$ as $t \to \infty$. By the definition of $\sigma_{\alpha}(t)$, we obtain

$$\begin{aligned} (\sigma_{\alpha}(t))' &= \int_{0}^{t} \alpha \left(1 - \frac{p(u)}{p(t)} \right)^{\alpha - 1} \frac{p(u)p'(t)}{(p(t))^{2}} f(u) du \\ &= \alpha \frac{p'(t)}{p(t)} \frac{1}{p(t)} \int_{0}^{t} \left(1 - \frac{p(u)}{p(t)} \right)^{\alpha - 1} p(u) f(u) du \\ &= \alpha \frac{p'(t)}{p(t)} \theta(t). \end{aligned}$$

We also have

$$\begin{split} \int_{t_1}^{t_2} (\sigma_\alpha(u))' du &= \sigma_\alpha(t_2) - \sigma_\alpha(t_1) \\ &= \int_{t_1}^{t_2} \alpha \frac{p'(t)}{p(t)} \theta(t) dt \\ &= \alpha \int_{\ln p(t_1)}^{\ln p(t_2)} \theta(p^{-1}(\exp(u))) du \\ &= \alpha \int_{\ln p(t_1)}^{\ln p(t_2)} \eta(u) du. \end{split}$$

Here, we used the substitution $p(t) = \exp(u)$ and $\eta(u) = \theta(p^{-1}(\exp(u)))$.

We now need to show that $\lim_{u\to\infty} \eta(u) = 0$.

By the simple calculation, we have

$$\eta'(u) = \frac{\exp(u)}{p'(p^{-1}(\exp(u)))} \theta'(p^{-1}(\exp(u))) = \frac{p(t)}{p'(t)} \theta'(t).$$

By (10),

$$p(t)\theta(t) = \int_0^t \left(1 - \frac{p(u)}{p(t)}\right)^{\alpha - 1} p(u)f(u)du.$$
 (11)

Differentiating the both sides of (11) gives

$$\theta(t) + \frac{p(t)}{p'(t)}\theta'(t) = (\alpha - 1)\int_0^t \left(1 - \frac{p(u)}{p(t)}\right)^{\alpha - 2} \left(\frac{p(u)}{p(t)}\right)^2 f(u)du.$$
(12)

For the first term on the left-hand side of (12), we have

$$\begin{aligned} \theta(t) &= \frac{1}{p(t)} \int_0^t \left(1 - \frac{p(u)}{p(t)} \right)^{\alpha - 1} p(u) f(u) du \\ &\leq \frac{K}{p(t)} \int_0^t \left(1 - \frac{p(u)}{p(t)} \right)^{\alpha - 1} p'(u) du \\ &= -K \int_1^0 v^{\alpha - 1} dv \\ &= \frac{K}{\alpha'} \end{aligned}$$

where we used the substitution $1 - \frac{p(u)}{p(t)} = v$. By (9), we have

$$\left|\frac{p(t)f(t)}{p'(t)}\right| \le K.$$

For the term on the right-hand side of (12), we have

$$(\alpha - 1)\frac{1}{(p(t))^2} \int_0^t \left(1 - \frac{p(u)}{p(t)}\right)^{\alpha - 2} (p(u))^2 f(u) du \le \frac{(\alpha - 1)K}{(p(t))^2} \int_0^1 \left(1 - \frac{p(u)}{p(t)}\right)^{\alpha - 2} p'(u) p(u) du$$
$$= \frac{K}{\alpha},$$

where we used the substitution $1 - \frac{p(u)}{p(t)} = v$. Finally, we have $|\eta'(t)| \le \frac{2K}{\alpha}$, which shows that $\eta'(t)$ is bounded. Since $\sigma_{\alpha}(t)$ is convergent, given any $\epsilon > 0$ there exists a t_{ϵ} such that

$$|\sigma_{\alpha}(t_1) - \sigma_{\alpha}(t_2)| < \epsilon, \tag{13}$$

when $t_1, t_2 > t_{\epsilon}$.

Suppose $\xi \ge \ln p(t_{\epsilon})$ and $\eta(\xi) > 0$. Then $\eta(t) > 0$ for $\xi - \psi < t < \xi$ and $\xi < t < \xi + \psi$ and, where $\psi = \frac{\alpha \eta(\xi)}{2K}$. If we integrate $\eta(u)$ between $\xi - \psi$ and $\xi + \psi$, we have

$$\int_{\xi-\psi}^{\xi+\psi}\eta(u)du=\frac{\alpha}{K}\eta^2(\xi).$$

Furthermore, we have, by (13),

$$\frac{\alpha}{K}\eta^2(\xi) = \int_{\xi-\psi}^{\xi+\psi} \eta(u)du = \frac{1}{\alpha} \left(\sigma_\alpha(p^{-1}(\exp(\xi-\psi))) - \sigma_\alpha(p^{-1}(\exp(\xi+\psi))) \right) < \epsilon,$$

which implies that

$$\eta(\xi) < \sqrt{\frac{K}{\alpha}}\epsilon$$

This completes the proof of Theorem 2.3. \Box

In the case that α is a positive integer in Theorem 2.3, we have the following corollary.

Corollary 2.4. If the limit $\lim_{t\to\infty} \sigma_{\alpha}(t) = a$ exists for some positive integer α and the condition (9) holds, then the improper integral $\int_0^\infty f(t)dt$ converges.

Proof. Assume that the limit $\lim_{t\to\infty} \sigma_{\alpha}(t) = a$ exists for some positive integer α . By Theorem 2.3, the limit $\lim_{t\to\infty} \sigma_{\alpha-1}(t) = a$ also exists, provided that the condition (9) is satisfied. Again by Theorem 2.3, the limit $\lim_{t\to\infty} \sigma_{\alpha-2}(t) = a$ exists. Continuing in this way, we obtain the convergence of $\int_0^\infty f(t)dt$. \Box

References

- [1] A. Laforgia, A theory of divergent integrals, Applied Mathematics Letters 22 (2009) 834-840.
- [2] İ. Çanak, Ü. Totur, A Tauberian theorem for Cesàro summability of integrals, Applied Mathematics Letters 24 (2011) 391-395.
- [3] İ. Çanak, Ü. Totur, Tauberian conditions for Cesàro summability of integrals, Applied Mathematics Letters 24 (2011) 891-896.
- [4] M. Dik, Tauberian theorems for sequences with moderately oscillatory control moduli, Mathematica Moravica 5 (2001) 57–94.
- [5] İ. Çanak, Ü. Totur, Alternative proofs of some classical type Tauberian theorems for Cesàro summability of integrals, Mathematical and Computer Modelling 55 (2012) 1558-1561.