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Abstract. Let p(x) be a nondecreasing continuous function on [0,∞) such that p(0) = 0 and p(t) → ∞ as
t→∞. For a continuous function f (x) on [0,∞), we define

s(t) =
∫ t

0
f (u)du and σα(t) =

∫ t

0

(
1 − p(u)

p(t)

)α
f (u)du.

We say that a continuous function f (x) on [0,∞) is (C, α) integrable to a by the weighted mean method
determined by the function p(x) for some α > −1 if the limit limt→∞ σα(t) = a exists.

We prove that if the limit limt→∞ σα(t) = a exists for some α > −1, then the limit limt→∞ σα+h(t) = a exists
for all h > 0.

Next, we prove that if the limit limt→∞ σα(t) = a exists for some α > 0 and

p(t)
p′(t)

f (t) = O(1), t→∞,

then the limit limt→∞ σα−1(t) = a exists.

1. Introduction

Let p(x) be a nondecreasing continuous function on [0,∞) such that p(0) = 0 and p(t)→∞ as t→∞. For
a continuous function f (x) on [0,∞), we define

s(t) =
∫ t

0
f (u)du and σα(t) =

∫ t

0

(
1 − p(u)

p(t)

)α
f (u)du.

A continuous function f (x) on [0,∞) is said to be (C, α) integrable to a by the weighted mean method
determined by the function p(x) for some α > −1 if the limit limt→∞ σα(t) = a exists.

If we take p(x) = x, we have the definition of (C, α) integrability of f (x) on [0,∞) given by Laforgia [1].
The (C, 0) integrability of f (x) is convergence of the improper integral

∫ ∞
0 f (t)dt.

It will be shown as a corollary of our first result in this paper that convergence of the improper integral∫ ∞
0 f (t)dt implies the existence of the limit limt→∞ σα(t) for α > 0. However, there are some (C, α) integrable
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functions by the weighted mean method determined by the function p(x) which fail to converge as improper
integrals. Adding some suitable condition, which is called a Tauberian condition, one may get the converse.
Any theorem which states that convergence of the improper integral follows from the (C, α) integrability of
f (x) by the weighted mean method determined by the function p(x) and a Tauberian condition is said to be
a Tauberian theorem.

Çanak and Totur [2, 3] have recently proved the generalized Littlewood theorem and Hardy-Littlewood
type Tauberian theorems for (C, 1) integrability of f (x) on [0,∞) by using the concept of the general control
modulo analogous to the one defined by Dik [4]. Çanak and Totur [5] have also given alternative proofs of
some classical type Tauberian theorems for (C, 1) integrability of f (x) on [0,∞).

In this paper we prove that if the limit limt→∞ σα(t) = a exists for some α > −1, then the limit
limt→∞ σα+h(t) = a exists for all h > 0. As a corollary to this result, we show that if

∫ ∞
0 f (t)dt is con-

vergent to a, then the limit limt→∞ σh(t) = a for all h > 0. But, the converse of this implication might be true
under some condition on p and f . Furthermore, we give conditions under which the limit limt→∞ σα−1(t) = a
follows from the existence of the limit limt→∞ σα(t) = a.

2. Results

The next two theorems given for (C, α) integrability of functions by weighted mean methods generalize
Theorems 2.1 and 3.2 in Laforgia [1].

The following theorem shows that (C, α) integrability of f (x), whereα > −1, implies (C, α+h) integrability
of f (x), where h > 0.

Theorem 2.1. If the limit limt→∞ σα(t) = a exists for some α > −1, then the limit limt→∞ σα+h(t) = a exists for all
h > 0.

Proof. Consider∫ t

0
φ(u, t)σα(t)du, (1)

where

φ(u, t) =
1

B(α + 1, h)
p′(u)
p(t)

(
p(u)
p(t)

)α (
1 − p(u)

p(t)

)h−1

, (2)

where B denotes the Beta function defined by

B(x, y) =
∫ 1

0
tx−1(1 − t)y−1dt, x > 0, y > 0.

If we let v = p(u)
p(t) in (2), we have∫ t

0
φ(u, t)du = 1. (3)

We need to prove that

lim
t→∞

∫ t

0
φ(u, t)σα(t)dt = a. (4)

Since

lim
t→∞

σα(t) = a (5)
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by the hypothesis, there exists a value tε for any given ε > 0 such that

|σα(t) − a| < ε, t ≥ tε. (6)

It follows from (3) that∫ t

0
φ(u, t)σα(t)du − a =

∫ t

0
φ(u, t)[σα(t) − a]du. (7)

To prove (4), it suffices to show that∣∣∣∣∣∣
∫ t

0
φ(u, t)σα(t)du − a

∣∣∣∣∣∣ < 2ε, (8)

provided that t is large enough.
We notice that by the hypothesis, the function σα(t) is bounded on [0,∞), that is,

|σα(t) − a| < K, 0 ≤ t < ∞

for some constant K. Using the inequalities (3) and (6), we obtain, by (7),∣∣∣∣∣∣
∫ t

0
φ(u, t)[σα(t) − a]du

∣∣∣∣∣∣ ≤
∫ tε

0
φ(u, t)|σα(t) − a|du + ε

∫ t

tε
φ(u, t)du

< K
∫ tε

0
φ(u, t)du + ε

∫ t

0
φ(u, t)du

= K
∫ tε

0
φ(u, t)du + ε.

By the substitution v = p(u)
p(t) and (2), we have

∫ tε

0
φ(u, t)du =

1
B(α + 1, h)

∫ tε

0

p′(u)
p(t)

(
p(u)
p(t)

)α (
1 − p(u)

p(t)

)h−1

dt

=
1

B(α + 1, h)

∫ p(tε)/p(t)

0
vα(1 − v)h−1dv

which tends to zero when t→∞ for any fixed tε. Thus, there exists a t̂ε such that

K
∫ tε

0
φ(u, t)dt < ε, t > t̂ε.

Hence, we have (8) for t > t̂ε, and this proves (4). We obtain∫ t

0
φ(u, t)σα(t)du =

∫ t

0
φ(u, t)dt

∫ u

0

(
1 − p(s)

p(u)

)α
f (s)ds

=

∫ t

0
f (s)

∫ t

s
φ(u, t)

(
1 − p(s)

p(u)

)α
duds

=

∫ t

0
f (s)I(s, t)ds.
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Here, we write I(s, t) as

I(s, t) =
1

B(α + 1, h)

∫ t

s

1
p(t)

(
p(u)
p(t)

)α (
1 − p(u)

p(t)

)h−1

p′(u)
(
1 − p(s)

p(u)

)α
du

=
1

B(α + 1, h)
1

(p(t))α+1

∫ t

s

(
1 − p(u)

p(t)

)h−1

p′(u)(p(u) − p(s))αdu

by using (2). Substituting p(u) = p(t) − (p(t) − p(s))x in I(s, t), we have

I(s, t) =
1

B(α + 1, h)
1

(p(t))α+h

∫ 1

0
(p(t) − p(s))h−1xh−1(p(t) − p(s))α(1 − x)α(p(t) − p(s))dx

=
1

B(α + 1, h)
(p(t) − p(s))α+h

(p(t))α+h

∫ 1

0
xh−1(1 − x)αdx

=

(
1 − p(s)

p(t)

)α+h

,

which shows that∫ t

0
φ(u, t)σα(t)du =

∫ t

0

(
1 − p(u)

p(t)

)α+h

f (u)du.

This completes of the proof of Theorem 2.1.

Corollary 2.2. If
∫ ∞

0 f (t)dt converges to a, then the limit limt→∞ σh(t) = a for all h > 0.

Proof. Take α = 0 in Theorem 2.1.

The next theorem is a Tauberian theorem for (C, α) integrability of f (x) continuous on [0,∞) by the
weighted mean method determined by the function p(x) for some α > −1.

Theorem 2.3. If the limit limt→∞ σα(t) = a exists for some α > 0 and

p(t)
p′(t)

f (t) = O(1), t→∞, (9)

then the limit limt→∞ σα−1(t) = a exists.

Proof. Let the function θ(t) be defined by

θ(t) =
1

p(t)

∫ t

0

(
1 − p(u)

p(t)

)α−1

p(u) f (u)du. (10)

Then we have

σα−1(t) = σα(t) + θ(t).

To prove Theorem 2.3, it suffices to show that θ(t)→ 0 as t→∞. By the definition of σα(t), we obtain

(σα(t))′ =
∫ t

0
α

(
1 − p(u)

p(t)

)α−1 p(u)p′(t)
(p(t))2 f (u)du

= α
p′(t)
p(t)

1
p(t)

∫ t

0

(
1 − p(u)

p(t)

)α−1

p(u) f (u)du

= α
p′(t)
p(t)

θ(t).
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We also have∫ t2

t1

(σα(u))′du = σα(t2) − σα(t1)

=

∫ t2

t1

α
p′(t)
p(t)

θ(t)dt

= α

∫ ln p(t2)

ln p(t1)
θ(p−1(exp(u)))du

= α

∫ ln p(t2)

ln p(t1)
η(u)du.

Here, we used the substitution p(t) = exp(u) and η(u) = θ(p−1(exp(u))).
We now need to show that limu→∞ η(u) = 0.
By the simple calculation, we have

η′(u) =
exp(u)

p′(p−1(exp(u)))
θ′(p−1(exp(u))) =

p(t)
p′(t)

θ′(t).

By (10),

p(t)θ(t) =
∫ t

0

(
1 − p(u)

p(t)

)α−1

p(u) f (u)du. (11)

Differentiating the both sides of (11) gives

θ(t) +
p(t)
p′(t)

θ′(t) = (α − 1)
∫ t

0

(
1 − p(u)

p(t)

)α−2 (
p(u)
p(t)

)2

f (u)du. (12)

For the first term on the left-hand side of (12), we have

θ(t) =
1

p(t)

∫ t

0

(
1 − p(u)

p(t)

)α−1

p(u) f (u)du

≤ K
p(t)

∫ t

0

(
1 − p(u)

p(t)

)α−1

p′(u)du

= −K
∫ 0

1
vα−1dv

=
K
α
,

where we used the substitution 1 − p(u)
p(t) = v.

By (9), we have∣∣∣∣∣p(t) f (t)
p′(t)

∣∣∣∣∣ ≤ K.

For the term on the right-hand side of (12), we have

(α − 1)
1

(p(t))2

∫ t

0

(
1 − p(u)

p(t)

)α−2

(p(u))2 f (u)du ≤ (α − 1)K
(p(t))2

∫ 1

0

(
1 − p(u)

p(t)

)α−2

p′(u)p(u)du

=
K
α
,
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where we used the substitution 1 − p(u)
p(t) = v.

Finally, we have |η′(t)| ≤ 2K
α , which shows that η′(t) is bounded. Since σα(t) is convergent, given any

ϵ > 0 there exists a tϵ such that

|σα(t1) − σα(t2)| < ϵ, (13)

when t1, t2 > tϵ.
Suppose ξ ≥ ln p(tϵ) and η(ξ) > 0. Then η(t) > 0 for ξ −ψ < t < ξ and ξ < t < ξ +ψ and, where ψ = αη(ξ)

2K .
If we integrate η(u) between ξ − ψ and ξ + ψ, we have∫ ξ+ψ

ξ−ψ
η(u)du =

α
K
η2(ξ).

Furthermore, we have, by (13),

α
K
η2(ξ) =

∫ ξ+ψ

ξ−ψ
η(u)du =

1
α

(
σα(p−1(exp(ξ − ψ))) − σα(p−1(exp(ξ + ψ)))

)
< ϵ,

which implies that

η(ξ) <

√
K
α
ϵ.

This completes the proof of Theorem 2.3.

In the case that α is a positive integer in Theorem 2.3, we have the following corollary.

Corollary 2.4. If the limit limt→∞ σα(t) = a exists for some positive integer α and the condition (9) holds, then the
improper integral

∫ ∞
0 f (t)dt converges.

Proof. Assume that the limit limt→∞ σα(t) = a exists for some positive integer α . By Theorem 2.3, the limit
limt→∞ σα−1(t) = a also exists, provided that the condition (9) is satisfied. Again by Theorem 2.3, the limit
limt→∞ σα−2(t) = a exists. Continuing in this way, we obtain the convergence of

∫ ∞
0 f (t)dt.
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