
Filomat 26:6 (2012), 1247–1256
DOI 10.2298/FIL1206247F

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. In this paper we prove that the neutrix composition δ(s){[exp+(x) −H(x)]1/r} exists for r = 1, 2, . . .
and s = 0, 1, 2, . . . and in particular

δ(mr−1){[exp+(x) −H(x)]1/r} =
m−1∑
k=0

(−1)mr+k−1r(mr − 1)!cmr−1,k

2k!
δ(k)(x),

for m, r = 1, 2, . . . .

1. Introduction

Certain operations on smooth functions can be extended without difficulty to arbitrary distributions.
Others (such as multiplication, convolution and change of variables) can be defined only for particular
distributions. For instance, one may consider stationary Schrdinger operator with singular potential

∆u + aδu,

where δ is the Dirac-delta function and a is the so-called coupling constant, gives a model of scattering on
a particle, located at the origin see [1]. The fact that the product δ.u is not defined in the classical theory
of distributions. Further consider the interaction two delta waves in a model ruled by Burgers perturbed
equation see [19], or the heat equation involving the δ distribution as a coefficient see [15]. Also we refer a
reader to [2, 16].

In the theory of distributions, many arguments show that no meaning can be generally given to expres-
sions of the form F( f (x)), where F is a distribution and f is a locally summable function.

The technique of neglecting appropriately defined infinite quantities was devised by Hadamard and
the resulting finite value extracted from divergent integral is referred to as the Hadamard finite part. In
fact his method can be regarded as a particular applications of the neutrix calculus developed by van der
Corput see [3].

Using the concepts of a neutrix and neutrix limit, the first author gave a general principle for the
discarding of unwanted infinite quantities from asymptotic expansions, and this has been exploited in the
context of distributions, particularly in connection with the composition of distributions, see [4, 5]. By
Fisher’s definition Koh and Li give a meaning to δr and (δ′)r for r = 2, 3, . . . , see [12], and more general form
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B. Fisher, E. Özçaḡ / Filomat 26:6 (2012), 1247–1256 1248

(δ(s)(x))r was considered by Kou and Fisher in [13]. Recently the rth powers of the Dirac function δ(x) and
the Heaviside function H(x) for negative integers have been defined in [17] and [18] respectively.

In the following, we letD be the space of infinitely differentiable functions φwith compact support and
letD[a, b] be the space of infinitely differentiable functions with support contained in the interval [a, b]. We
let D′ be the space of distributions defined on D and let D′[a, b] be the space of distributions defined on
D[a, b].

Now let ρ(x) be a function inD having the following properties:
(i) ρ(x) = 0 for |x| ≥ 1,
(ii) ρ(x) ≥ 0,
(iii) ρ(x) = ρ(−x),

(iv)
∫ 1

−1
ρ(x) dx = 1.

Putting δn(x) = nρ(nx) for n = 1, 2, . . . , it follows that {δn(x)} is a regular sequence of infinitely differentiable
functions converging to the Dirac delta-function δ(x). Further, if F is a distribution in D′ and Fn(x) =
⟨F(x − t), δn(x)⟩, then {Fn(x)} is a regular sequence of infinitely differentiable functions converging to F(x).

Now let f (x) be an infinitely differentiable function having a single simple root at the point x = x0.
Gel’fand and Shilov defined the distribution δ(r)( f (x)) by the equation

δ(r)( f (x)) =
1

| f ′(x0)|
[ 1
| f ′(x)|

d
dx

]r
δ(x − x0),

for r = 0, 1, 2, . . . , see [11].

In order to give a more general definition for the composition of distributions, the following definition
for the neutrix composition of distributions was given in [4] and was originally called the composition of
distributions.

Definition 1.1. Let F be a distribution in D′ and let f be a locally summable function. We say that the
neutrix composition F( f (x)) exists and is equal to h on the open interval (a, b) if

N−lim
n→∞

∫ ∞

−∞
Fn( f (x))φ(x)dx = ⟨h(x), φ(x)⟩

for all φ inD[a, b], where Fn(x) = F(x) ∗ δn(x) for n = 1, 2, . . . and N is the neutrix, see [3], having domain N′

the positive integers and range N′′ the real numbers, with negligible functions which are finite linear sums
of the functions

nλ lnr−1 n, lnr n : λ > 0, r = 1, 2, . . .

and all functions which converge to zero in the usual sense as n tends to infinity.
In particular, we say that the composition F( f (x)) exists and is equal to h on the open interval (a, b) if

lim
n→∞

∫ ∞

−∞
Fn( f (x))φ(x)dx = ⟨h(x), φ(x)⟩

for all φ inD[a, b].

Note that taking the neutrix limit of a function f (n), is equivalent to taking the usual limit of Hadamard’s
finite part of f (n).

2. Results

The following theorems were proved in [6], [8], [9], [10], respectively.
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Theorem 2.1. The neutrix composition δ(s)(sgn x|x|λ) exists and

δ(s)(sgn x|x|λ) = 0

for s = 0, 1, 2, . . . and (s + 1)λ = 1, 3, . . . and

δ(s)(sgn x|x|λ) =
(−1)(s+1)(λ+1)s!
λ[(s + 1)λ − 1]!

δ((s+1)λ−1)(x)

for s = 0, 1, 2, . . . and (s + 1)λ = 2, 4, . . . .

Theorem 2.2. The neutrix composition δ(s)(sinh−1 x+) exists and

δ(s)(sinh−1 x+) =
s∑

k=0

k∑
i=0

(
k
i

)
(−1)s+i+k (k − 2i + 1)s + (k − 2i − 1)s

2kk!
δ(k)(x)

for s = 0, 1, 2, . . . .

Theorem 2.3. The neutrix composition δ(s)[lnr(1 + |x|)] exists and

δ(s)[lnr(1 + |x|)] =
sr+r−1∑

k=0

k∑
i=0

(
k
i

)
(−1)s−i[1 + (−1)k]s!(i + 1)rs+r−1

2r(rs + r − 1)!k!
δ(k)(x)

for s = 0, 1, 2, . . . and r = 1, 2, . . . .
In particular, the composition δ[ln(1 + |x|)] exists and

δ[ln(1 + |x|)] = δ(x).

Theorem 2.4. The neutrix composition δ(rsm−pm−1)[x1/rm
+ /(1 + x1/m

+ )] exists
and

δ(rsm−pm−1)[x1/rm
+ /(1 + x1/m

+ )] =

=

s−1∑
k=0

k∑
i=0

(
k
i

)
(−1)s+i+k (k − 2i + 1)s + (k − 2i − 1)s

2kk!
δ(k)(x)

for s = 0, 1, 2, . . . .

In the following, the functions exp+(x) and exp−(x) are defined by

exp+(x) =
{

exp(x), x ≥ 0,
0, x < 0 and exp−(x) =

{
exp(x), x ≤ 0,

0, x > 0.

H(x) denotes Heaviside’s function.
The constants ci,k are defined by the expansion

lnk(1 + x)
1 + x

=

∞∑
i=0

ci,kxi

for i, k = 0, 1, 2, . . ..
We also need the following lemma, which can be easily proved by induction:

Lemma 2.5.∫ 1

−1
tiρ(s)(t) dt =

{
0, 0 ≤ i < s,

(−1)ss!, i = s

and ∫ 1

0
tsρ(s)(t) dt = 1

2 (−1)ss!

for s = 0, 1, 2, . . . .
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The following theorem was proved in [7].

Theorem 2.6. The neutrix composition δ(s){[exp+(x) − 1]r} exists and

δ(s){[exp+(x) − 1]r} =
rs+r−1∑

k=0

(−1)s+ks!crs+r−1,k

2rk!
δ(k)(x),

for r = 1, 2, . . . and s = 0, 1, 2, . . . .
In particular

δ[exp+(x) − 1] =
1
2
δ(x),

δ{[exp+(x) − 1]2} = −1
4
δ(x) +

1
4
δ′(x),

δ′{[exp+(x) − 1]2} = 1
2
δ(x) − 1

2
δ′(x).

We now prove the following theorem.

Theorem 2.7. The neutrix composition δ(s){[exp+(x) −H(x)]1/r} exists for r = 1, 2, . . . and s = 0, 1, 2, . . . ,

δ(mr−1){[exp+(x) −H(x)]1/r} =
m−1∑
k=0

(−1)mr+k−1r(mr − 1)!cmr−1,k

2k!
δ(k)(x), (1)

for m, r = 1, 2, . . . and

δ(s){[exp+(x) −H(x)]1/r} = 0, (2)

for s , mr − 1 and m, r = 1, 2, . . . .
In particular

δ(r−1){[exp+(x) −H(x)]1/r} = − (−1)rr!
2

δ(x), (3)

δ(2r−1)){[exp+(x) −H(x)]1/r} = (2r)!
4
δ(x) − (2r)!

4
δ′(x), (4)

δ(3r−1){[exp+(x) −H(x)]1/r} = − (−1)rr(3r − 1)!
2

δ(x)

− (−1)r3r(3r − 1)!
4

[δ′(x) + δ′′(x)], (5)

for r = 1, 2, . . . .

Proof. We will first of all prove equations (1) and (2) on the interval [−1, 1]. To do this, we need to evaluate∫ 1

−1
xkδ(s)

n {[exp+(x) −H(x)]1/r} dx =

=

∫ 1

0
xkδ(s)

n {[exp(x) − 1]1/r} dx +
∫ 0

−1
xkδ(s)

n (0) dx

= ns+1
∫ 1

0
xkρ(s){n[exp(x) − 1]1/r} dx + ns+1

∫ 0

−1
xkρ(s)(0) dx

= I1 + I2. (6)

It is immediately obvious that

N−lim
n→∞

I2 = 0. (7)
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Making the substitution n[exp(x) − 1]1/r = t or

x = ln[1 + (t/n)r],

we have

dx =
rtr−1 dt

nr[1 + (t/n)r]
.

Then for n > 1, we have

I1 = rns−r+1
∫ 1

0

lnk[1 + (t/n)r]tr−1

1 + (t/n)r ρ(s)(t) dt

=

∞∑
i=0

rci,k

∫ 1

0

tr(i+1)−1

nr(i+1)−s−1
ρ(s)(t) dt.

When s = mr − 1, we have

I1 =

∞∑
i=0

rci,k

∫ 1

0

tr(i+1)−1

nr(i+1)−mr
ρ(mr−1)(t) dt

and it follows that

N−lim
n→∞

I1 = N−lim
n→∞

∫ 1

0
xkδ(mr−1)

n {[exp(x) − 1]r} dx

=
(−1)mr−1r(mr − 1)!cmr−1,k

2
, (8)

on using the lemma, for k = 0, 1, 2, . . . ,m − 1, r = 1, 2, . . . and s = 0, 1, 2, . . . .
Next, when k = m, we have∫ 1

0

∣∣∣xmδ(mr−1)
n {[exp(x) − 1]1/r}

∣∣∣ dx ≤

≤ rnmr−r
∫ 1

0

∣∣∣∣∣∣ lnm[1 + (t/n)r]tr−1

1 + (t/n)r ρ(mr−1)(t)

∣∣∣∣∣∣ dt

= O(n−r),

since | lnm[1 + (t/n)r]| = O(n−mr)). Hence, if ψ(x) is an arbitrary continuous function, then

lim
n→∞

∫ 1

0
xmδ(mr−1)

n {[exp(x) − 1]1/r}ψ(x) dx = 0, (9)

for m, r = 1, 2, . . . .
Further,

N−lim
n→∞

∫ 0

−1
xmδ(mr−1)

n (0)ψ(x) dx = N−lim
n→∞

nmr
∫ 0

−1
xmρ(mr−1)(0)ψ(x) dx

= 0, (10)

for m, r = 1, 2, . . . .
Now let φ be an arbitrary function inD[−1, 1]. By Taylor’s Theorem we have

φ(x) =
m−1∑
k=0

xkφ(k)(0)
k!

+
xmφ(m)(ξx)

m!
,
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where 0 < ξ < 1. Then

N−lim
n→∞

⟨δ(mr−1)
n {[exp(x) −H(x)]1/r}, φ(x)⟩ =

= N−lim
n→∞

m−1∑
k=0

φ(k)(0)
k!

∫ 1

−1
xkδ(mr−1)

n {[exp(x) −H(x)]1/r} dx

+N−lim
n→∞

∫ 1

−1

xm

m!
δ(mr−1)

n {[exp(x) −H(x)]1/r}φ(m)(ξx) dx

= N−lim
n→∞

m−1∑
k=0

φ(k)(0)
k!

∫ 1

0
xkδ(mr−1)

n {[exp(x) − 1]1/r} dx

+N−lim
n→∞

m−1∑
k=0

φ(k)(0)
k!

∫ 0

−1
xkδ(mr−1)

n (0) dx

+N−lim
n→∞

∫ 1

0

xm

m!
δ(mr−1)

n {[exp(x) − 1]1/r}φ(m)(ξx) dx

+N−lim
n→∞

∫ 0

−1

xm

m!
δ(mr−1)

n (0)φ(m)(ξx) dx

=

m−1∑
k=0

(−1)mr−1r(mr − 1)!cm−1,k

2k!
φ(k)(0)

=

m−1∑
k=0

(−1)mr+k−1r(mr − 1)!cm−1,k

2k!
⟨δ(k)(x), φ(x)⟩,

on using equations (6) to (10), for m, r = 1, 2, . . . .
This proves that the neutrix composition δ(mr−1){[exp+(x) −H(x)]1/r} exists and

δ(mr−1){[exp+(x) −H(x)]1/r} =
m−1∑
k=0

(−1)mr+k−1r(mr − 1)!cm−1,k

2k!
δ(k)(x),

on the interval [−1, 1] for m, r = 1, 2, . . . .
It is obvious that δ(mr−1){[exp+(x)−1]1/r} = 0, if x , 0 and so the neutrix composition δ(mr−1){[exp+(x)−1]1/r}

exists on the real line for m, r = 1, 2, . . . .
Equations (2), (3) and (4) follow on noting that c0,0 = c2,0 = c2,2 = 1, c1,0 = c1,1 = −1 and c2,1 = −3/2.
When s , mr − 1, it is obvious that

N−lim
n→∞

I1 = 0, (11)

for k = 0, 1, 2, . . . ,m − 1, r = 1, 2, . . . and s = 0, 1, 2, . . . and when k = s, we have∫ 1

0

∣∣∣xsδ(s)
n {[exp(x) − 1]1/r}

∣∣∣ dx ≤

≤ rns−r+1
∫ 1

0

∣∣∣∣∣∣ lns[1 + (t/n)r]tr−1

1 + (t/n)r ρ(s)(t)

∣∣∣∣∣∣ dt

= O(ns−rs−r+1),

since | lns[1 + (t/n)r]| = O(n−rs)). Hence, if ψ(x) is an arbitrary continuous function, then

lim
n→∞

∫ 1

0
xsδ(s)

n {[exp(x) − 1]1/r}ψ(x) dx = 0, (12)



B. Fisher, E. Özçaḡ / Filomat 26:6 (2012), 1247–1256 1253

for r = 1, 2, . . . and s = 0, 1, 2, . . . . Equation (2) now follows as above using equations (7), (11) and (12).
This completes the proof of the theorem.

Corollary 2.8. The neutrix composition δ(s){[H(−x) − exp−(x)]1/r} exists for r = 1, 2, . . . and s = 0, 1, 2, . . . ,

δ(mr−1){[H(−x) − exp−(x)]1/r} =
m−1∑
k=0

(−1)kr(mr − 1)!cm−1,k

2k!
δ(k)(x), (13)

for m, r = 1, 2, . . . and

δ(s){[H(−x) − exp−(x)]1/r} = 0, (14)

for s , mr − 1 and m, r = 1, 2, . . . .
In particular

δ(r−1){[H(−x) − exp−(x)]1/r} = r!
2
δ(x), (15)

δ(2r−1)){[H(−x) − exp−(x)]1/r} = − (2r)!
4
δ(x) +

(2r)!
4
δ′(x), (16)

δ(3r−1){[H(−x) − exp−(x)]1/r} = r(3r − 1)!
2

δ(x)

+
3r(3r − 1)!

4
[δ′(x) + δ′′(x)], (17)

for r = 1, 2, . . . .

Proof. We will first of all prove equations (13) and (14) on the interval [−1, 1]. We have∫ 1

−1
xkδ(s)

n {[H(−x) − exp−(x)]1/r} dx =

=

∫ 0

−1
xkδ(s)

n {[1 − exp(x)]1/r} dx +
∫ 1

0
xkδ(s)

n (0) dx

= ns+1
∫ 0

−1
xkρ(s){n[1 − exp(x)]1/r} dx + ns+1

∫ 1

0
xkρ(s)

n (0) dx

= J1 + J2. (18)

It is obvious that

N−lim
n→∞

J2 = 0. (19)

Making the substitution n[1 − exp(x)]1/r = t or

x = ln[1 − (t/n)r],

we have

dx = − rtr−1 dt
nr[1 − (t/n)r]

.

Then for n > 1, we have

J1 = rns−r+1
∫ 1

0

lnk[1 − (t/n)r]tr−1

1 − (t/n)r ρ(s)(t) dt

=

∞∑
i=0

(−1)irci,k

∫ 0

−1

tr(i+1)−1

nr(i+1)−s−1
ρ(s)(t) dt.
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When s = mr − 1, we have

J1 =

∞∑
i=0

(−1)irci,k

∫ 0

−1

tr(i+1)−1

nr(i+1)−mr
ρ(mr−1)(t) dt

and it follows that

N−lim
n→∞

J1 = N−lim
n→∞

∫ 0

−1
xkδ(mr−1)

n {[1 − exp(x)]1/r} dx

=
r(mr − 1)!cmr−1,k

2
, (20)

on using the lemma, for k = 0, 1, 2, . . . ,m − 1, r = 1, 2, . . . and s = 0, 1, 2, . . . .
Next, when k = m, we have∫ 0

−1

∣∣∣xmδ(mr−1)
n {[1 − exp(x)]1/r}

∣∣∣ dx ≤

≤ rnmr−r
∫ 0

−1

∣∣∣∣∣∣ lnm[1 − (t/n)r]tr−1

1 − (t/n)r ρ(mr−1)(t)

∣∣∣∣∣∣ dt

= O(n−r).

Hence, if ψ(x) is an arbitrary continuous function, then

lim
n→∞

∫ 0

−1
xmδ(mr−1)

n {[1 − exp(x)]1/r}ψ(x) dx = 0, (21)

for m, r = 1, 2, . . . .
If now φ is inD[−1, 1], then, similar to the above, we have

N−lim
n→∞

⟨δ(mr−1)
n {[H(−x) − exp−(x)]1/r}, φ(x)⟩ =

= N−lim
n→∞

m−1∑
k=0

φ(k)(0)
k!

∫ 1

0
xkδ(mr−1)

n {[H(−x) − exp−(x)]1/r} dx

+N−lim
n→∞

m−1∑
k=0

φ(k)(0)
k!

∫ 0

−1
xkδ(mr−1)

n (0) dx

+N−lim
n→∞

∫ 1

0

xm

m!
δ(mr−1)

n {[H(−x) − exp−(x)]1/r}φ(m)(ξx) dx

+N−lim
n→∞

∫ 0

−1

xm

m!
δ(mr−1)

n (0)φ(m)(ξx) dx

=

m−1∑
k=0

r(mr − 1)!cm−1,k

2k!
φ(k)(0)

=

m−1∑
k=0

(−1)kr(mr − 1)!cm−1,k

2k!
⟨δ(k)(x), φ(x)⟩,

on using equations (18) to (21), for m, r = 1, 2, . . . .
The equations (14) to (17) follow as above. This completes the proof of the corollary.
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Corollary 2.9. The neutrix composition δ(s)[| exp(x) − 1|1/r] exists for r = 1, 2, . . . and s = 0, 1, 2, . . . ,

δ(mr−1)[| exp(x) − 1|1/r] =
m−1∑
k=0

(−1)mr+k−1r(mr − 1)!cmr−1,k

2k!
δ(k)(x), (22)

for m, r = 1, 2, . . . and

δ(s){[exp(x) − 1]1/r} = 0, (23)

for s , mr − 1 and m, r = 1, 2, . . . .
In particular

δ(r−1)[| exp(x) − 1|1/r] = − (−1)rr!
2

δ(x), (24)

δ(2r−1))[| exp(x) − 1|1/r] =
(2r)!

4
δ(x) − (2r)!

4
δ′(x), (25)

δ(3r−1)[| exp(x) − 1|1/r] = − (−1)rr(3r − 1)!
2

δ(x)

− (−1)r3r(3r − 1)!
4

[δ′(x) + δ′′(x)], (26)

for r = 1, 2, . . . .

Proof. This time we have

∫ 1

−1
xkδ(s)

n [| exp+(x) −H(x)|1/r] dx =

=

∫ 1

0
xkδ(s)

n {[exp(x) − 1]1/r} dx +
∫ 0

−1
xkδ(s)

n {[1 − exp(x)]1/r} dx

= I1 + J2

and it follows that

N−lim
n→∞

⟨δ(mr−1)
n [| exp(x) − 1|1/r], φ(x)⟩ =

= N−lim
n→∞

m−1∑
k=0

φ(k)(0)
k!

∫ 1

0
xkδ(mr−1)

n {[exp(x) − 1]1/r} dx

+N−lim
n→∞

m−1∑
k=0

φ(k)(0)
k!

∫ 0

−1
xkδ(mr−1)

n {[1 − exp(x)]1/r} dx

=

m−1∑
k=0

(−1)mr+k−1r(mr − 1)!cm−1,k

2k!
⟨δ(k)(x), φ(x)⟩

+

m−1∑
k=0

(−1)kr(mr − 1)!cm−1,k

2k!
⟨δ(k)(x), φ(x)⟩

and equation (22) follows.
Equations (23) to (26) follow easily, completing the proof of the corollary.
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