Vertex-removal in α-domination

Nader Jafari Rad ${ }^{\text {a }}$, Lutz Volkmann ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, Shahrood University of Technology, Shahrood, Iran
${ }^{b}$ Lehrstuhl II für Mathematik, RWTH Aachen University, Templergraben 55, D-52056 Aachen, Germany

Abstract

Let $G=(V, E)$ be any graph without isolated vertices. For some α with $0<\alpha \leq 1$ and a dominating set S of G, we say that S is an α-dominating set if for any $v \in V-S,|N(v) \cap S| \geq \alpha|N(v)|$. The cardinality of a smallest α-dominating set of G is called the α-domination number of G and is denoted by $\gamma_{\alpha}(G)$. In this paper, we study the effect of vertex removal on α-domination.

1. Introduction

Let $G=(V(G), E(G))$ be a simple graph of order n. We denote the open neighborhood of a vertex v of G by $N_{G}(v)$, or just $N(v)$, and its closed neighborhood by $N_{G}[v]=N[v]$. For a vertex set $S \subseteq V(G), N(S)=\cup_{v \in S} N(v)$ and $N[S]=\cup_{v \in S} N[v]$. The degree $\operatorname{deg}(x)$ of a vertex x denotes the number of neighbors of x in G. The maximum degree and minimum degree of vertices of a graph G are denoted by $\Delta(G)$ and $\delta(G)$, respectively. A leaf is a vertex of degree one and a support vertex is one that is adjacent to a leaf. We denote by $S(G)$ the set of all support vertices of G. A set of vertices S in G is a dominating set if $N[S]=V(G)$. The domination number $\gamma(G)$ of G is the minimum cardinality of a dominating set of G. If S is a subset of $V(G)$, then we denote by $G[S]$ the subgraph of G induced by S. A subdivided star is obtained from a star with at least two edges by subdividing every edge exactly once. The corona $\operatorname{cor}(H)$ of a graph H is that graph obtained from H by adding a pendant edge to each vertex of H. For notation and graph theory terminology in general we follow [7]

Let G be a graph with no isolated vertex. For $0<\alpha \leq 1$, a set $S \subseteq V$ is said to α-dominate a graph G, if for any vertex $v \in V-S,|N(v) \cap S| \geq \alpha|N(v)|$. The minimum cardinality of an α-dominating set is the α-domination number, denoted $\gamma_{\alpha}(G)$. We refer an α-dominating set of cardinality $\gamma_{\alpha}(G)$ as a $\gamma_{\alpha}(G)$-set. For references on α-domination in graphs see, for example, [2-4,6]. Dunbar et al. in [4] suggested the study of graphs in which removing of any edge changes the α-domination number.

For a $\gamma_{\alpha}(G)$-set S in a graph G and a vertex $x \in S$, if $S-\{x\}$ is an α-dominating set for $G-x$, then we denote $p n(x, S)=\{x\}$.

We remark that α-domination could be defined for any graph G. However in the first introductory paper [4], Dunbar et al. defined it only for graphs with no isolated vertex. So we adopt this definition in this paper.

For many graph parameters, criticality is a fundamental question. Much has been written about graphs where a parameter increases or decreases whenever an edge or vertex is removed or added. For the

[^0]domination number, Brigham, Chinn, and Dutton [1] began the study of those graphs where the domination number decreases on the removal of any vertex. They defined a graph G to be domination vertex critical, or just γ-vertex critical, if removal of any vertex decreases the domination number. This concept is now well studied in domination theory.

In this paper we study the same concept for α-domination. We call a graph G, α-domination vertex critical if removal of any vertex decreases the α-domination number.

Observation 1.1. For any graph G of order $n, \gamma_{\alpha}(G)<n$.
Observation 1.2. In any graph $G \neq P_{2}$, there is a $\gamma_{\alpha}(G)$-set containing all support vertices of G.
Proposition 1.3. ([4]) If $0<\alpha \leq \frac{1}{\Delta(G)}$, then $\gamma_{\alpha}(G)=\gamma(G)$.
Proposition 1.4. ([4]) If $1 \geq \alpha>1-\frac{1}{\Delta(G)}$, then $\gamma_{\alpha}(G)=\alpha_{0}(G)$.
A set $S \subseteq V(G)$ is a 2-packing of G if for every two different vertices $x, y \in S, N[x] \cap N[y]=\emptyset$.

2. Results

Proposition 2.1. Let G be a graph without isolated vertices. For any vertex $v \in V(G)-S(G)$, and any $0<\alpha \leq 1$, $\gamma_{\alpha}(G)-1 \leq \gamma_{\alpha}(G-v) \leq \gamma_{\alpha}(G)+\operatorname{deg}(v)-1$ and these bounds are sharp.

Proof. Let G be a graph without isolated vertices and $v \in V(G)-S(G)$. Let S be a $\gamma_{\alpha}(G)$-set. If $v \notin S$, then S is an α-dominating set for $G-v$, and so $\gamma_{\alpha}(G-v) \leq \gamma_{\alpha}(G)$. Thus we assume that $v \in S$. Then $S \cup N_{G}(v)-\{v\}$ is an α-dominating set for $G-v$, and so $\gamma_{\alpha}(G-v) \leq \gamma_{\alpha}(G)+\operatorname{deg}(v)-1$. Thus the upper bound follows.

For the lower bound let D be a $\gamma_{\alpha}(G-v)$-set. Then $D \cup\{v\}$ is an α-dominating set for G, and so the lower bound follows.

To see the sharpness of the upper bound, let x be the center of a star $K_{1, k}$ for $k \geq 2$, and $\alpha \leq \frac{1}{2}$. Let G be obtained from $K_{1, k}$ by subdividing each edge of $K_{1, k}$ three times. Note the G has $3 k$ vertices of degree two, k vertices of degree one, and a vertex of degree k (the vertex x). Now it is easy to see that $\gamma_{\alpha}(G)=k+1$, and $\gamma_{\alpha}(G-x)=2 k$. To see the sharpness of the lower bound consider a cycle C_{4}.

We call a graph G, α-domination vertex critical, or just γ_{α}-vertex critical if for any $v \in V(G)-S(G)$, $\gamma_{\alpha}(G-v)<\gamma_{\alpha}(G)$.

We note that if for a graph G with no isolated vertex, $V(G)-S(G)=\emptyset$, then G is α-domination vertex critical. Thus P_{2} is obviously α-domination vertex critical, since $V\left(P_{2}\right)-S\left(P_{2}\right)=\emptyset$.

2.1. γ_{α}-vertex critical graphs

In this subsection we present our results on γ_{α}-vertex critical graphs.
Proposition 2.2. A graph G is γ_{α}-vertex critical if and only iffor any non-support vertex x, there is a $\gamma_{\alpha}(G)$-set S containing x such that $p n(x, S)=\{x\}$.

Proof. (\Rightarrow) Let G be a γ_{α}-vertex critical graph and $x \notin S(G)$. Then $\gamma_{\alpha}(G-x)=\gamma_{\alpha}(G)-1$. Let S be a $\gamma_{\alpha}(G-x)$-set. It is obvious that $D=S \cup\{x\}$ is an α-dominating set for G and $p n(x, D)=\{x\}$.
(\Leftarrow) Let $x \notin S(G)$ and let S be a $\gamma_{\alpha}(G)$-set containing x such that $p n(x, S)=\{x\}$. Then $S-\{x\}$ is an α-dominating set for $G-x$ implying that $\gamma_{\alpha}(G-x)<\gamma_{\alpha}(G)$. Thus G is γ_{α}-vertex critical.

Since $\gamma_{\alpha}\left(K_{1, n}\right)=1$, we obtain the following.
Lemma 2.3. $K_{1, n}$ is γ_{α}-vertex critical if and only if $n=1$.
Proposition 2.4. Every support vertex in a γ_{α}-vertex critical graph is adjacent to exactly one leaf.

Proof. Let G be a γ_{α}-vertex critical. Assume that there is a support vertex $x \operatorname{such} x$ is adjacent to two leaves x_{1} and x_{2}. By Lemma 2.3, we may assume that $N(x)$ contains a vertex of degree at least two. Then x is a support vertex in $G-x_{1}$. By Observation 1.2, let S be a $\gamma_{\alpha}\left(G-x_{1}\right)$-set such that $x \in S$. Then S is an α-dominating set for G, a contradiction.

Observation 2.5. A subdivided star is not γ_{α}-vertex critical.
Theorem 2.6. Let H be a connected graph of order at least two. Then $G=\operatorname{cor}(H)$ is γ_{α}-vertex critical.
Proof. Since $G=\operatorname{cor}(H)$, each vertex x of G is either a leaf a support vertex adjacent to exactly one leaf. We observe that $\gamma_{\alpha}(G)=|S(G)|$. Let x be a leaf of G. We show that $\gamma_{\alpha}(G-x)<\gamma_{\alpha}(G)$. Let y be the support vertex adjacent to x. Since H is connected of order at least two, there is a vertex $z \in N(y)$ such that $\operatorname{deg}(z)>1$. Then z is a support vertex. Now $S(G)-\{y\}$ is an α-dominating set for $G-x$, implying that $\gamma_{\alpha}(G-x)<\gamma_{\alpha}(G)$. Thus G is γ_{α}-vertex critical.

Let \mathcal{T} be the class of all trees T such that $T \in \mathcal{T}$ if and only if:
(1) $T=P_{2}$, or
(2) $\operatorname{diam}(T) \geq 3$, and for any vertex x of T either x is a leaf or x is a support adjacent to exactly one leaf.

Theorem 2.7. A tree T is γ_{α}-vertex critical for $0<\alpha \leq \frac{1}{\Delta(T)}$, if and only if $T \in \mathcal{T}$.
Proof. ($\Longleftarrow)$ It is obvious that P_{2} is γ_{α}-vertex critical. If $T \neq P_{2}$ is a tree in \mathcal{T}, then Theorem 2.6 implies that T is γ_{α}-vertex critical.
\Longrightarrow Let T be a γ_{α}-vertex critical tree. If $\operatorname{diam}(T)=1$, then $T=P_{2}$ and so $T \in \mathcal{T}$. If $\operatorname{diam}(T)=2$, then by Lemma 2.3, T is not γ_{α}-domination vertex critical. Thus we assume that $\operatorname{diam}(T) \geq 3$. We show that any vertex of T is either a leaf or a support vertex.

Let y be vertex of T such that y is neither a leaf nor a support vertex. If each leaf of T is at distance two from y, then by Proposition 2.4, y is the center of a subdivided star, a contradiction to Observation 2.5. Thus assume that there is a leaf x in T such that $d(x, y) \geq 3$. Let $d(x, y)=t$ and $P: x-x_{1}-x_{2}-\ldots-x_{t}=y$ be the shortest path between x and y.

If x_{2} is not a support vertex, then by Proposition 2.2, there is a $\gamma_{\alpha}(T)$-set S containing x_{2} such that $p n\left(x_{2}, S\right)=\left\{x_{2}\right\}$. But then $\left\{x_{1}, x\right\} \cap S \neq \emptyset$. Since $\alpha \Delta(T) \leq 1$, we see that $\left(S-\left\{x, x_{2}\right\}\right) \cup\left\{x_{1}\right\}$ is an α-dominating set for T, a contradiction. Thus x_{2} is a support vertex. Let y_{2} be a leaf adjacent to x_{2}. If x_{3} is not a support vertex, then by Proposition 2.2, there is a $\gamma_{\alpha}(T)$-set S containing x_{3} such that $p n\left(x_{3}, S\right)=\left\{x_{3}\right\}$. But $S \cap\left\{x_{2}, y_{2}\right\} \neq \emptyset$. Then $S_{1}=\left(S-\left\{y_{2}\right\}\right) \cup\left\{x_{2}\right\}$ is a $\gamma_{\alpha}(T)$-set such that $p n\left(x_{3}, S_{1}\right)=\left\{x_{3}\right\}$ and $x_{2} \in S_{1}$. So $S_{1}-\left\{x_{3}\right\}$ is an α-dominating set for T, a contradiction. Thus x_{3} is a support vertex. By continuing this process we obtain that $x_{i} \in S(T)$ for $i=1,2, \ldots, t-1$. By Proposition 2.2, there is a $\gamma_{\alpha}(T)$-set D containing y such that $P_{n}(y, D)=\{y\}$. We may assume that $x_{t-1} \in D$, since $x_{t-1} \in S(T)$. Then $D-\{y\}$ is an α-dominating set for T, a contradiction.
Problem 2.8. Characterize γ_{α}-vertex critical trees for $\alpha>\frac{1}{\Delta(T)}$.
Proposition 2.9. ([4]) If $\frac{1}{2}<\alpha \leq 1$, then:
(1) $\gamma_{\alpha}\left(P_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$.
(2) $\gamma_{\alpha}\left(C_{n}\right)=\left\lceil\frac{n}{2}\right\rceil$.

Proposition 2.10. ([4]) If $0<\alpha \leq \frac{1}{2}$, then $\gamma_{\alpha}\left(P_{n}\right)=\gamma_{\alpha}\left(C_{n}\right)=\left\lceil\frac{n}{3}\right\rceil$.
Proposition 2.11. (1) For $0<\alpha \leq \frac{1}{2}$, the path P_{n} is γ_{α}-vertex critical if and only if $n \in\{2,4\}$.
(2) For $\frac{1}{2}<\alpha \leq 1$, the path P_{n} is γ_{α}-vertex critical if and only if $n=2 k$.

Proof. If $0<\alpha \leq \frac{1}{2}$, then the result follows from Theorem 2.7.
Assume next that $\frac{1}{2}<\alpha \leq 1$. By Proposition 2.9, $\gamma_{\alpha}\left(P_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$. Let $n=2 k$ for some integer $k \geq 1$. It is easy to see that P_{2} and P_{4} are γ_{α}-vertex critical. Thus we assume now that $n \geq 6$. Let x be a vertex such that x is not a support vertex. If x is a leaf then by Proposition 2.9,

$$
\gamma_{\alpha}\left(P_{n}-x\right)=\gamma_{\alpha}\left(P_{n-1}\right)=\left\lfloor\frac{n-1}{2}\right\rfloor=\left\lfloor\frac{n}{2}\right\rfloor-1<\left\lfloor\frac{n}{2}\right\rfloor .
$$

Thus assume now that x is not a leaf. Let $G=P_{n}-x$. Then G has two components $P_{n_{1}}$ and $P_{n_{2}}$. Clearly we may assume that n_{1} is even and n_{2} is odd. Then

$$
\gamma_{\alpha}(G)=\gamma_{\alpha}\left(P_{n_{1}}\right)+\gamma_{\alpha}\left(P_{n_{2}}\right)=\left\lfloor\frac{n_{1}}{2}\right\rfloor+\left\lfloor\frac{n_{2}}{2}\right\rfloor .
$$

A simple calculation shows that $\left\lfloor\frac{n_{1}}{2}\right\rfloor+\left\lfloor\frac{n_{2}}{2}\right\rfloor<\left\lfloor\frac{n}{2}\right\rfloor$. Thus P_{n} is γ_{α}-vertex critical.
Finally, we show that P_{n} is not γ_{α}-vertex critical if n is odd. Let n be odd and let x be a leaf. Then $\gamma_{\alpha}\left(P_{n}\right)=\gamma_{\alpha}\left(P_{n-1}\right)$, since $\left\lfloor\frac{n}{2}\right\rfloor=\left\lfloor\frac{n-1}{2}\right\rfloor$, as desired.

Using Propositions 2.9 and 2.10, we obtain the following proposition similarly.
Proposition 2.12. (1) For $0<\alpha \leq \frac{1}{2}$, the cycle C_{n} is γ_{α}-vertex critical if and only if $n \equiv 1(\bmod 3)$.
(2) For $\frac{1}{2}<\alpha \leq 1$, the cycle C_{n} is always γ_{α}-vertex critical.

Observation 2.13. ([4]) If K_{n} is the complete graph of order n, then $\gamma_{\alpha}\left(K_{n}\right)=\lceil\alpha(n-1)\rceil$.
Proposition 2.14. A complete graph K_{n} of order $n \geq 2$ is γ_{α}-vertex critical if and only if

$$
\alpha>\frac{\lceil\alpha(n-2)\rceil}{n-1}
$$

Proof. By Observation 2.13, the complete graph K_{n} is γ_{α}-vertex critical if and only if $\lceil\alpha(n-2)\rceil<\lceil\alpha(n-1)\rceil$. This is equivalent with $\lceil\alpha(n-2)\rceil<\alpha(n-1)$, and this is equivalent with $\alpha>\lceil\alpha(n-2)\rceil /(n-1)$.

Proposition 2.15. ([4]) If $K_{m, n}$ is a complete bipartite graph with $1 \leq m \leq n$, then $\gamma_{\alpha}\left(K_{m, n}\right)=\min \{m,\lceil\alpha m\rceil+\lceil\alpha n\rceil\}$.
Proposition 2.16. If $2 \leq m<n$, then $K_{m, n}$ is γ_{α}-vertex critical if and only if $m \geq\lceil\alpha m\rceil+\lceil\alpha n\rceil$,

$$
\alpha>\frac{\lceil\alpha(m-1)\rceil}{m} \text { and } \alpha>\frac{\lceil\alpha(n-1)\rceil}{n} .
$$

Proof. Let X and Y be the partite sets of $G=K_{m, n}$ with $|X|=m$ and $|Y|=n$. First assume that $m<\lceil\alpha m\rceil+\lceil\alpha n\rceil$. By Proposition 2.15, $\gamma_{\alpha}(G)=m$. Let S be a $\gamma_{\alpha}(G-y)$-set, where $y \in Y$. Then Proposition 2.15 implies

$$
\begin{aligned}
|S|=\gamma_{\alpha}(G-y) & =\gamma_{\alpha}\left(K_{m, n-1}\right) \\
& =\min \{m,\lceil\alpha m\rceil+\lceil\alpha(n-1)\rceil\} \\
& \geq \min \{m,\lceil\alpha m\rceil+\lceil\alpha n\rceil-1\} \geq m
\end{aligned}
$$

and therefore G is not γ_{α}-vertex critical in that case.
Next assume that $m \geq\lceil\alpha m\rceil+\lceil\alpha n\rceil$. Then $\gamma_{\alpha}(G)=\lceil\alpha m\rceil+\lceil\alpha n\rceil$. Let S_{1} be a $\gamma_{\alpha}(G-y)$-set, where $y \in Y$, and let S_{2} be a $\gamma_{\alpha}(G-x)$-set, where $x \in X$. Then similar to the proof of Proposition 2.14, we observe that G is γ_{α}-vertex critical if and only if $\alpha>\lceil\alpha(m-1)\rceil / m$ and $\alpha>\lceil\alpha(n-1)\rceil / n$.

Proposition 2.17. If $2 \leq m$, then $K_{m, m}$ is γ_{α}-vertex critical if and only if $m \leq 2\lceil\alpha m\rceil$ or $m>2\lceil\alpha m\rceil$ and

$$
\alpha>\frac{\lceil\alpha(m-1)\rceil}{m}
$$

Proof. Let $G=K_{m, m}$. First assume that $m \leq 2\lceil\alpha m\rceil$. By Proposition 2.15, $\gamma_{\alpha}(G)=m$. Let S be a $\gamma_{\alpha}(G-x)$-set, where $x \in V(G)$. Then Proposition 2.15 implies

$$
\begin{aligned}
|S|=\gamma_{\alpha}(G-x) & =\gamma_{\alpha}\left(K_{m-1, m}\right) \\
& =\min \{m-1,\lceil\alpha m\rceil+\lceil\alpha(m-1)\rceil\} \leq m-1
\end{aligned}
$$

and therefore G is γ_{α}-vertex critical in that case.
Next assume that $m>2\lceil\alpha m\rceil$. Then $\gamma_{\alpha}(G)=2\lceil\alpha m\rceil$. Let S be a $\gamma_{\alpha}(G-x)$-set, where $x \in V(G)$. Then similar to the proof of Proposition 2.14, we observe that G is γ_{α}-vertex critical if and only if $\alpha>\lceil\alpha(m-1)\rceil / m$.

Proposition 2.18. There is no induced-subgraph characterization for γ_{α}-vertex critical graphs.
Proof. Let G be an arbitrary graph, and $H=\operatorname{cor}(G)$. Clearly, G is an induced subgraph of H. Then $\gamma_{\alpha}(H)=|V(G)|$, and $V(G)$ is a $\gamma_{\alpha}(H)$-set. Let v be a leaf of H and $u \in N(v)$. Then $V(G)-\{u\}$ is an α-dominating set for $H-v$, implying that $\gamma_{\alpha}(H-v)<\gamma_{\alpha}(H)$. Thus H is γ_{α}-vertex critical.

Theorem 2.19. ([5]) If G is a γ-vertex critical graph of order $n=(\gamma(G)-1)(\Delta(G)+1)+1$, then G is regular.
Theorem 2.20. If G is a γ_{α}-vertex critical graph of order n, then $n \leq\left(\gamma_{\alpha}(G)-1\right)(\Delta(G)+1)+1$. Furthermore, if $\delta(G)>1$ and equality holds, then G is regular.

Proof. Let G be a γ_{α}-vertex critical graph of order n, and let S be a $\gamma_{\alpha}(G-v)$-set, where $v \in V(G)-S(G)$. Any vertex of S dominates at most $1+\Delta(G)$ vertices of G including itself. Thus S dominates at most $\left(\gamma_{\alpha}(G)-1\right)(\Delta(G)+1) \geq n-1$ vertices of G, as desired.

Now assume that $n=\left(\gamma_{\alpha}(G)-1\right)(\Delta(G)+1)+1$. Thus any vertex of S dominates exactly $1+\Delta(G)$ vertices of G, and so has degree $\Delta(G)$. Furthermore S is a 2-packing. Let $u \in N(v)-S$. Since $\delta(G)>1$, the vertex $u \notin V(G)-S(G)$. Let D be a $\gamma_{\alpha}(G-u)$-set. Then $|D|=\gamma_{\alpha}(G)-1$, and, as before, we obtain that any vertex of D is of degree $\Delta(G)$, and D is a 2-packing. Since S is a $\gamma_{\alpha}(G-v)$-set, u is adjacent to a vertex $a \in S$, and now $\operatorname{deg}_{G-u}(a)<\Delta(G)$, and so $a \notin D$. We deduce that $D-S \neq \emptyset$. Also clearly $v \notin D$. Let $w \in D-S$. Since S is a $\gamma_{\alpha}(G-v)$-set, we obtain that $1=|N(w) \cap S| \geq \alpha \operatorname{deg}(w)=\alpha \Delta(G)$, and so $\alpha \leq \frac{1}{\Delta(G)}$. By Proposition 1.3, $\gamma_{\alpha}(G)=\gamma(G)$, and also $\gamma_{\alpha}(G-a)=\gamma(G-a)$ for any vertex a. Thus G is γ-vertex critical. By Theorem 2.19, G is regular.

Fulman et al. [5] proved that if G is a γ-vertex critical graph, then $\operatorname{diam}(G) \leq 2(\gamma(G)-1)$. However with a similar proof we obtain the following.

Proposition 2.21. If G is a γ_{α}-vertex critical graph, then $\operatorname{diam}(G) \leq 2\left(\gamma_{\alpha}(G)-1\right)$.
Theorem 2.22. If G is a γ_{α}-vertex critical graph of order n, then for any vertex $v \in V(G)-S(G)$,

$$
\gamma_{\alpha}(G) \geq\left\lceil\frac{\alpha \delta(G-v) n+\Delta(G)}{\alpha \delta(G-v)+\Delta(G)}\right\rceil
$$

Proof. Let G be a γ_{α}-vertex critical graph of order n, and let $v \in V(G)-S(G)$. Let $H=G-v$ and let S be a $\gamma_{\alpha}(H)$-set. Then $|S|=\gamma_{\alpha}(G)-1$. Let M be the set of edges between S and $V(H)-S$. By counting the edges from S to $V(H)-S$, we obtain that

$$
|M| \leq \sum_{v \in S} \operatorname{deg}(v) \leq|S| \Delta(G)
$$

On the other hand, since S is an α-dominating set for H, we find that

$$
|M| \geq \sum_{v \in V(H)-S} \alpha \operatorname{deg}_{H}(v) \geq \alpha \delta(H)(|V(H)|-|S|)
$$

Now we obtain

$$
|S| \Delta(G) \geq \alpha \delta(H)(n-1-|S|)
$$

Since $|S|=\gamma_{\alpha}(G)-1$ and $H=G-v$, a simple calculation imply that

$$
\gamma_{\alpha}(G) \geq \frac{\alpha \delta(G-v) n+\Delta(G)}{\alpha \delta(G-v)+\Delta(G)}
$$

Proposition 2.23. ([4]) If $0<\alpha<1$, then for any graph $G, \gamma_{\alpha}(G)+\gamma_{1-\alpha}(G) \leq n$.

Theorem 2.24. If G is a γ_{α}-vertex critical graph of order n and size m, then

$$
\gamma_{\alpha}(G) \geq\left\lceil\frac{2 \alpha m-\alpha \Delta(G)+\Delta(G)}{\Delta(G)(\alpha+1)}\right\rceil
$$

Proof. Let G be a γ_{α}-vertex critical graph of order n and size m. Let $v \in V(G)-S(G)$ and $H=G-v$. Let S be a $\gamma_{\alpha}(H)$-set. Then $\sum_{v \in S} \operatorname{deg}_{H}(v) \geq \sum_{v \in V(H)-S} \alpha d e g_{H}(v)$. Now

$$
\begin{aligned}
(\alpha+1)|S| \Delta(G) & \geq \alpha \sum_{v \in S} \operatorname{deg}_{H}(v)+\sum_{v \in S} \operatorname{deg}_{H}(v) \\
& \geq \alpha \sum_{v \in S} \operatorname{deg}_{H}(v)+\sum_{v \in V(H)-S} \alpha d e g_{H}(v) \\
& \geq \alpha \sum_{v \in V(H)} \operatorname{deg}_{H}(v) \\
& =\alpha\left(2 m-2 \operatorname{deg}_{G}(v)\right) \geq \alpha(2 m-2 \Delta(G))
\end{aligned}
$$

Since $|S|=\gamma_{\alpha}(G)-1$, a simple calculation completes the proof.
By Proposition 2.23, we have the following.
Corollary 2.25. Let $0<\alpha<1$. If G is a γ_{α}-vertex critical graph of order n and size m, then

$$
\gamma_{1-\alpha}(G) \leq\left\lfloor\frac{(1+\alpha) \Delta(G) n+\alpha \Delta(G)-2 \alpha m-\Delta(G))}{\Delta(G)(\alpha+1)}\right\rfloor
$$

References

[1] R. C. Brigham, P. Z. Chinn, and R. D. Dutton, Vertex domination-critical graphs, Networks 18 (1988), 173-179.
[2] F. Dahme, D. Rautenbach, and L. Volkmann, Some remarks on α-domination, Discussiones Mathematicae Graph Theory 24 (2004), 423-430.
[3] F. Dahme, D. Rautenbach, and L. Volkmann, α-Domination perfect trees, Discrete Math. 308 (2008), 3187-3198
[4] J. E. Dunbar, D. G. Hoffman, R. C. Laskar, and L. R. Markus, α-domination, Discrete Math. 211 (2000), 11-26.
[5] J. Fulman, D. Hanson, and G. MacGillivray, Vertex domination-critical graphs, Networks 25 (1995), 41-43.
[6] A. Gagarin, A. Poghosyan, and V. Zverovich, Upper bounds for α-domination parameters, Graphs and Combinatorics 25 (2009), 513-520.
[7] T.W. Haynes, S. T. Hedetniemi and P. J. Slater (eds.), Fundamentals of Domination in graphs, Marcel Dekker, New York, 1998.

[^0]: 2010 Mathematics Subject Classification. 05C69
 Keywords. Domination, α-domination, Critical.
 Received: 27 November 2011; Accepted: 07 March 2012.
 Communicated by Dragan Stevanović.
 Research of the first author is supported by Shahrood University of Technology.
 Email addresses: n.jafarirad@shahroodut.ac.ir (Nader Jafari Rad), volkm@math2.rwth-aachen. de (Lutz Volkmann)

