Filomat 26:6 (2012), 1257–1262 DOI 10.2298/FIL1206257R Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Vertex-removal in α **-domination**

Nader Jafari Rad^a, Lutz Volkmann^b

^aDepartment of Mathematics, Shahrood University of Technology, Shahrood, Iran ^bLehrstuhl II für Mathematik, RWTH Aachen University, Templergraben 55, D-52056 Aachen, Germany

Abstract. Let G = (V, E) be any graph without isolated vertices. For some α with $0 < \alpha \le 1$ and a dominating set *S* of *G*, we say that *S* is an α -dominating set if for any $v \in V - S$, $|N(v) \cap S| \ge \alpha |N(v)|$. The cardinality of a smallest α -dominating set of *G* is called the α -domination number of *G* and is denoted by $\gamma_{\alpha}(G)$. In this paper, we study the effect of vertex removal on α -domination.

1. Introduction

Let G = (V(G), E(G)) be a simple graph of order n. We denote the *open neighborhood* of a vertex v of G by $N_G(v)$, or just N(v), and its *closed neighborhood* by $N_G[v] = N[v]$. For a vertex set $S \subseteq V(G)$, $N(S) = \bigcup_{v \in S} N(v)$ and $N[S] = \bigcup_{v \in S} N[v]$. The *degree* deg(x) of a vertex x denotes the number of neighbors of x in G. The *maximum degree* and *minimum degree* of vertices of a graph G are denoted by $\Delta(G)$ and $\delta(G)$, respectively. A *leaf* is a vertex of degree one and a *support vertex* is one that is adjacent to a leaf. We denote by S(G) the set of all support vertices of G. A set of vertices S in G is a *dominating set* if N[S] = V(G). The *domination number* $\gamma(G)$ of G is the minimum cardinality of a dominating set of G. If S is a subset of V(G), then we denote by G[S] the subgraph of G induced by S. A *subdivided star* is obtained from a star with at least two edges by subdividing every edge exactly once. The *corona cor*(H) of a graph H is that graph obtained from H by adding a pendant edge to each vertex of H. For notation and graph theory terminology in general we follow [7]

Let *G* be a graph with no isolated vertex. For $0 < \alpha \le 1$, a set $S \subseteq V$ is said to α -dominate a graph *G*, if for any vertex $v \in V - S$, $|N(v) \cap S| \ge \alpha |N(v)|$. The minimum cardinality of an α -dominating set is the α -domination number, denoted $\gamma_{\alpha}(G)$. We refer an α -dominating set of cardinality $\gamma_{\alpha}(G)$ as a $\gamma_{\alpha}(G)$ -set. For references on α -domination in graphs see, for example, [2–4, 6]. Dunbar et al. in [4] suggested the study of graphs in which removing of any edge changes the α -domination number.

For a $\gamma_{\alpha}(G)$ -set *S* in a graph *G* and a vertex $x \in S$, if $S - \{x\}$ is an α -dominating set for G - x, then we denote $pn(x, S) = \{x\}$.

We remark that α -domination could be defined for any graph *G*. However in the first introductory paper [4], Dunbar et al. defined it only for graphs with no isolated vertex. So we adopt this definition in this paper.

For many graph parameters, criticality is a fundamental question. Much has been written about graphs where a parameter increases or decreases whenever an edge or vertex is removed or added. For the

²⁰¹⁰ Mathematics Subject Classification. 05C69

Keywords. Domination, α -domination, Critical.

Received: 27 November 2011; Accepted: 07 March 2012.

Communicated by Dragan Stevanović.

Research of the first author is supported by Shahrood University of Technology.

Email addresses: n.jafarirad@shahroodut.ac.ir (Nader Jafari Rad), volkm@math2.rwth-aachen.de (Lutz Volkmann)

domination number, Brigham, Chinn, and Dutton [1] began the study of those graphs where the domination number decreases on the removal of any vertex. They defined a graph *G* to be *domination vertex critical*, or just γ -vertex critical, if removal of any vertex decreases the domination number. This concept is now well studied in domination theory.

In this paper we study the same concept for α -domination. We call a graph *G*, α -domination vertex critical if removal of any vertex decreases the α -domination number.

Observation 1.1. For any graph G of order n, $\gamma_{\alpha}(G) < n$.

Observation 1.2. In any graph $G \neq P_2$, there is a $\gamma_{\alpha}(G)$ -set containing all support vertices of *G*.

Proposition 1.3. ([4]) If $0 < \alpha \le \frac{1}{\Lambda(G)}$, then $\gamma_{\alpha}(G) = \gamma(G)$.

Proposition 1.4. ([4]) If $1 \ge \alpha > 1 - \frac{1}{\Delta(G)}$, then $\gamma_{\alpha}(G) = \alpha_0(G)$.

A set $S \subseteq V(G)$ is a 2-packing of G if for every two different vertices $x, y \in S, N[x] \cap N[y] = \emptyset$.

2. Results

Proposition 2.1. Let G be a graph without isolated vertices. For any vertex $v \in V(G) - S(G)$, and any $0 < \alpha \le 1$, $\gamma_{\alpha}(G) - 1 \le \gamma_{\alpha}(G - v) \le \gamma_{\alpha}(G) + \deg(v) - 1$ and these bounds are sharp.

Proof. Let *G* be a graph without isolated vertices and $v \in V(G) - S(G)$. Let *S* be a $\gamma_{\alpha}(G)$ -set. If $v \notin S$, then *S* is an α -dominating set for G - v, and so $\gamma_{\alpha}(G - v) \leq \gamma_{\alpha}(G)$. Thus we assume that $v \in S$. Then $S \cup N_G(v) - \{v\}$ is an α -dominating set for G - v, and so $\gamma_{\alpha}(G - v) \leq \gamma_{\alpha}(G) + deg(v) - 1$. Thus the upper bound follows.

For the lower bound let *D* be a $\gamma_{\alpha}(G - v)$ -set. Then $D \cup \{v\}$ is an α -dominating set for *G*, and so the lower bound follows.

To see the sharpness of the upper bound, let *x* be the center of a star $K_{1,k}$ for $k \ge 2$, and $\alpha \le \frac{1}{2}$. Let *G* be obtained from $K_{1,k}$ by subdividing each edge of $K_{1,k}$ three times. Note the *G* has 3k vertices of degree two, *k* vertices of degree one, and a vertex of degree *k* (the vertex *x*). Now it is easy to see that $\gamma_{\alpha}(G) = k + 1$, and $\gamma_{\alpha}(G - x) = 2k$. To see the sharpness of the lower bound consider a cycle C_4 . \Box

We call a graph G, α -domination vertex critical, or just γ_{α} -vertex critical if for any $v \in V(G) - S(G)$, $\gamma_{\alpha}(G - v) < \gamma_{\alpha}(G)$.

We note that if for a graph *G* with no isolated vertex, $V(G) - S(G) = \emptyset$, then *G* is α -domination vertex critical. Thus P_2 is obviously α -domination vertex critical, since $V(P_2) - S(P_2) = \emptyset$.

2.1. γ_{α} -vertex critical graphs

In this subsection we present our results on γ_{α} -vertex critical graphs.

Proposition 2.2. A graph G is γ_{α} -vertex critical if and only if for any non-support vertex x, there is a $\gamma_{\alpha}(G)$ -set S containing x such that $pn(x, S) = \{x\}$.

Proof. (\Rightarrow) Let *G* be a γ_{α} -vertex critical graph and $x \notin S(G)$. Then $\gamma_{\alpha}(G-x) = \gamma_{\alpha}(G)-1$. Let *S* be a $\gamma_{\alpha}(G-x)$ -set. It is obvious that $D = S \cup \{x\}$ is an α -dominating set for *G* and $pn(x, D) = \{x\}$.

(⇐) Let $x \notin S(G)$ and let *S* be a $\gamma_{\alpha}(G)$ -set containing *x* such that $pn(x, S) = \{x\}$. Then $S - \{x\}$ is an α -dominating set for G - x implying that $\gamma_{\alpha}(G - x) < \gamma_{\alpha}(G)$. Thus *G* is γ_{α} -vertex critical. \Box

Since $\gamma_{\alpha}(K_{1,n}) = 1$, we obtain the following.

Lemma 2.3. $K_{1,n}$ is γ_{α} -vertex critical if and only if n = 1.

Proposition 2.4. Every support vertex in a γ_{α} -vertex critical graph is adjacent to exactly one leaf.

Proof. Let *G* be a γ_{α} -vertex critical. Assume that there is a support vertex *x* such *x* is adjacent to two leaves x_1 and x_2 . By Lemma 2.3, we may assume that N(x) contains a vertex of degree at least two. Then *x* is a support vertex in $G - x_1$. By Observation 1.2, let *S* be a $\gamma_{\alpha}(G - x_1)$ -set such that $x \in S$. Then *S* is an α -dominating set for *G*, a contradiction. \Box

Observation 2.5. A subdivided star is not γ_{α} -vertex critical.

Theorem 2.6. Let *H* be a connected graph of order at least two. Then G = cor(H) is γ_{α} -vertex critical.

Proof. Since G = cor(H), each vertex x of G is either a leaf a support vertex adjacent to exactly one leaf. We observe that $\gamma_{\alpha}(G) = |S(G)|$. Let x be a leaf of G. We show that $\gamma_{\alpha}(G-x) < \gamma_{\alpha}(G)$. Let y be the support vertex adjacent to x. Since H is connected of order at least two, there is a vertex $z \in N(y)$ such that deg(z) > 1. Then z is a support vertex. Now $S(G) - \{y\}$ is an α -dominating set for G - x, implying that $\gamma_{\alpha}(G - x) < \gamma_{\alpha}(G)$. Thus G is γ_{α} -vertex critical. \Box

Let \mathcal{T} be the class of all trees T such that $T \in \mathcal{T}$ if and only if: (1) $T = P_2$, or

(2) $diam(T) \ge 3$, and for any vertex x of T either x is a leaf or x is a support adjacent to exactly one leaf.

Theorem 2.7. A tree T is γ_{α} -vertex critical for $0 < \alpha \leq \frac{1}{\Delta(T)}$, if and only if $T \in \mathcal{T}$.

Proof. (\Leftarrow) It is obvious that P_2 is γ_{α} -vertex critical. If $T \neq P_2$ is a tree in \mathcal{T} , then Theorem 2.6 implies that T is γ_{α} -vertex critical.

 \implies Let *T* be a γ_{α} -vertex critical tree. If diam(T) = 1, then $T = P_2$ and so $T \in \mathcal{T}$. If diam(T) = 2, then by Lemma 2.3, *T* is not γ_{α} -domination vertex critical. Thus we assume that $diam(T) \ge 3$. We show that any vertex of *T* is either a leaf or a support vertex.

Let *y* be vertex of *T* such that *y* is neither a leaf nor a support vertex. If each leaf of *T* is at distance two from *y*, then by Proposition 2.4, *y* is the center of a subdivided star, a contradiction to Observation 2.5. Thus assume that there is a leaf *x* in *T* such that $d(x, y) \ge 3$. Let d(x, y) = t and $P : x - x_1 - x_2 - ... - x_t = y$ be the shortest path between *x* and *y*.

If x_2 is not a support vertex, then by Proposition 2.2, there is a $\gamma_a(T)$ -set S containing x_2 such that $pn(x_2, S) = \{x_2\}$. But then $\{x_1, x\} \cap S \neq \emptyset$. Since $\alpha \Delta(T) \leq 1$, we see that $(S - \{x, x_2\}) \cup \{x_1\}$ is an α -dominating set for T, a contradiction. Thus x_2 is a support vertex. Let y_2 be a leaf adjacent to x_2 . If x_3 is not a support vertex, then by Proposition 2.2, there is a $\gamma_a(T)$ -set S containing x_3 such that $pn(x_3, S) = \{x_3\}$. But $S \cap \{x_2, y_2\} \neq \emptyset$. Then $S_1 = (S - \{y_2\}) \cup \{x_2\}$ is a $\gamma_a(T)$ -set such that $pn(x_3, S_1) = \{x_3\}$ and $x_2 \in S_1$. So $S_1 - \{x_3\}$ is an α -dominating set for T, a contradiction. Thus x_3 is a support vertex. By continuing this process we obtain that $x_i \in S(T)$ for i = 1, 2, ..., t - 1. By Proposition 2.2, there is a $\gamma_a(T)$ -set D containing y such that $P_n(y, D) = \{y\}$. We may assume that $x_{t-1} \in D$, since $x_{t-1} \in S(T)$. Then $D - \{y\}$ is an α -dominating set for T, a contradiction.

Problem 2.8. *Characterize* γ_{α} *-vertex critical trees for* $\alpha > \frac{1}{\Delta(T)}$ *.*

Proposition 2.9. ([4]) If $\frac{1}{2} < \alpha \le 1$, then: (1) $\gamma_{\alpha}(P_n) = \lfloor \frac{n}{2} \rfloor$. (2) $\gamma_{\alpha}(C_n) = \lceil \frac{n}{2} \rceil$.

Proposition 2.10. ([4]) If $0 < \alpha \leq \frac{1}{2}$, then $\gamma_{\alpha}(P_n) = \gamma_{\alpha}(C_n) = \lceil \frac{n}{3} \rceil$.

Proposition 2.11. (1) For $0 < \alpha \le \frac{1}{2}$, the path P_n is γ_{α} -vertex critical if and only if $n \in \{2, 4\}$. (2) For $\frac{1}{2} < \alpha \le 1$, the path P_n is γ_{α} -vertex critical if and only if n = 2k.

Proof. If $0 < \alpha \le \frac{1}{2}$, then the result follows from Theorem 2.7.

Assume next that $\frac{1}{2} < \alpha \le 1$. By Proposition 2.9, $\gamma_{\alpha}(P_n) = \lfloor \frac{n}{2} \rfloor$. Let n = 2k for some integer $k \ge 1$. It is easy to see that P_2 and P_4 are γ_{α} -vertex critical. Thus we assume now that $n \ge 6$. Let x be a vertex such that x is not a support vertex. If x is a leaf then by Proposition 2.9,

$$\gamma_{\alpha}(P_n-x)=\gamma_{\alpha}(P_{n-1})=\left\lfloor\frac{n-1}{2}\right\rfloor=\left\lfloor\frac{n}{2}\right\rfloor-1<\left\lfloor\frac{n}{2}\right\rfloor.$$

Thus assume now that *x* is not a leaf. Let $G = P_n - x$. Then *G* has two components P_{n_1} and P_{n_2} . Clearly we may assume that n_1 is even and n_2 is odd. Then

$$\gamma_{\alpha}(G) = \gamma_{\alpha}(P_{n_1}) + \gamma_{\alpha}(P_{n_2}) = \left\lfloor \frac{n_1}{2} \right\rfloor + \left\lfloor \frac{n_2}{2} \right\rfloor.$$

A simple calculation shows that $\lfloor \frac{n_1}{2} \rfloor + \lfloor \frac{n_2}{2} \rfloor < \lfloor \frac{n}{2} \rfloor$. Thus P_n is γ_{α} -vertex critical.

Finally, we show that P_n is not γ_{α} -vertex critical if n is odd. Let n be odd and let x be a leaf. Then $\gamma_{\alpha}(P_n) = \gamma_{\alpha}(P_{n-1})$, since $\lfloor \frac{n}{2} \rfloor = \lfloor \frac{n-1}{2} \rfloor$, as desired. \Box

Using Propositions 2.9 and 2.10, we obtain the following proposition similarly.

Proposition 2.12. (1) For $0 < \alpha \le \frac{1}{2}$, the cycle C_n is γ_{α} -vertex critical if and only if $n \equiv 1 \pmod{3}$. (2) For $\frac{1}{2} < \alpha \le 1$, the cycle C_n is always γ_{α} -vertex critical.

Observation 2.13. ([4]) If K_n is the complete graph of order n, then $\gamma_{\alpha}(K_n) = \lceil \alpha(n-1) \rceil$.

Proposition 2.14. A complete graph K_n of order $n \ge 2$ is γ_{α} -vertex critical if and only if

$$\alpha > \frac{\lceil \alpha(n-2) \rceil}{n-1}.$$

Proof. By Observation 2.13, the complete graph K_n is γ_{α} -vertex critical if and only if $\lceil \alpha(n-2) \rceil < \lceil \alpha(n-1) \rceil$. This is equivalent with $\lceil \alpha(n-2) \rceil < \alpha(n-1)$, and this is equivalent with $\alpha > \lceil \alpha(n-2) \rceil / (n-1)$.

Proposition 2.15. ([4]) If $K_{m,n}$ is a complete bipartite graph with $1 \le m \le n$, then $\gamma_{\alpha}(K_{m,n}) = \min\{m, \lceil \alpha m \rceil + \lceil \alpha n \rceil\}$.

Proposition 2.16. If $2 \le m < n$, then $K_{m,n}$ is γ_{α} -vertex critical if and only if $m \ge \lceil \alpha m \rceil + \lceil \alpha n \rceil$,

$$\alpha > \frac{\lceil \alpha(m-1) \rceil}{m}$$
 and $\alpha > \frac{\lceil \alpha(n-1) \rceil}{n}$

Proof. Let *X* and *Y* be the partite sets of $G = K_{m,n}$ with |X| = m and |Y| = n. First assume that $m < \lceil \alpha m \rceil + \lceil \alpha n \rceil$. By Proposition 2.15, $\gamma_{\alpha}(G) = m$. Let *S* be a $\gamma_{\alpha}(G - y)$ -set, where $y \in Y$. Then Proposition 2.15 implies

$$\begin{aligned} |S| &= \gamma_{\alpha}(G - y) &= \gamma_{\alpha}(K_{m,n-1}) \\ &= \min\{m, \lceil \alpha m \rceil + \lceil \alpha(n-1) \rceil\} \\ &\geq \min\{m, \lceil \alpha m \rceil + \lceil \alpha n \rceil - 1\} \ge m, \end{aligned}$$

and therefore *G* is not γ_{α} -vertex critical in that case.

Next assume that $m \ge \lceil \alpha m \rceil + \lceil \alpha n \rceil$. Then $\gamma_{\alpha}(G) = \lceil \alpha m \rceil + \lceil \alpha n \rceil$. Let S_1 be a $\gamma_{\alpha}(G - y)$ -set, where $y \in Y$, and let S_2 be a $\gamma_{\alpha}(G - x)$ -set, where $x \in X$. Then similar to the proof of Proposition 2.14, we observe that G is γ_{α} -vertex critical if and only if $\alpha > \lceil \alpha(m - 1) \rceil / m$ and $\alpha > \lceil \alpha(n - 1) \rceil / n$. \Box

Proposition 2.17. If $2 \le m$, then $K_{m,m}$ is γ_{α} -vertex critical if and only if $m \le 2\lceil \alpha m \rceil$ or $m > 2\lceil \alpha m \rceil$ and

$$\alpha > \frac{\lceil \alpha(m-1) \rceil}{m}.$$

Proof. Let $G = K_{m,m}$. First assume that $m \le 2\lceil \alpha m \rceil$. By Proposition 2.15, $\gamma_{\alpha}(G) = m$. Let *S* be a $\gamma_{\alpha}(G - x)$ -set, where $x \in V(G)$. Then Proposition 2.15 implies

$$\begin{aligned} |S| &= \gamma_{\alpha}(G - x) &= \gamma_{\alpha}(K_{m-1,m}) \\ &= \min\{m - 1, \lceil \alpha m \rceil + \lceil \alpha(m-1) \rceil\} \le m - 1. \end{aligned}$$

and therefore *G* is γ_{α} -vertex critical in that case.

Next assume that $m > 2\lceil \alpha m \rceil$. Then $\gamma_{\alpha}(G) = 2\lceil \alpha m \rceil$. Let *S* be a $\gamma_{\alpha}(G-x)$ -set, where $x \in V(G)$. Then similar to the proof of Proposition 2.14, we observe that *G* is γ_{α} -vertex critical if and only if $\alpha > \lceil \alpha(m-1) \rceil / m$. \Box

Proposition 2.18. There is no induced-subgraph characterization for γ_{α} -vertex critical graphs.

Proof. Let *G* be an arbitrary graph, and H = cor(G). Clearly, *G* is an induced subgraph of *H*. Then $\gamma_{\alpha}(H) = |V(G)|$, and V(G) is a $\gamma_{\alpha}(H)$ -set. Let *v* be a leaf of *H* and $u \in N(v)$. Then $V(G) - \{u\}$ is an α -dominating set for H - v, implying that $\gamma_{\alpha}(H - v) < \gamma_{\alpha}(H)$. Thus *H* is γ_{α} -vertex critical. \Box

Theorem 2.19. ([5]) If G is a γ -vertex critical graph of order $n = (\gamma(G) - 1)(\Delta(G) + 1) + 1$, then G is regular.

Theorem 2.20. If G is a γ_{α} -vertex critical graph of order n, then $n \leq (\gamma_{\alpha}(G) - 1)(\Delta(G) + 1) + 1$. Furthermore, if $\delta(G) > 1$ and equality holds, then G is regular.

Proof. Let *G* be a γ_{α} -vertex critical graph of order *n*, and let *S* be a $\gamma_{\alpha}(G - v)$ -set, where $v \in V(G) - S(G)$. Any vertex of *S* dominates at most $1 + \Delta(G)$ vertices of *G* including itself. Thus *S* dominates at most $(\gamma_{\alpha}(G) - 1)(\Delta(G) + 1) \ge n - 1$ vertices of *G*, as desired.

Now assume that $n = (\gamma_{\alpha}(G) - 1)(\Delta(G) + 1) + 1$. Thus any vertex of *S* dominates exactly $1 + \Delta(G)$ vertices of *G*, and so has degree $\Delta(G)$. Furthermore *S* is a 2-packing. Let $u \in N(v) - S$. Since $\delta(G) > 1$, the vertex $u \notin V(G) - S(G)$. Let *D* be a $\gamma_{\alpha}(G - u)$ -set. Then $|D| = \gamma_{\alpha}(G) - 1$, and, as before, we obtain that any vertex of *D* is of degree $\Delta(G)$, and *D* is a 2-packing. Since *S* is a $\gamma_{\alpha}(G - v)$ -set, *u* is adjacent to a vertex $a \in S$, and now $deg_{G-u}(a) < \Delta(G)$, and so $a \notin D$. We deduce that $D - S \neq \emptyset$. Also clearly $v \notin D$. Let $w \in D - S$. Since *S* is a $\gamma_{\alpha}(G - v)$ -set, we obtain that $1 = |N(w) \cap S| \ge \alpha deg(w) = \alpha \Delta(G)$, and so $\alpha \le \frac{1}{\Delta(G)}$. By Proposition 1.3, $\gamma_{\alpha}(G) = \gamma(G)$, and also $\gamma_{\alpha}(G - a) = \gamma(G - a)$ for any vertex *a*. Thus *G* is γ -vertex critical. By Theorem 2.19, *G* is regular. \Box

Fulman et al. [5] proved that if *G* is a γ -vertex critical graph, then $diam(G) \le 2(\gamma(G) - 1)$. However with a similar proof we obtain the following.

Proposition 2.21. If *G* is a γ_{α} -vertex critical graph, then diam(*G*) $\leq 2(\gamma_{\alpha}(G) - 1)$.

Theorem 2.22. If G is a γ_{α} -vertex critical graph of order n, then for any vertex $v \in V(G) - S(G)$,

$$\gamma_{\alpha}(G) \ge \left[\frac{\alpha\delta(G-v)n + \Delta(G)}{\alpha\delta(G-v) + \Delta(G)}\right]$$

Proof. Let *G* be a γ_{α} -vertex critical graph of order *n*, and let $v \in V(G) - S(G)$. Let H = G - v and let *S* be a $\gamma_{\alpha}(H)$ -set. Then $|S| = \gamma_{\alpha}(G) - 1$. Let *M* be the set of edges between *S* and V(H) - S. By counting the edges from *S* to V(H) - S, we obtain that

$$|M| \le \sum_{v \in S} deg(v) \le |S| \Delta(G).$$

On the other hand, since *S* is an α -dominating set for *H*, we find that

$$|M| \geq \sum_{v \in V(H) - S} \alpha deg_H(v) \geq \alpha \delta(H)(|V(H)| - |S|).$$

Now we obtain

$$S|\Delta(G) \ge \alpha \delta(H)(n-1-|S|).$$

Since $|S| = \gamma_{\alpha}(G) - 1$ and H = G - v, a simple calculation imply that

$$\gamma_{\alpha}(G) \ge \frac{\alpha \delta(G-v)n + \Delta(G)}{\alpha \delta(G-v) + \Delta(G)}$$

Proposition 2.23. ([4]) If $0 < \alpha < 1$, then for any graph G, $\gamma_{\alpha}(G) + \gamma_{1-\alpha}(G) \leq n$.

Theorem 2.24. If G is a γ_{α} -vertex critical graph of order n and size m, then

$$\gamma_{\alpha}(G) \ge \left\lceil \frac{2\alpha m - \alpha \Delta(G) + \Delta(G)}{\Delta(G)(\alpha + 1)} \right\rceil$$

Proof. Let *G* be a γ_{α} -vertex critical graph of order *n* and size *m*. Let $v \in V(G) - S(G)$ and H = G - v. Let *S* be a $\gamma_{\alpha}(H)$ -set. Then $\sum_{v \in S} deg_H(v) \ge \sum_{v \in V(H)-S} \alpha deg_H(v)$. Now

$$\begin{aligned} (\alpha+1)|S|\Delta(G) &\geq \alpha \sum_{v \in S} deg_H(v) + \sum_{v \in S} deg_H(v) \\ &\geq \alpha \sum_{v \in S} deg_H(v) + \sum_{v \in V(H)-S} \alpha deg_H(v) \\ &\geq \alpha \sum_{v \in V(H)} deg_H(v) \\ &= \alpha(2m - 2deg_G(v)) \geq \alpha(2m - 2\Delta(G)). \end{aligned}$$

Since $|S| = \gamma_{\alpha}(G) - 1$, a simple calculation completes the proof. \Box

By Proposition 2.23, we have the following.

Corollary 2.25. Let $0 < \alpha < 1$. If G is a γ_{α} -vertex critical graph of order n and size m, then

$$\gamma_{1-\alpha}(G) \leq \left\lfloor \frac{(1+\alpha)\Delta(G)n + \alpha\Delta(G) - 2\alpha m - \Delta(G))}{\Delta(G)(\alpha+1)} \right\rfloor.$$

References

- [1] R. C. Brigham, P. Z. Chinn, and R. D. Dutton, Vertex domination-critical graphs, Networks 18 (1988), 173–179.
- [2] F. Dahme, D. Rautenbach, and L. Volkmann, Some remarks on α-domination, Discussiones Mathematicae Graph Theory 24 (2004), 423–430.
- [3] F. Dahme, D. Rautenbach, and L. Volkmann, *α-Domination perfect trees*, Discrete Math. **308** (2008), 3187–3198.
- [4] J. E. Dunbar, D. G. Hoffman, R. C. Laskar, and L. R. Markus, *α-domination*, Discrete Math. 211 (2000), 11–26.
- [5] J. Fulman, D. Hanson, and G. MacGillivray, Vertex domination-critical graphs, Networks 25 (1995), 41–43.
- [6] A. Gagarin, A. Poghosyan, and V. Zverovich, Upper bounds for α-domination parameters, Graphs and Combinatorics 25 (2009), 513–520.
- [7] T.W. Haynes, S. T. Hedetniemi and P. J. Slater (eds.), Fundamentals of Domination in graphs, Marcel Dekker, New York, 1998.