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Abstract. In this paper, we consider three classes of bounded linear operators on a topological vector space
with respect to three different topologies which are introduced by Troitsky. We obtain some properties for
the spectral radii of a linear operator on a topological vector space. We find some sufficient conditions for
the completeness of these classes of operators. Finally, as a special application, we deduce some sufficient
conditions for invertibility of a bounded linear operator.

1. Introduction and preliminaries

Troitsky in [9], presented some various types of bounded linear operators on a topological vector space,
see Definition 1.1 below. Also, he endowed each class of them with an appropriate natural operator topology
and developed a spectral theory for these classes of linear operators.

Definition 1.1. Let X and Y be topological vector spaces. A linear operator T : X→ Y is said to be:

i. nb-bounded if there exists some zero neighborhood U ⊆ X such that T(U) is bounded in Y;

ii. bb-bounded if for every bounded subset B ⊆ X, T(B) is bounded in Y.

The definition of Edwards in [3] corresponds with the notion of bb-boundedness, while the definition
of Schaefer in [8] corresponds with the notion of nb-boundedness. However, these definitions are far from
being equivalent (see [7, 9]). The most famous examples of topological vector spaces are normed linear
spaces. Nevertheless, there are topological vector spaces whose topology does not arise from a norm but
are still of interest in analysis. For example, the space of holomorphic functions on an open domain, spaces
of infinitely differentiable functions, the Schwartz spaces, and spaces of test functions and the spaces of
distributions on them. So, it is natural to investigate bounded operators on general topological vector
spaces and consider some known results for bounded (continuous) operators on a normed linear space
for different types of bounded operators on a topological vector space. The class of all nb-bounded linear
operators from X into Y is denoted by Bn(X,Y). This linear space is equipped with the topology of uniform
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convergence on some zero neighborhood, that means a net (Tα) of nb-bounded operators converges to zero
in this topology if there exists a zero neighborhood U ⊆ X such that for each zero neighborhood V ⊆ Y there
is an α0 with Tα(U) ⊆ V for every α ≥ α0. The class of all bb-bounded operators from X into Y is denoted by
Bb(X,Y) and is endowed with the topology of uniform convergence on bounded sets. Recall that a net (Tα)
of bb-bounded operators converges uniformly to zero on a bounded set B ⊆ X if for each zero neighborhood
V ⊆ Y there exists an α0 with Tα(B) ⊆ V for all α ≥ α0. The class of all continuous operators from X into
Y is denoted by Bc(X,Y) and is assigned with the topology of equicontinuous convergence, namely, a net
(Tα) of continuous operators converges equicontinuously to zero if for each zero neighborhood V ⊆ Y there
is a zero neighborhood U ⊆ X such that for every ε > 0 there is an α0 with Tα(U) ⊆ εV for all α ≥ α0.
The symbols Bn(X), Bb(X), and Bc(X) are given for Bn(X,X), Bb(X,X), and Bc(X,X), respectively. In [9], it
is shown that Bn(X) ⊆ Bc(X) ⊆ Bb(X). Note that the above inclusions become equalities when X is locally
bounded,[9]. In [11], it has been proved that each class of bounded linear operators, with respect to the
assumed topology, forms a topological algebra. Troitsky in [9], by using the canonical topology of each
class of bounded linear operators, introduced some different aspects of spectral radii for a linear operator
on a topological vector space and deduced some relations between them. In particular, he showed that for
a continuous linear operator on a sequentially complete locally convex topological vector space, each of the
defined spectral radii is greater or equal to the corresponding geometrical radius of the spectrum in each
of the topological algebras Bn(X), Bb(X), and Bc(X), respectively [9, Sections 3, 4, 5]. As a main result, we
develop some known properties for the spectral radius of a bounded operator on a normed linear space
to these spectral radii of a linear operator on a topological vector space. Also, we show that each of the
algebras Bn(X), Bb(X), and Bc(X) on a locally convex topological vector space X, with respect to its given
topology, is complete if and only if so is X. It is well known that for a bounded linear operator T on a
Banach space, (I − T) is invertible whenever r(T) < 1, where r(.) denotes the spectral radius and I is the
identity operator. Here, by assuming the corresponding spectral radius, we generalize this result to each
class of bounded linear operators on a complete locally convex topological vector space. For more about
these classes of linear operators, their corresponding operator topologies, and different spectral radii, see
[2, 4, 5, 9, 10]. Also, for further information about topological vector spaces and the related notions, the
reader is referred to [1, 3, 5, 7–9, 11].

Throughout the paper, the scalar field for every vector space is either the complex field C or the real
field R.

2. Spectral radii

Troitsky in [9], introduced different types of spectral radii for a linear operator on a topological vector
space, see Definition 2.1 below. What follows, we investigate some properties for these spectral radii.

Definition 2.1. For a linear operator T on a topological vector space X, consider the following spectral radii.

(i) rnb(T) = inf{ν > 0 : Tn

νn → 0 uniformly on some zero neighborhood };

(ii) rbb(T) = inf{ν > 0 : Tn

νn → 0 uniformly on every bounded set };

(iii) rc(T) = inf{ν > 0 : Tn

νn → 0 equicontinuously }.

In [9], it has been proved that for a linear operator T on a topological vector space X, rbb(T) ≤ rc(T) ≤
rnb(T). In general, these numbers are far from being equal. Since nb-boundedness is the strongest of the
boundedness conditions for a linear operator on a general topological vector space, some special results
can be obtained for nb-bounded linear operators while these results do not hold for common continuous
operators. An interesting result is that for an nb-bounded linear operator T on a sequentially complete
locally convex topological vector space, rnb(T) is equal to the usual geometrical radius of the spectrum, [9,
Section 6].

In the following theorem, part (iii) is [9, Lemma 4.8] which is proved in a different way.
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Theorem 2.2. If T and S are two commuting linear operators on a topological vector space X, then

(i) rnb(TS) ≤ rnb(T)rnb(S);

(ii) rbb(TS) ≤ rbb(T)rbb(S);

(iii) rc(TS) ≤ rc(T)rc(S).

Proof. (i) Let W ⊆ X be an arbitrary zero neighborhood. Suppose ν > rnb(T) and µ > rnb(S). There is a zero
neighborhood U0 such that the sequences ( Tn

νn ) and ( Sn

µn ) converge to zero uniformly on U0. Find n0 ∈Nwith
Sn

µn (U0) ⊆ U0 for all n > n0. Choose n1 ∈ N such that Tn

νn (U0) ⊆ W for all n > n1. Therefore for sufficiently
large n ∈N,

(TS)n

(νµ)n (U0) =
TnSn

νnµn (U0) ⊆ Tn

νn (U0) ⊆W.

It follows that νµ > rnb(TS) and so rnb(TS) ≤ rnb(T)rnb(S).
(ii) Fix a bounded set B ⊆ X. Suppose ν > rbb(T) and µ > rbb(S). Since the sequence ( Sn

µn ) converges to

zero uniformly on B, it is uniformly bounded and so E = ∪∞n=1
Sn

µn (B) is a bounded set. Therefore, there is

n2 ∈Nwith Tn

νn (E) ⊆W for all n > n2. Thus

(TS)n

(νµ)n (B) =
TnSn

νnµn (B) ⊆ Tn

νn (E) ⊆W.

This shows that νµ > rbb(TS) and so rbb(TS) ≤ rbb(T)rbb(S).
(iii) Suppose ν > rc(T) and µ > rc(S). There exists some zero neighborhood U1 such that for a given

ε > 0 there is n3 ∈ N with Tn

νn (U1) ⊆ εW for all n > n3. Find a zero neighborhood U2 and n4 ∈ N such that
Sn

µn (U2) ⊆ U1 for every n > n4. So, for sufficiently large n ∈N, we have

(TS)n

(νµ)n (U2) =
TnSn

νnµn (U2) ⊆ Tn

νn (U1) ⊆ εW.

This implies that νµ > rc(TS) and so rc(TS) ≤ rc(T)rc(S).

We know that for a bounded linear operator T on a Banach space X, r(Tn) = r(T)n, where r(.) denotes
the usual spectral radius for bounded operators. We show that the same result holds for different spectral
radii when T is assumed to be continuous and each spectral radius is assumed to be finite.

Theorem 2.3. Suppose T is a continuous linear operator on a topological vector space X. Then for each k ∈N,

(i) rnb(T)k ≤ rnb(Tk);

(ii) rbb(T)k ≤ rbb(Tk);

(iii) rc(T)k ≤ rc(Tk).

Proof. (i) Let W ⊆ X be an arbitrary zero neighborhood. For each m > k, we can find positive integers
p, q with m = pk + q that 0 ≤ q < k. Suppose ν > rnb(Tk). There exists a zero neighborhood U ⊆ X such
that (Tk)n

νn converges to zero uniformly on U. There is a zero neighborhood U0 with Tq(U0) ⊆ U for all
0 ≤ q < k. Choose positive scalar αν,nb such that αν,nb > max{ 1

ν
q
k

; 0 ≤ q < k}. Find a zero neighborhood W1

with αν,nbW1 ⊆W. There is n0 ∈N such that Tkn

νn (U) ⊆W1 for all n > n0. So,

Tm

ν
m
k

(U0) =
Tpk+q

νp+ q
k

(U0) ⊆ 1

ν
q
k

Tpk(Tq(U0))
νp ⊆ 1

ν
q
k

Tpk(U)
νp ⊆ αν,nbW1 ⊆W,
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for sufficiently large m, p. Therefore, ν
1
k > rnb(T) and this proves (i).

(ii) Suppose ν > rbb(Tk). Fix a bounded set B ⊆ X. Choose positive scalar αν,bb with αν,bb > max{ 1

ν
q
k

; 0 ≤
q < k}. Take a zero neighborhood W2 such that αν,bbW2 ⊆ W. Since for every 0 ≤ q < k, Tq(B) is bounded,
E = ∪k

i=0Ti(B) is bounded in X. There is n1 ∈Nwith Tkn

νn (E) ⊆W2 for all n > n1. Thus

Tm

ν
m
k

(B) =
Tpk+q

νp+ q
k

(B) ⊆ 1

ν
q
k

Tpk(Tq(B))
νp ⊆ 1

ν
q
k

Tpk(E)
νp ⊆ αν,bbW2 ⊆W,

for sufficiently large m, p. Therefore, ν
1
k > rbb(T) and so rbb(T)k ≤ rbb(Tk).

(iii) Suppose ν > rc(Tk). Choose positive scalar αν,c with αν,c > max{ 1

ν
q
k

; 0 ≤ q < k}. Take a zero

neighborhood W3 such that αν,cW3 ⊆ W. There exists a zero neighborhood U1 such that for a given ε > 0
there is n2 ∈ N with Tkn

νn (U1) ⊆ εW3 for each n > n2. Choose a zero neighborhood U2 such that Tq(U2) ⊆ U1
for all 0 ≤ q < k. Therefore

Tm

ν
m
k

(U2) =
Tpk+q

νp+ q
k

(U2) ⊆ 1

ν
q
k

Tpk(Tq(U2))
νp ⊆ 1

ν
q
k

Tpk(U1)
νp ⊆ αν,cεW3 ⊆ εW,

for sufficiently large m, p.

Corollary 2.4. Suppose T is a continuous operator on a topological vector space X. Then for each k ∈N,

(i) rnb(Tk) = rnb(T)k;

(ii) rbb(Tk) = rbb(T)k;

(iii) rc(Tk) = rc(T)k.

In [9], it has been proved that for two commuting continuous linear operators T and S on a locally
convex space X, rc(T + S) ≤ rc(T) + rc(S) (see Theorem 4.9). On the other hand, by Proposition 6.7 in [9], for
an nb-bounded linear operator on a topological vector space, all of the spectral radii will be equal. So, we
have the following.

Proposition 2.5. Suppose T and S are two commuting nb-bounded linear operators on a locally convex space. Then
rnb(T + S) ≤ rnb(T) + rnb(S).

The proof of the following proposition follows the same line as in [9, Theorem 4.9]. We give the details
for the sake of convenience.

Proposition 2.6. Suppose T and S are two commuting bb-bounded linear operators on a locally convex space. Then
rbb(T + S) ≤ rbb(T) + rbb(S).

Proof. Without loss of generality, we may assume that rbb(T) and rbb(S) are finite. Suppose that η >
rbb(T) + rbb(S) and take µ > rbb(T) and ν > rbb(S) such that η > µ + ν. Fix a bounded set B ⊆ X. Since the
sequence ( Sn

µn ) converges to zero uniformly on B, it is uniformly bounded. Thus for a fixed seminorm p, we
can find n0 ∈ N with p(TnSm(B)) < µnνm for all n,m > n0. Split η into a product of two terms η = η1η2 with
η1 > 1 while still η2 > µ + ν. If n > 2n0, we have

p(
1
ηn (T + S)n(B)) ≤ 1

ηn

n0∑
k=0

C(n, k)p(TkSn−k(B)) +
1
ηn

n−n0∑
k=n0+1

C(n, k)p(TkSn−k(B))

+

n∑
k=n−n0+1

C(n, k)p(TkSn−k(B)).
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Since C(n, k) = (n−k+1)...(n−1).n
1.2...(k−1).k ≤ nk and

∑n
k=0 C(n, k)µkνn−k = (µ + ν)n, we have

p(
1
ηn (T + S)n(B)) ≤

nn
0

ηn

n0∑
k=0

p(TkSn−k(B)) +
1
ηn

n−n0∑
k=n0+1

C(n, k)µkνn−k +
nn

0

ηn

n∑
k=n−n0+1

p(TkSn−k(B))

≤
nn

0

η1
n .

1
η2

n

n0∑
k=0

(p(Sn−kTk(B)) + p(Tn−kSk(B))) +
(µ + ν)n

ηn .

Notice that lim (µ+ν)n

ηn = 0 and lim
nn

0
ηn

1
= 0. Since T is bb-bounded, (Tk(B)) is bounded for each fixed k, so that

lim 1
ηn−k

2
Sn−k(Tk(B)) = 0. It follows that the expression 1

ηn
2
p(Sn−k(Tk(B))) is uniformly bounded for sufficiently

large n. Similarly, for every k between 0 and n0, the expression 1
ηn

2
p(Tn−k(Sk(B))) is uniformly bounded for

sufficiently large n ∈N. So, there is n1 ∈N with

1
ηn

2

n0∑
k=0

(p(Sn−kTk(B)) + p(Tn−kSk(B)))

is uniformly bounded for all n > n1. This shows that lim p( 1
ηn (T + S)n(B)) = 0, so that η > rbb(T + S).

Theorem 2.7. Suppose T and S are two continuous linear operators on a topological vector space X. Then,

(i) rnb(TS) = rnb(ST);

(ii) rbb(TS) = rbb(ST);

(iii) rc(TS) = rc(ST).

Proof. (i) Let W ⊆ X be an arbitrary zero neighborhood and ν > rnb(ST). There is a zero neighborhood
U0 ⊆ X such that (ST)n

νn converges to zero uniformly on U0. Choose a zero neighborhood U1 such that

S(U1) ⊆ U0. Find a zero neighborhood U2 ⊆ X with T
ν (U2) ⊆ W. Choose n0 ∈ N such that (ST)n−1

νn−1 (U0) ⊆ U2
for all n > n0. Thus,

(TS)n

νn (U1) =
T(ST)n−1S
ννn−1 (U1) ⊆ T(ST)n−1

ννn−1 (U0) ⊆ T
ν

(U2) ⊆W.

It follows that rnb(TS) ≤ rnb(ST). By a similar argument, we get rnb(ST) ≤ rnb(TS) and this proves (i).
(ii) Fix a bounded set B ⊆ X. Suppose ν > rbb(ST). There is a zero neighborhood U3 such that T

ν (U3) ⊆W.

Since S(B) is bounded, there is n1 ∈N with (ST)n−1

νn−1 (S(B)) ⊆ U3 for all n > n1. Therefore,

(TS)n

νn (B) =
T(ST)n−1S
ννn−1 (B) ⊆ T

ν
(U3) ⊆W.

So, rbb(TS) ≤ rbb(ST). Similarly, rbb(ST) ≤ rbb(TS) and this proves (ii).
(iii) Assume ν > rc(ST) and ε > 0 is given. Find a zero neighborhood U4 with T

ν (U4) ⊆ εW. There are a

zero neighborhood U5 and an n2 such that (ST)n−1

νn−1 (U5) ⊆ U4 for all n > n2. Choose a zero neighborhood U6
with S(U6) ⊆ U5 and so,

(TS)n

νn (U6) =
T(ST)n−1S
ννn−1 (U6) ⊆ T(ST)n−1

ννn−1 (U5) ⊆ T
ν

(U4) ⊆ εW.

This shows that rc(TS) ≤ rc(ST). A similar argument shows that rc(ST) ≤ rc(TS).
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3. Completeness

First, we consider some lemmas which are proved by Troitsky in [9].

Lemma 3.1. Suppose that a sequence (Tn) of bb-bounded operators converges uniformly on bounded sets to a linear
operator T. Then T is also bb-bounded.

Lemma 3.2. Suppose that a sequence (Tn) of continuous operators converges equicontinuously to a linear operator
T. Then T is also continuous.

It is easy to see that the conclusions of Lemma 3.1 and Lemma 3.2 are valid if we consider nets instead
of sequences. Throughout this section, X is assumed to be a locally convex topological vector space.

Theorem 3.3. If Bn(X) is complete, then so is X.

Proof. Let (xα) be a Cauchy net in X. Choose f ∈ X∗ with f , 0. There exists some zero neighborhood U
such that | f (U)| < 1

2 . Define Tα : X → X by letting Tα(x) = f (x)xα. It is not difficult to see that each Tα is
nb-bounded. Also, (Tα) is a Cauchy net in Bn(X). For, if W is an arbitrary zero neighborhood in X, then
there is an α0 such that (xα − xβ) ∈ W for every α ≥ α0 and for every β ≥ α0. For any x ∈ U, we have
(Tα − Tβ)(x) = f (x)(xα − xβ) ∈ W, so that (Tα − Tβ)(U) ⊆ W. So, there are an nb-bounded operator T and a
zero neighborhood U1 ⊆ X such that (Tα − T)(U1) ⊆ W for sufficiently large α. Choose e ∈ X with f (e) = 1.
There exists γe > 0 such that e ∈ γeU1, so that (Tα − T)( e

γe
) ∈W. This means that xα → T(e).

Note that the converse of Theorem 3.3 is not true, in general. See Example 2.22 in [9].

Theorem 3.4. Bb(X) is complete if and only if so is X.

Proof. Suppose Bb(X) is complete and (xα) is a Cauchy net in X. There is f ∈ X∗ such that f , 0. Define the
net (Tα) on X by setting Tα(x) = f (x)xα. Fix a bounded set B ⊆ X. Since f (B) is bounded in the scalar field,
there exists M > 0 with | f (B)| ≤M. Let W be an arbitrary zero neighborhood in X. It is easy to see that each
Tα is bb-bounded. Also, there is an α0 such that xα − xβ ∈ 1

M W for all α ≥ α0 and for all β ≥ α0. For each
x ∈ B, (Tα−Tβ)(x) = f (x)(xα−xβ) ∈W, so that (Tα−Tβ)(B) ⊆W. This shows that (Tα) is a Cauchy net in Bb(X)
and so it converges. So, there is a bb-bounded operator T such that (Tα − T) converges to zero uniformly on
bounded sets. Choose e ∈ X with f (e) = 1. Thus, lim xα = lim Tα(e) = T(e), so that (xα) converges.

For the converse assume that X is complete and (Tα) is a Cauchy net in Bb(X). Since every singleton is
bounded, for any x ∈ X, (Tα(x)) is Cauchy net in X and therefore it converges. Put T(x) = lim Tα(x). On
the other hand, there exists an α1 such that for each α ≥ α1 and for each β ≥ α1, we have (Tα − Tβ)(B) ⊆ W.
Therefore for each x ∈ B, (Tα − Tβ)(x) ∈W and it follows that (Tα − T)(x) ∈W. Thus, (Tα − T)(B) ⊆W. Now,
by Lemma 3.1, T is also a bb-bounded operator.

Theorem 3.5. Bc(X) is complete if and only if so is X.

Proof. Suppose Bc(X) is complete and (xα) is a Cauchy net in X. There exists f ∈ X∗ with f , 0. Define
Tα : X → X by Tα(x) = f (x)xα. Let W ⊆ X be an arbitrary zero neighborhood and ε > 0 be given. There
is a zero neighborhood U ⊆ X such that | f (U)| < 1

2 . For each α, there is γα > 0 with xα ∈ γαW, so that
Tα(U) ⊆ γαW and hence each Tα is continuous. Also, (Tα) is a Cauchy net in Bc(X). For, there is an α0 such
that (xα − xβ) ∈ εW for each α ≥ α0 and for each β ≥ α0. For every x ∈ U, (Tα −Tβ)(x) = f (x)(xα − xβ) ∈ εW, so
that (Tα −Tβ)(U) ⊆ εW. This implies that there are a continuous linear operator T and a zero neighborhood
U1 ⊆ X such that (Tα−T)(U1) ⊆ εW for sufficiently large α. Choose e ∈ X with f (e) = 1. Then, there is γe > 0
with e ∈ γeU1. Corresponding to ε = 1

γe
in the above argument, we get (Tα − T)(e) ∈ W, so that xα → T(e)

and it follows that X is complete.
For the converse, assume X is complete and (Tα) is a Cauchy net in Bc(X). There are a zero neighborhood

U2 ⊆ X and an α1 with (Tα − Tβ)(U2) ⊆ εW for every α ≥ α1 and for every β ≥ α1. Fix x ∈ X. There is a
positive scalar γx such that x ∈ γxU2. Thus, for ε = 1

γx
, we have (Tα−Tβ)(x) ∈W and so (Tα(x)) is a Cauchy net

in X, so that it converges. This guarantees the existence of a linear operator T with T(x) = lim Tα(x). Since
this convergence is in Bc(X), by Lemma 3.2, T is also continuous and this shows that Bc(X) is complete.
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4. An application of the results

We know that when X is a Banach space, a bounded operator T on X is invertible with inverse
∑∞

n=0 Tn

if r(I − T) < 1, where I denotes the identity operator on X. In the following, we prove a similar result for
different types of bounded linear operators on a complete locally convex topological vector space. In what
follows, X is assumed to be a complete locally convex topological vector space and as usual, I denotes the
identity operator on X.

Theorem 4.1.
(i) Suppose T is a bb-bounded operator with rbb(T) < 1. Then (I − T) is invertible in Bb(X) with inverse

∑∞
n=0 Tn;

(ii) Suppose T is a continuous operator with rc(T) < 1. Then (I − T) is invertible in Bc(X) with inverse
∑∞

n=0 Tn.

Proof. (i) Let W be an arbitrary zero neighborhood. There is positive scalar ν such that rbb(T) < ν < 1.
Without loss of generality, we may assume that ν = 1

α for some positive scalar α > 1. Fix a bounded set
B ⊆ X. There is n0 ∈ N with Tn

νn (B) ⊆ α−1
α W for each n > n0. So, Tn(B) ⊆ νn α−1

α W = (α−1)
αn+1 W. Put Sn =

∑n
k=0 Tk.

Thus, for all m > n > n0 and for any x ∈ B,

(Sm − Sn)(x) =
m∑

k=0

Tk(x) −
n∑

k=0

Tk(x) =
m∑

k=n+1

Tk(x) ∈
m∑

k=n+1

(α − 1)
αk+1

W.

Therefore, (Sm − Sn)(B) ⊆ ∑m
k=n+1

(α−1)
αk+1 W. Since W is convex

m∑
k=n+1

α − 1
αk+1

W ⊆ (
m∑

k=n+1

α − 1
αk+1

)W ⊆ (
∞∑

k=0

α − 1
αk+1

)W ⊆W.

It follows that (Sn) is a Cauchy sequence in Bb(X). By Theorem 2.4, Bb(X) is complete and so (Sn) converges
to some S ∈ Bb(X). This means that the series

∑∞
n=0 Tn exists in Bb(X) with sum S. Now, for each x ∈ B,

(Sn(I − T) − I)(x) = ((
∑n

k=0 Tk)(I − T) − I)(x) = Tn+1(x) ∈ νn+1W ⊆ W, for sufficiently large n ∈ N. Therefore,
(Sn(I − T) − I)(B) ⊆ W. By a similar argument, ((I − T)Sn − I)(B) ⊆ W. It follows that (I − T)−1 =

∑∞
n=0 Tn.

(ii) There is positive scalar ν such that rc(T) < ν < 1. Without loss of generality, we may assume that ν = 1
α

for some positive scalar α > 1. There is a zero neighborhood U ⊆ X such that for a given ε > 0 there is
n1 ∈ N with Tn

νn (U) ⊆ α−1
α εW for each n > n1. So, Tn(U) ⊆ νn α−1

α εW =
(α−1)
αn+1 εW. Put Sn =

∑n
k=0 Tk. So, for all

m > n > n1 and for any x ∈ U,

(Sm − Sn)(x) =
m∑

k=0

Tk(x) −
n∑

k=0

Tk(x) =
m∑

k=n+1

Tk(x) ∈
m∑

k=n+1

(α − 1)
αk+1

εW.

Thus, (Sm − Sn)(U) ⊆ ∑m
k=n+1

(α−1)
αk+1 εW. Since W is convex

m∑
k=n+1

α − 1
αk+1

εW ⊆ (
m∑

k=n+1

α − 1
αk+1

)εW ⊆ (
∞∑

k=0

α − 1
αk+1

)εW ⊆ εW.

It follows that (Sn) is a Cauchy sequence in Bc(X). By Theorem 2.5, Bc(X) is complete and so (Sn) converges
to some S ∈ Bc(X). This means that the series

∑∞
n=0 Tn exists in Bc(X) with sum S. Now, for any x ∈ U,

(Sn(I − T) − I)(x) = ((
∑n

k=0 Tk)(I − T) − I)(x) = Tn+1(x) ∈ νn+1εW ⊆ εW, for sufficiently large n ∈ N. Thus,
(Sn(I − T) − I)(U) ⊆ εW. Similarly, ((I − T)Sn − I)(U) ⊆ εW. This shows that (I − T)−1 =

∑∞
n=0 Tn.

We recall that when X is not locally bounded, Bn(X) is not a unital algebra. So, for an nb-bounded linear
operator, to examine a similar result, we can use of the concept of quasi-invertibility. Recall that for an
algebra A, an element a ∈ A is said to be quasi-invertible if there exists an element b ∈ A such that the
quasi-products x◦y = x+y−xy and y◦x = y+x−yx are equal to zero. The quasi-inverse of a quasi-invertible
element x is denoted by x◦. For more details about quasi-invertible elements see [6, Chapter 2, Section 2.1].
Also, if for a topological vector space X, Bn(X) is complete, by a similar argument as in Theorem 4.1, we
have the following.
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Theorem 4.2. Suppose T is an nb-bounded operator with rnb(T) < 1, then the series
∑∞

n=1 Tn converges in Bn(X).
Also, T is quasi-invertible in Bn(X) and we have T◦ = −∑∞n=1 Tn.
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