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Semi-continuous function versions of Urysohn Lemma

Li-Hong Xiea

aSchool of Mathematics, Sichuan University, Chengdu 610065, P.R. China

Abstract. Some characterizations of semi-stratifiable and k-semi-stratifiable spaces in terms of semi-
continuous functions, analogous to Urysohn Lemma, were established in this paper. Some applications of
them in the insertion of functions are given as well.

1. Introduction, basic definitions and notations

To study general topology, the concept of continuous functions is fundamental and much work has
been done concerning the existence and extension of continuous functions and the collection of continuous
(bounded) real-valued functions on a space (see for instance [4]). Amongst this work one finds the famous
results of Tietze and Urysohn which are central to the theory of normal spaces.

Urysohn Lemma. A space X is normal if and only if for each ordered pair (A,U) of subsets of X, with
A closed, U open and A ⊆ U, there is a continuous function fA,U : X → [0, 1] such that A ⊆ f−1

A,U(0) and
X −U ⊆ f−1

A,U(1).

For perfectly normal spaces, there is a strengthening form of Urysohn Lemma as follows.

Theorem 1.1. ([3]) A space X is perfectly normal if and only if for each ordered pair (A,U) of subsets of X, with A
closed, U open and A ⊆ U, there is a continuous function fA,U : X→ [0, 1] such that A = f−1

A,U(0) and X−U = f−1
A,U(1).

In 1966, Borges [1] first gave a characterization of stratifiable spaces in terms of continuous functions
separating pairs of disjoint, closed sets, but, in 2001, Lane, Nyikos, and Pan [6] provided a strengthening
form as follows.

Theorem 1.2. ([6]) A space X is stratifiable if and only if for each ordered pair (A,U) of subsets of X, with A closed,
U open and A ⊆ U, there is a continuous function fA,U : X → [0, 1] such that A = f−1

A,U(0), X − U = f−1
A,U(1) and

fA,U > fB,V whenever A ⊆ B and U ⊆ V.

The semi-stratifiable and k-semi-stratifiable spaces are very important generalized metrizable spaces.
Many interesting properties of them refer to [7]. In 2007, Yan and Yang [12] established some characteri-
zations, analogous to Urysohn Lemma, of semi-stratifiable and perfect spaces in terms of semi-continuous
functions as follows.
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Theorem 1.3. ([12]) A space X is semi-stratifiable if and only if for each ordered pair (A,U) of subsets of X, with
A closed, U open and A ⊆ U, there is a lower semi-continuous function fA,U : X → [0, 1] such that A = f−1

A,U(0),
X −U = f−1

A,U(1) and fA,U > fB,V whenever A ⊆ B and U ⊆ V.

Theorem 1.4. ([12]) A space X is perfect if and only if for each ordered pair (A,U) of subsets of X, with A closed,
U open and A ⊆ U, there is a lower semi-continuous function fA,U : X → [0, 1] such that A = f−1

A,U(0) and
X −U = f−1

A,U(1).

Now, it is natural to ask whether there exist other semi-continuous function versions of the Urysohn
Lemma for k-semi-stratifiable spaces. Can the continuous functions be replaced by semi-continuous func-
tions in Theorem 1.1? We give affirmative answers to the questions above. In the second section of this
paper, some semi-continuous function versions of the Urysohn Lemma are obtained for k-semi-stratifiable
spaces and so on. In the third section, we give some applications of them in the insertion of functions.

Throughout this paper, a space means a topological space and all spaces are assumed to be T1.
A real-valued function f defined on a space X is lower (upper) semi-continuous if for any real number

r, the set
{
x ∈ X : f (x) > r

}
(
{
x ∈ X : f (x) < r

}
) is open.

Definition 1.5. ([12]) A real-valued function f defined on a space X is K-lower (K-upper) semi-continuous
if for any compact set K of X, f has a minimum (maximum) value on K.

Before stating the main results of this paper, we shall introduce some notations. k(X), o(X) are the sets
of all closed, open subsets of X, respectively. f 6 1 means f (x) 6 1(x) for each x ∈ X, where f and 1 are
real-valued functions defined on the space X. The N represents the set of all non-negative integers. We
also write (A,B) ≺ (C,D) whenever A ⊆ C and B ⊆ D. C(X), USC(X), LSC(X), UKL(X) are the sets of all
continuous, upper semi-continuous, lower semi-continuous, upper and K-lower semi-continuous functions
from X into [0, 1], respectively. Also,

ko(X) = {(F,U) ∈ k(X) × o(X) : F ⊆ U},

LU(X) = {(1, f ) ∈ LSC(X) ×USC(X) : 1 6 f },
UL(X) = {(1, f ) ∈ USC(X) × LSC(X) : 1 6 f },

UC(X) = {(1, f ) ∈ USC(X) × C(X) : 1 6 f },
CL(X) = {(1, f ) ∈ C(X) × LSC(X) : 1 6 f }.

Let X be a space. If A ⊆ X, we write χA for the characteristic function on A, that is, a function
χA : X→ [0, 1] defined by

χA(x) =
{

1 x ∈ A,
0 x < A.

One easily verifies that if A ∈ k(X), then χA ∈ USC(X); and χA ∈ LSC(X), if A ∈ o(X).

Definition 1.6. ([8]) A space X is said to be k-semi-stratifiable, if there is an operator U assigning to each
closed set F, a sequence U(F) = (U( j,F)) j∈N of open sets such that,

(1) F ⊆ U( j,F) for each j ∈N;
(2) if D ⊆ F, then U( j,D) ⊆ U( j,F) for each j ∈N;
(3)
∩

j∈NU( j,F) = F, and for every compact subset K of X, if K
∩

F = ∅, then there exists some j0 ∈N such
that K

∩
U( j0, F) = ∅.

Definition 1.7. ([2]) A space X is said to be semi-stratifiable, if there is an operator U assigning to each
closed set F, a sequence U(F) = (U(n,F))n∈N of open sets such that,

(1) F ⊆ U(n, F) for each n ∈N;
(2) if D ⊆ F, then U(n,D) ⊆ U(n,F) for each n ∈N;
(3)
∩

n∈NU(n,F) = F.
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2. Various versions of Urysohn Lemma

In this section some semi-continuous function forms of Urysohn Lemma are stated for various classical
spaces.

Let X be a space and (Dn)n∈N a decreasing sequence of sets of X. Define a real-valued function f(Dn) :
X→ [0, 1] as follows:

(∗) f(Dn)(x) =


1 x ∈ X −D0,

1
2 j+1 x ∈ D j −D j+1,

0 x ∈ ∩ j∈ND j.

Lemma 2.1. Let X be a space and (D j) j∈N a decreasing sequence of sets of X. Then the function f(Dn) defined by (∗)
has the following properties:

(1) if the (D j) j∈N is a sequence of open sets, then the f(Dn) is an upper semi-continuous function;
(2) if the (D j) j∈N is a sequence of closed sets, then the f(Dn) is a lower semi-continuous function;
(3)
∩

j∈ND j = f−1
(Dn)(0) and X −D0 = f−1

(Dn)(1);
(4) if (Dn) ≺ (En), that is, Dn ⊆ En for each n ∈N, then f(En) 6 f(Dn);
(5) if for any compact set K of X such that

∩
j∈ND j ∩ K = ∅ there exists j0 ∈ N such that D j0 ∩ K = ∅, then f(Dn)

is a K-lower semi-continuous function.

Proof. The property (3) directly follows from the definition of f(Dn). The proofs of (1) and (2) are similar, so
it suffices to prove (2), (4) and (5).

To prove (2), it is enough to show that the set {x ∈ X : f(Dn)(x) 6 r} is closed for any real number r.
Without loss of generality, we can actually assume r ∈ [0, 1]. Thus, (i) if r = 1, then {x ∈ X : f(Dn)(x) 6 r} = X;
(ii) if r = 0, then {x ∈ X : f(Dn)(x) 6 r} = ∩ j∈ND j; (iii) if 0 < r < 1, then there exists j0 ∈ N such that

1
2 j0+1 ≤ r < 1

2 j0
and {x ∈ X : f(Dn)(x) 6 r} = D j0 . Since the (D j) j∈N is a sequence of closed sets, for each case the

set {x ∈ X : f(Dn)(x) 6 r} is closed, which implies that f(Dn) is a lower semi-continuous function.
Now we prove (4). First, observe that if x < D j0 , then f(Dn)(x) > 1

2 j0
. Take any x ∈ X. If x ∈ ∩ j∈N E j, then

f(En)(x) = 0 6 f(Dn)(x). On the other hand, if x <
∩

j∈N E j, then there exists j0 ∈N such that x ∈ E j0−1 − E j0 (set
E−1 = X) which implies f(En)(x) = 1

2 j0
6 f(Dn)(x), since x < E j0 ⊇ D j0 .

According to Definition 1.5, to prove (5) it suffices to show that f(Dn) has a minimum value on K for any
compact set K in X. If

∩
j∈ND j ∩ K , ∅, then take a point x0 ∈

∩
j∈ND j ∩ K, thus f(Dn)(x0) = 0 which is a

minimum value on K. On the other hand, if
∩

j∈ND j∩K = ∅, then there exists j0 ∈N such that D j0−1∩K , ∅
and D j0 ∩ K = ∅ by the hypothesis. Thus there is an x0 ∈ D j0−1 ∩ K (set D−1 = X) such that f(Dn)(x0) = 1

2 j0

which is a minimum value on K. the proofs are finished.

Proposition 2.2. ([12]) If f : X→ R+ is a lower (an upper) semi-continuous function and 1 : X→ R+ is an upper
(a lower) semi-continuous function, then f

1
is a lower (an upper) semi-continuous function on X into R+.

Theorem 2.3. A space X is perfectly normal if and only if for each (A,U) ∈ ko(X), there exists (1A,U, fA,U) ∈ LU(X)
such that A = f−1

A,U(0) = 1−1
A,U(0) and X −U = f−1

A,U(1) = 1−1
A,U(1).

Note. In fact, from the fact that every continuous function is both upper and lower semi continuous it
follows that the necessity of conditions, but we shall directly construct an upper semi continuous function
and a lower semi continuous function, which satisfy the necessity of conditions in Theorem 2.3.

Proof. Necessity. Assume that the space X is perfectly normal. Take any (A,U) ∈ ko(X). Then (U′
,A′

) ∈ ko(X),
where A′

= X − A and U′
= X − U. Since the space X is perfectly normal, one can easily find decreasing

sequences (Vi)i∈N and (Wi)i∈N of open sets such that A =
∩

i∈NVi =
∩

i∈N Vi, V0 ⊆ U, U′
=
∩

i∈NWi =
∩

i∈NWi

and W0 ⊆ A′
. According to (1), (2), (3) and (4) in Lemma 2.1, we have (h(Vi)

, h(Vi)) ∈ LU(X) and (h(Wi)
, h(Wi)) ∈

LU(X) such that A = h−1
(Vi)

(0) = h−1
(Vi)

(0), 1 = h(Vi)
(x) = h(Vi)(x) for each x ∈ U′

, U′
= h−1

(Wi)
(0) = h−1

(Wi)
(0) and

1 = h(Wi)
(x) = h(Wi)(x) for each x ∈ A , where each h(.) is defined by (∗) above. Now define two functions
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as follows: 1A,U(x) =
h(Vi)(x)

1+h(Wi)(x) and fA,U(x) =
h(Vi)(x)

1+h(Wi)(x) for all x ∈ X. Clearly, 1A,U ∈ L(X) and fA,U ∈ U(X)

by Proposition 2.2. Since h(Vi)
6 h(Vi) and h(Wi)

6 h(Wi), one has 1A,U 6 fA,U, that is, (1A,U, fA,U) ∈ LU(X).
A = f−1

A,U(0) = 1−1
A,U(0) is obvious. We shall prove X − U = f−1

A,U(1). Take any point x ∈ U′
= X − U; from

h(Vi)(x) = 1 and h(Wi)
(x) = 0 it follows that fA,U(x) =

h(Vi)(x)
1+h(Wi)(x) =

1
1+0 = 1, which implies X − U ⊆ f−1

A,U(1).

On the other hand, take any point x < U′
= X − U; according to h(Vi)(x) 6 1 and h(Wi)

(x) > 0, we have

fA,U(x) =
h(Vi)(x)

1+h(Wi)(x) < 1, which implies X − U ⊇ f−1
A,U(1). Thus the proof of X − U = f−1

A,U(1) is completed.

Similarly, one can prove X −U = 1−1
A,U(1).

Conversely, take any F ∈ k(X). To show that the space X is perfectly normal, it suffices to prove that there
is a sequence (V j) j∈N of open sets in X such that F =

∩
j∈N V j =

∩
j∈N V j. Clearly, (F,X) ∈ ko(X). According to

the hypothesis there exists (1F,X, fF,X) ∈ LU(X) such that F = f−1
F,X(0) = 1−1

F,X(0). Set V j = {x ∈ X : fF,X(x) < 1
2 j+1 }

and V′

j = {x ∈ X : 1F,X(x) 6 1
2 j+1 } for each j ∈ N. Clearly, (V j) j∈N is a sequence of open sets. We claim that

F =
∩

j∈NV j =
∩

j∈N V j. In fact, it is very easy to verify that F =
∩

j∈N V j ⊆
∩

j∈N V j ⊆
∩

j∈N V j
′ = F, since

(1F,X, fF,X) ∈ LU(X). Thus the space X is perfectly normal.

Corollary 2.4. A space X is perfectly normal if and only if for each A ∈ k(X), there exists (1A, fA) ∈ LU(X) such that
A = f−1

A (0) = 1−1
A (0).

Proof. Assume that the space X is perfectly normal. Take any A ∈ k(X). Clearly, (A,X) ∈ ko(X). According
to Theorem 2.3 there exists (1A,X, fA,X) ∈ LU(X) such that A = f−1

A,X(0) = 1−1
A,X(0).

Conversely, to show that the space X is perfectly normal, it is enough to find a decreasing sequence
(Vn)n∈N of open sets such that A =

∩
n∈N Vn =

∩
n∈N Vn for each A ∈ k(X). By the hypothesis, there exists

(1A, fA) ∈ LU(X) such that A = f−1
A (0) = 1−1

A (0) for each A ∈ k(X). Set Vn = f−1
A [0, 1

2n+1 ) and V′
n = 1

−1
A [0, 1

2n+1 ]
for each n ∈ N. Because of the ordered pair (1A, fA) ∈ LU(X) such that A = f−1

A (0) = 1−1
A (0), one can easily

verify that A =
∩

n∈NVn ⊆
∩

n∈N Vn ⊆
∩

n∈N V′
n = A, , which implies A =

∩
n∈NVn =

∩
n∈N Vn. The proof is

completed.

Theorem 2.5, which is similar to Urysohn Lemma, is a characterization of k-semi-stratifiable in terms of
upper and K-lower semi-continuous functions.

Theorem 2.5. A space X is k-semi-stratifiable if and only if for each (A,W) ∈ ko(X), there is a function fA,W ∈
UKL(X) such that A = f−1

A,W(0), X −W = f−1
A,W(1) and fA,W > fB,V whenever (A,W) ≺ (B,V).

Proof. Assume that the space X is k-semi-stratifiable. Then there is an operator U satisfying (1), (2) and (3)
in Definition 1.6. Take any (A,W) ∈ ko(X). By leting σ(A,W)0 = W and σ(A,W)i+1 = U(i,A) ∩W for each
i ∈ N. Clearly, we have (i) A =

∩
i∈N σ(A,W)i; (ii) σ(A,W)i ⊆ σ(B,V)i whenever (A,W) ≺ (B,V); (iii) for any

compact set K, if A =
∩

i∈N σ(A,W)i ∩ K = ∅, then there is i0 ∈ N such that σ(A,W)i0 ∩ K = ∅. Now define
fA,W = f(σ(A,W)i), where f(σ(A,W)i) is defined by (∗) above. From Lemma 2.1 it follows that fA,W ∈ UKL(X) such
that A = f−1

A,W(0), X −W = f−1
A,W(1) and fA,W > fB,V whenever (A,W) ≺ (B,V).

Conversely, to show that X is k-semi-stratifiable, it is enough to prove that there is an operator U
assigning to each F ∈ k(X), a sequence of open sets U(F) = (U(n,F))n∈N which satisfies (1), (2) and (3) in
Definition 1.6. Clearly, (F,X) ∈ ko(X) for each F ∈ k(X). By the hypothesis there exists fF,X ∈ UKL(X) such
that F = f−1

F,X(0) and fE,X 6 fF,X whenever F ⊆ E, where E ∈ k(X). Set U(n,F) = {x ∈ X : fF,X(x) < 1
2n+1 } for

each n ∈ N. It is very easy to verify that F =
∩

n∈NU(n, F), because of F = f−1
F,X(0). By the hypothesis, we

have fF,X > fE,X whenever F ⊆ E. Thus U(n, F) ⊆ U(n,E) for each n ∈ N. Take any compact set K such that
K∩ F = ∅. Since the function fF,X is K-lower and F = f−1

F,X(0), there is x0 ∈ K such that 0 < fF,X(x0) 6 fF,X(x) for
each x ∈ K. Therefore, there is an i ∈N such that 1

2i+1 6 fF,X(x0). Thus U(i,F) = {x ∈ X : fF,X(x) < 1
2i+1 } ∩K = ∅.

The proof is completed.
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Corollary 2.6. A space X is k-semi-stratifiable if and only if for each A ∈ k(X), there exists fA ∈ UKL(X) such that
A = f−1

A (0) and fA > fB whenever A ⊆ B.

Proof. Suppose that the space X is k-semi-stratifiable. Clearly, (A,X) ∈ ko(X) for each A ∈ k(X). Thus
according to Theorem 2.5 there is an fA,X ∈ UKL(X), which satisfies the conditions.

Conversely, to show that X is k-semi-stratifiable, it is enough to prove that there is an operator U
assigning to each closed set A, a sequence of open sets U(A) = (U(n,A))n∈N which satisfies (1), (2) and (3) in
Definition 1.6. For each A ∈ k(X), there is a function fA ∈ UKL(X) such that A = f−1

A (0) and fA > fB whenever
A ⊆ B by the hypothesis. Set U(n,A) = {x ∈ X : fA(x) < 1

2n+1 } for each n ∈ N. One can easily verify that
the operator U, where U(A) = (U(n,A))n∈N for each closed set A of X, satisfies (1), (2) and (3) in Definition
1.6.

According to the proofs of Theorem 2.5 and Corollary 2.6, it is not difficult to find that the lower semi-
continuous functions of the Theorems 1.3 and 1.4 can be replaced by upper semi-continuous functions,
which is surprised. Thus we have the following theorems and corollaries.

Theorem 2.7. A space X is semi-stratifiable if and only if for each (A,U) ∈ ko(X), there exists fA,U ∈ USC(X) such
that A = f−1

A,U(0), X −U = f−1
A,U(1) and fA,U > fB,V whenever (A,U) ≺ (B,V).

Corollary 2.8. A space X is semi-stratifiable if and only if for each A ∈ k(X), there exists fA ∈ USC(X) such that
A = f−1

A (0) and fA > fB whenever A ⊆ B.

Theorem 2.9. A space X is perfect if and only if for each (A,U) ∈ ko(X), there exists fA,U ∈ USC(X) such that
A = f−1

A,U(0) and X −U = f−1
A,U(1).

Corollary 2.10. A space X is perfect if and only if for each A ∈ k(X), there exists fA ∈ USC(X) such that A = f−1
A (0).

3. Applications

In this section, we give some applications on the insertion of functions. Corollary 3.1 was proved in
[12]. Using Corollary 2.8, we give another simple proof.

Corollary 3.1. ([12]) A space X is semi-stratifiable if and only if there exists a map Φ : LSC(X) → USC(X) such
that for any h ∈ LSC(X), 0 6 Φ(h) 6 h, Φ(h) 6 Φ(h′ ) if h 6 h′ and 0 < Φ(h)(x) < h(x) whenever h(x) > 0.

Proof. Assume that the space X is semi-stratifiable. Take any h ∈ LSC(X). By letting En,h = {x ∈ X : h(x) 6 1
2n+1 }

for each n ∈ N. Clearly, En,h ⊇ En,h′ whenever h 6 h′ for each n ∈ N. According to Corollary 2.8 there is
a sequence { fEn,h }n∈N of upper semi-continuous functions such that En,h = f−1

En,h
(0) and fEn,h 6 fEn,h′

whenever

h 6 h′ for each n ∈ N. Define a map as follows: Φ(h)(x) =
∑∞

n=0
1

2n+2 × 1
2n+2 fEn,h (x) for each x ∈ X. Now we

prove that the mapΦ is required. Φ(h) 6 Φ(h′ ) is clear whenever h 6 h′ . Firstly, to showΦ(h) ∈ USC(X), it is
enough to show that for each x0 ∈ X and r ∈ [0, 1] such thatΦ(h)(x0) < r, there is an open set V of X such that
x0 ∈ V andΦ(h)(x) < r for each x ∈ V. Clearly, there exist ε > 0 and n0 ∈N such that

∑∞
n=n0

1
2n+2 × 1

2n+2 fEn,h (x) < ε
for each x ∈ X andΦ(h)(x0)+2ε < r. Since 1 =

∑n0−1
n=0

1
2n+2 × 1

2n+2 fEn,h is an upper semi-continuous function and
1(x0) ≤ Φ(h)(x0) < r − 2ε, there exists an open neighborhood V of x0 such that 1(x) < r − 2ϵ for each x ∈ V.
Thus, for each x ∈ V we haveΦ(h)(x) =

∑∞
n=0

1
2n+2 × 1

2n+2 fEn,h (x) =
∑n0−1

n=0
1

2n+2 × 1
2n+2 fEn,h (x)+

∑∞
n=n0

1
2n+2 × 1

2n+2 fEn,h (x) <
r − 2ε + ε < r which implies Φ(h) ∈ USC(X). Now show 0 6 Φ(h) 6 h and 0 < Φ(h)(x) < h(x) whenever
h(x) > 0 for any h ∈ LSC(X). Take any x ∈ X. If h(x) = 0, then x ∈ ∩n∈N En,h and so fn,h(x) = 0 for each n ∈N.
Thus Φ(h)(x) = 0. If h(x) > 0, then h(x) > 1

2i+1 and x < Ei,h for some i ∈ N. Let m = min{i : x < Ei,h}, then
0 < Φ(h)(x) =

∑m−1
n=0

1
2n+2 × 1

2n+2 fEn,h (x)+
∑∞

n=m
1

2n+2 × 1
2n+2 fEn,h (x) =

∑∞
n=m

1
2n+2 × 1

2n+2 fEn,h (x) 6
∑∞

n=m
1

2n+2 =
1

2m+1 < h(x).
Conversely, choose any A ∈ k(X). By the hypothesis, one can easily verify that Φ(1− χA) ∈ USC(X) such

that A = Φ(1 − χA)−1(0) and Φ(1 − χA) 6 Φ(1 − χB) whenever A ⊇ B. From Corollary 2.8 it follows that X is
semi-stratifiable.
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Remark. In fact, we have also proved that a space X is perfect if and only if there exists a map
Φ : LSC(X)→ USC(X) such that for any h ∈ LSC(X), 0 6 Φ(h) 6 h and 0 < Φ(h)(x) < h(x) whenever h(x) > 0,
which was proved by Yan and Yang in [12].

The following πi means the ith (i=1,2) projection. Using the same way in the proof of Corollary 3.1, one
can easily prove Corollary 3.2 according to Corollary 2.4, which was proved in [11], so we omit the proof.

Corollary 3.2. ([11]) A space X is perfectly normal if and only if there is an operatorΦ : LSC(X)→ LU(X) such that
for any h ∈ LSC(X), 0 6 π1(Φ(h)) 6 π2(Φ(h)) 6 h and 0 < π1(Φ(h))(x) 6 π2(Φ(h))(x) < h(x) whenever h(x) > 0.

Lemma 3.3. ([5]) A space X is normal if and only if for each upper semi-continuous function 1 : X → [0, 1] and
lower semi-continuous function h : X → [0, 1] such that 1 6 h, there is a continuous function f : X → [0, 1] such
that 1 6 f 6 h.

Theorem 3.4. For any space X, the following statements are equivalent:

(1) the space X is perfectly normal;
(2) there is an operator Φ : LSC(X) → LU(X) such that for any h ∈ LSC(X), 0 6 π1(Φ(h)) 6 π2(Φ(h)) 6 h and

0 < π1(Φ(h))(x) 6 π2(Φ(h))(x) < h(x) whenever h(x) > 0;
(3) there is an operator Φ : CL(X)→ LU(X) such that for any ( f , 1) ∈ CL(X), f 6 π1(Φ( f , 1)) 6 π2(Φ( f , 1)) 6 1

and f (x) < π1(Φ( f , 1))(x) 6 π2(Φ( f , 1))(x) < 1(x) whenever f (x) < 1(x);
(4) there is an operator Φ : UC(X)→ LU(X) such that for any ( f , 1) ∈ UC(X), f 6 π1(Φ( f , 1)) 6 π2(Φ( f , 1)) 6 1

and f (x) < π1(Φ( f , 1))(x) 6 π2(Φ( f , 1))(x) < 1(x) whenever f (x) < 1(x);
(5) there is an operator Φ : UL(X)→ LU(X) such that for any ( f , 1) ∈ UL(X), f 6 π1(Φ( f , 1)) 6 π2(Φ( f , 1)) 6 1

and f (x) < π1(Φ( f , 1))(x) 6 π2(Φ( f , 1))(x) < 1(x) whenever f (x) < 1(x).

Proof. (1)⇔(2). It follows from Corollary 3.2.
(2)⇒(3). Assume that the Φ0 is an operator in (2). Take any ( f , 1) ∈ CL(X), then 1− f ∈ LSC(X). Thus we

can define an operatorΦ : CL(X)→ LU(X) as follows: Φ(( f , 1)) = (π1(Φ0(1− f ))+ f , π2(Φ0(1− f ))+ f ). We assert
that the operator Φ has the required properties. According to 0 6 π1(Φ0(1 − f )) 6 π2(Φ0(1 − f )) 6 1 − f ,
f 6 π1(Φ( f , 1)) 6 π2(Φ( f , 1)) 6 1 is obvious. If f (x) < 1(x), then (1 − f )(x) = 1(x) − f (x) > 0. Thus
0 < π1(Φ0(1 − f ))(x) 6 π2(Φ0(1 − f ))(x) < (1 − f )(x), which is equivalent to f (x) < π1(Φ0(1 − f ))(x) + f (x) 6
π2(Φ0(1 − f ))(x) + f (x) < (1 − f )(x) + f (x) = 1(x), that is, f (x) < π1(Φ( f , 1))(x) 6 π2(Φ( f , 1))(x) < 1(x).

(3)⇒(4). Assume that the Φ0 is an operator in (3). Take any ( f , 1) ∈ UC(X), then (1 − 1, 1 − f ) ∈ CL(X).
Thus, one can define an operator Φ : UC(X) → LU(X) as follows: Φ( f , 1) = (1 − π2(Φ0(1 − 1, 1 − f )), 1 −
π1(Φ0(1 − 1, 1 − f ))). One can easily verify that the operator Φ has the required properties.

(4)⇒(5). Assume that the Φ0 is an operator in (4). First, we prove that (4) implies (2), which implies that
(1), (2), (3) and (4) are equivalent. Take any h ∈ LSC(X), then (1 − h, 1) ∈ UC(X). Thus one can define an
operator Φ

′
: LSC(X)→ LU(X) as follows: Φ

′
(h) = (1 − π2(Φ0(1 − h, 1)), 1 − π1(Φ0(1 − h, 1))). One can easily

verify that the operator Φ
′

satisfies the conditions of (2), which implies the space X is normal. Thus we can
also assume that there is an operator Φ1 satisfying the conditions in (3). Take any ( f , 1) ∈ UL(X). There
exists h f ,1 ∈ C(X) such that f 6 h f ,1 6 1 by Lemma 3.3. Thus ( f , h f ,1) ∈ UC(X) and (h f ,1, 1) ∈ CL(X). Now

define an operator Φ : UL(X) → LU(X) as follows: Φ( f , 1) = (
π1(Φ0( f ,h f ,1))+π1(Φ1(h f ,1,1))

2 ,
π2(Φ0( f ,h f ,1))+π2(Φ1(h f ,1,1))

2 ).
One can easily verify that the operator Φ has the required properties in (5).

(5)⇒(1). Let Φ be an operator in (5). Clearly, (0, 1 − χA) ∈ UL(X) for any A ∈ k(X). Thus one
can easily verify that (π1(Φ(0, 1 − χA)), π2(Φ(0, 1 − χA))) ∈ LU(X) such that A = π1(Φ(0, 1 − χA))−1(0) =
π2(Φ(0, 1 − χA))−1(0). From Corollary 2.4 it follows that X is perfectly normal.

Corollary 3.5 was proved by Michael in [9]. We give another proof.

Corollary 3.5. ([9]) A space X is perfectly normal if and only if for each upper semi-continuous function1 : X→ [0, 1]
and lower semi-continuous function f : X → [0, 1] such that 1 6 f , there is a continuous function h : X → R such
that 1 6 h 6 f and 1(x) < h(x) < f (x) whenever 1(x) < f (x).
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Proof. Assume that the space X is perfectly normal. Take any (1, f ) ∈ UL(X). According to (5) in Theorem 3.4,
there exists (k1, k2) ∈ LU(X) such that 1 6 k1 6 k2 6 f and 1(x) < k1(x) 6 k2(x) < f (x) whenever 1(x) < f (x).
For (1, k1) ∈ UL(X), there is also a (h1, h2) ∈ LU(X) such that 1 6 h1 6 h2 6 k1 and 1(x) < h1(x) 6 h2(x) < k1(x)
whenever 1(x) < k1(x). Since X is normal, there is a function j ∈ C(X), which is required, such that h2 6 j 6 k1
by Lemma 3.3. In fact, 1 6 j 6 f is obvious. We also have 1(x) < h2(x) 6 j(x) 6 k1(x) < f (x) whenever
1(x) < f (x).

Conversely, it is obvious, since for any (1, f ) ∈ UL(X), there is continuous function h such that 1 6 h 6 f
and 1(x) < h(x) < f (x) whenever 1(x) < f (x) by the hypothesis. (h, h) ∈ LU(X) is obvious. From the (5) in
Theorem 3.4 it follows that X is perfectly normal.
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