Spectral determination of some chemical graphs

Changjiang Bu ${ }^{\text {a }}$, Jiang Zhou ${ }^{\text {b }}$, Hongbo $\mathrm{Li}^{\text {c }}$
${ }^{a}$ College of Science, Harbin Engineering University, Harbin 150001, PR China
${ }^{b}$ College of Science, Harbin Engineering University, Harbin 150001, PR China
${ }^{\text {c }}$ College of Science, Harbin Engineering University, Harbin 150001, PR China

Abstract

Let T_{n}^{k} denote the caterpillar obtained by attaching k pendant edges at two pendant vertices of the path P_{n} and two pendant edges at the other vertices of P_{n}. It is proved that T_{n}^{k} is determined by its signless Laplacian spectrum when $k=2$ or 3 , while T_{n}^{2} by its Laplacian spectrum.

1. Introduction

All graphs are simple and undirected in this paper. Let $A(G)$ be the adjacency matrix of G, and $D(G)$ the diagonal matrix of vertex degrees. The matrices $D(G)-A(G)$ and $D(G)+A(G)$ are called the Laplacian matrix and the signless Laplacian matrix of G, respectively. The spectrum of $A(G), D(G)-A(G)$ and $D(G)+A(G)$ are called the A-spectrum, the L-spectrum and the Q-spectrum of G, respectively. The eigenvalues of $D(G)-A(G)$ and $D(G)+A(G)$ are called the L-eigenvalues and the Q-eigenvalues of G, respectively. Since $D(G)-A(G)$ and $D(G)+A(G)$ are real symmetric and positive semi-definite, all their eigenvalues are nonnegative. The largest eigenvalues of $D(G)-A(G)$ and $D(G)+A(G)$ are called the L-index and the Q-index of G, respectively. It is well known that the smallest L-eigenvalue of a graph is 0 . The characteristic polynomials of $D(G)-A(G)$ and $D(G)+A(G)$ are called the L-polynomial and the Q-polynomial of G, respectively. We say that G is determined by its L-spectrum (resp. Q-spectrum) if there is no other non-isomorphic graph with the same L-spectrum (resp. Q-spectrum). Two graphs are said to be A-cospectral (resp. L-cospectral, Q-cospectral) if they have the same A-spectrum (resp. L-spectrum, Q-spectrum). As usual, P_{n}, C_{n} and K_{n} denote the path, the cycle and the complete graph of order n, respectively. Let $K_{m, n}$ denote the complete bipartite graph with parts of size m and n.

The problem "which graphs are determined by their spectra?" originates from chemistry. Günthard and Primas [4] raised this question in the context of Hückel's theory. Since this problem is generally very difficult, van Dam and Haemers [13] proposed a more modest problem, that is "Which trees are determined by their spectra?" Some results for spectral determination of starlike trees can be found in $[2,5,6,9,10,14]$. Some double starlike trees determined by their L-spectra are given in $[7,8]$. Some caterpillars determined by their L-spectra are given in $[1,11,12]$.

The theory of graph spectra has many important applications in chemistry, especially in treating hydrocarbons. The molecular graph of a hydrocarbon is a tree with maximal degree 4 . Let T_{n}^{k} denote the

[^0]caterpillar obtained by attaching k pendant edges at two pendant vertices of P_{n} and two pendant edges at the other vertices of P_{n}. For $k \leq 3, T_{n}^{k}$ is the molecular graph of certain hydrocarbon. For instance, T_{n}^{3} is the molecular graph of a linear alkane (see Fig.1). In this paper, we prove that T_{n}^{k} is determined by its Q-spectrum when $k=2$ or 3 , while T_{n}^{2} by its L-spectrum. The graph T_{n}^{2} is shown in Fig.2.

Fig. 1. Some examples for graph T_{n}^{3}

Fig. 2. The graph T_{n}^{2}

2. Preliminaries

In this section, we give some properties which play important role throughout this paper.
Lemma 2.1. [3] For a graph G, the multiplicity of the Q-eigenvalue 0 of G is equal to the number of bipartite components of G.

Lemma 2.2. [2] Let G be a connected graph of order $n>1$, and the maximum degree of G is Δ. Let $q(G)$ be the Q-index of G. Then $q(G) \geq \Delta+1$, with equality if and only if G is the star $K_{1, n-1}$.

Lemma 2.3. [2] For a connected graph G, let H be a proper subgraph of G. Let $q(G)$ and $q(H)$ be the Q-indices of G and H, respectively. Then $q(H)<q(G)$.

Lemma 2.4. [3] Let G be a graph with n vertices, m edges, t triangles and degree sequence $d_{1}, d_{2}, \ldots, d_{n}$. Assume that $q_{1}, q_{2}, \ldots, q_{n}$ are the Q-eigenvalues of G. Let $T_{k}=\sum_{i=1}^{n} q_{i}^{k}$, then

$$
T_{0}=n, T_{1}=\sum_{i=1}^{n} d_{i}=2 m, T_{2}=2 m+\sum_{i=1}^{n} d_{i}^{2}, T_{3}=6 t+3 \sum_{i=1}^{n} d_{i}^{2}+\sum_{i=1}^{n} d_{i}^{3}
$$

For a graph G, let $\phi_{A}(G, x)$ be the characteristic polynomial of the adjacency matrix of $G, \phi_{Q}(G, x)$ be the Q-polynomial of G.

Lemma 2.5. [3] Let G be a graph of order n and size $m, L(G)$ be the line graph of G. Then

$$
\phi_{A}(L(G), x)=(x+2)^{m-n} \phi_{Q}(G, x+2)
$$

A connected graph with n vertices is said to be unicyclic if it has n edges. If the girth of an unicyclic graph is odd (resp. even), then this unicyclic graph is said to be odd (resp. even) unicyclic.

Lemma 2.6. [2] For a connected graph G with m edges, let $L(G)$ be the line graph of $G, \phi_{A}(L(G), x)$ be the characteristic polynomial of the adjacency matrix of $L(G)$. The following statements hold:
(i) If G is odd unicyclic, then $\phi_{A}(L(G),-2)=(-1)^{m} 4$.
(ii) If G is a tree, then $\phi_{A}(L(G),-2)=(-1)^{m}(m+1)$.
(iii) If G is neither odd unicyclic nor a tree, then $\phi_{A}(L(G),-2)=0$.

Lemma 2.7. [3] For any bipartite graph, the Q-polynomial coincides with the L-polynomial.
For a graph G with n vertices, let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be the eigenvalues of the adjacency matrix of G. For an integer $k \geq 0$, the number $\sum_{i=1}^{n} \lambda_{i}^{k}$ is called the k-th spectral moment of G, denoted by $S_{k}(G)$. Let $N_{F}(G)$ denote the number of subgraphs of G isomorphic to a graph F.

Let $K_{1, n-1}$ be a star of order n, U_{n} be the graph obtained from a cycle C_{n-1} by attaching a pendant vertex to one vertex of C_{n-1}. Let B_{4}, B_{5} be two graphs obtained from two triangles T_{1}, T_{2} by identifying one edge of T_{1} with one edge of T_{2} and identifying one vertex of T_{1} with one vertex of T_{2}, respectively (see Fig. 3).

Fig. 3. Four graphs $U_{4}, U_{5}, B_{4}, B_{5}$
Lemma 2.8. [15] For any graph G, we have

$$
\begin{aligned}
S_{3}(G) & =6 N_{C_{3}}(G), \\
S_{4}(G) & =2 N_{P_{2}}(G)+4 N_{P_{3}}(G)+8 N_{C_{4}}(G), \\
S_{5}(G) & =30 N_{C_{3}}(G)+10 N_{U_{4}}(G)+10 N_{C_{5}}(G), \\
S_{6}(G) & =2 N_{P_{2}}(G)+12 N_{P_{3}}(G)+24 N_{C_{3}}(G)+40 N_{C_{4}}(G)+6 N_{P_{4}}(G) \\
& +12 N_{K_{1,3}}(G)+36 N_{B_{4}}(G)+24 N_{B_{5}}(G)+12 N_{U_{5}}(G)+12 N_{C_{6}}(G) .
\end{aligned}
$$

In [11], Shen and Hou proved that the graph T_{n}^{3} is determined by its L-spectrum.
Theorem 2.9. [11] Graph T_{n}^{3} is determined by its L-spectrum.

3. The spectrum of the corona of two graphs

In order to get our main results, we will give an upper bound for the L-index of graph T_{n}^{2} in this section. Let G be a graph with n vertices, H be a graph with m vertices. The corona of G and H, denoted by $G \circ H$, is the graph with $n+m n$ vertices obtained from G and n copies of H by joining the i-th vertex of G to each vertex in the i-th copy of $H(i=1, \ldots, n)$. For a graph F, let $r F$ denote the union of r disjoint copies of F.

Let $\mu_{i}(G)$ (resp. $\left.q_{i}(G)\right)$ denote the i-th largest L-eigenvalue (resp. Q-eigenvalue) of a graph G. If G has distinct L-eigenvalues $\xi_{1}, \xi_{2}, \ldots, \xi_{m}$ (resp. Q-eigenvalue $\eta_{1}, \eta_{2}, \ldots, \eta_{m}$) with multiplicities $k_{1}, k_{2}, \ldots, k_{m}$, we shall write $\xi_{1}^{\left(k_{1}\right)}, \xi_{2}^{\left(k_{2}\right)}, \ldots, \xi_{m}^{\left(k_{m}\right)}$ (resp. $\eta_{1}^{\left(k_{1}\right)}, \eta_{2}^{\left(k_{2}\right)}, \ldots, \eta_{m}^{\left(k_{m}\right)}$) for the L-spectrum (resp. Q-spectrum) of G. Let $\phi_{L}(G, x)$ and $\phi_{Q}(G, x)$ be the L-polynomial and Q-polynomial of G, respectively. The following theorem is known in the literature, but to make the paper more selfcontained we give here the proof.
Theorem 3.1. Let G be a graph with n vertices, H be a graph with m vertices. The following statements hold:
(a) $\phi_{L}(G \circ H, x)=\phi_{L}\left(G, \frac{x^{2}-(m+1) x}{x-1}\right)\left[\phi_{L}(H, x-1)\right]^{n}$, i.e., the L-spectrum of $G \circ H$ is

$$
\left(\mu_{i}(H)+1\right)^{(n)}, \frac{\left(\mu_{j}(G)+m+1\right) \pm \sqrt{\left(\mu_{j}(G)+m-1\right)^{2}+4 m}}{2}(i=1, \ldots, m-1, j=1, \ldots, n)
$$

(b) If H is an r-regular graph, then $\phi_{Q}(G \circ H, x)=\phi_{Q}\left(G, \frac{x^{2}-(m+2 r+1) x+2 m r}{x-2 r-1}\right)\left[\phi_{Q}(H, x-1)\right]^{n}$, i.e., the Q-spectrum of $G \circ H$ is

$$
\left(q_{i}(H)+1\right)^{(n)}, \frac{\left(q_{j}(G)+m+2 r+1\right) \pm \sqrt{\left(q_{j}(G)+m-2 r-1\right)^{2}+4 m}}{2}(i=2, \ldots, m, j=1, \ldots, n)
$$

Proof. Let $L(G)$ and $L(H)$ be the Laplacian matrices of G and H, respectively. The L-polynomial of $G \circ H$ is

$$
\left|\begin{array}{cccc}
(x-m) I_{n}-L(G) & J_{1} & \cdots & J_{n} \\
J_{1}^{\top} & (x-1) I_{m}-L(H) & & \\
\vdots & & \ddots & \\
J_{n}^{\top} & & & (x-1) I_{m}-L(H)
\end{array}\right|
$$

where $J_{k}(k=1, \ldots, n)$ is a $n \times m$ matrix in which each entry of the k-row is 1 and all other entries are 0 . Since the row sum of $(x-1) I_{m}-L(H)$ is $x-1$, we have

$$
\begin{aligned}
\phi_{L}(G \circ H, x) & =\left|\begin{array}{cccc}
\left(x-m-\frac{m}{x-1}\right) I_{n}-L(G) & J_{1} & \cdots & J_{n} \\
O & (x-1) I_{m}-L(H) & & \\
\vdots & & \ddots & (x-1) I_{m}-L(H)
\end{array}\right| \\
& =\phi_{L}\left(G, \frac{x^{2}-(m+1) x}{x-1}\right)\left[\phi_{L}(H, x-1)\right]^{n} .
\end{aligned}
$$

Since the smallest L-eigenvalue of a graph is 0 , we get

$$
\phi_{L}(G \circ H, x)=\prod_{j=1}^{n}\left[x^{2}-\left(\mu_{j}(G)+m+1\right) x+\mu_{j}(G)\right] \prod_{i=1}^{m-1}\left(x-\mu_{i}(H)-1\right)^{n} .
$$

So the L-spectrum of $G \circ H$ is

$$
\left(\mu_{i}(H)+1\right)^{(n)}, \frac{\left(\mu_{j}(G)+m+1\right) \pm \sqrt{\left(\mu_{j}(G)+m-1\right)^{2}+4 m}}{2}(i=1, \ldots, m-1, j=1, \ldots, n)
$$

Hence part (a) holds.
If H is an r-regular graph, then every row sum of the signless Laplacian matrix of H is $2 r$. Similar to the above arguments, we can get part (b).

Corollary 3.2. The L-index of graph T_{n}^{2} is smaller than $\frac{7+\sqrt{33}}{2}$.

Proof. Note that $T_{n}^{2}=P_{n} \circ 2 K_{1}$. The L-spectra of P_{n} and $2 K_{1}$ are $2+2 \cos \frac{\pi i}{n}(i=1, \ldots, n)$ and $0^{(2)}$, respectively. By Theorem 3.1, the L-spectrum of T_{n}^{2} is

$$
1^{(n)}, \frac{\mu_{i}+3 \pm \sqrt{\left(\mu_{i}+1\right)^{2}+8}}{2}(i=1, \ldots, n)
$$

where $\mu_{i}=2+2 \cos \frac{\pi i}{n}$. Since the L-index of T_{n}^{2} is $\frac{\mu_{1}+3 \pm \sqrt{\left(\mu_{1}+1\right)^{2}+8}}{2}$, by $\mu_{1}<4$, we get $\frac{\mu_{1}+3 \pm \sqrt{\left(\mu_{1}+1\right)^{2}+8}}{2}<\frac{7+\sqrt{33}}{2}$.
Corollary 3.3. The Q-index of $C_{n} \circ 2 K_{1}$ is $\frac{7+\sqrt{33}}{2}$.
Proof. The Q-spectra of C_{n} and $2 K_{1}$ are $2+2 \cos \frac{2 \pi i}{n}(i=1, \ldots, n)$ and $0^{(2)}$, respectively. By Theorem 3.1, the Q-spectrum of $C_{n} \circ 2 K_{1}$ is

$$
1^{(n)}, \frac{q_{i}+3 \pm \sqrt{\left(q_{i}+1\right)^{2}+8}}{2}(i=1, \ldots, n)
$$

where $q_{i}=2+2 \cos \frac{2 \pi i}{n}$. Clearly the Q-index of $C_{n} \circ 2 K_{1}$ is $\frac{7+\sqrt{33}}{2}$.

4. Spectral determination of graph T_{n}^{2} and graph T_{n}^{3}

In this section, we will prove that T_{n}^{k} is determined by its Q-spectrum when $k=2$ or 3 , while T_{n}^{2} by its L-spectrum.

It is known that two Q-cospectral graphs have the same number of vertices and edges. This property also holds for A-spectrum and L-spectrum.

Lemma 4.1. Let G be a graph Q-cospectral with a tree T of order n, then one of the following holds:
(1) G is a tree;
(2) G is the union of a tree with f vertices and c odd unicyclic graphs, and $n=4^{c} f$.

Proof. Since G is Q-cospectral with a tree of order n, G is a graph of order n and size $n-1$. If G is connected, then G is a tree. If G is disconnected, then G has at least one component which is a tree. From Lemma 2.1 we know that G has exactly one bipartite component, so G is the union of a tree and several odd unicyclic graphs. Suppose that G is the union of a tree of order f and c odd unicyclic graphs. By Lemma 2.5 , the line graphs of G and T have the same A-spectrum. From Lemma 2.6 we can get $n=4^{c} f$.

For a graph G which is Q-cospectral with T_{n}^{2}, we will show in lemma below that G and T_{n}^{2} have the same degree sequence.

Lemma 4.2. Let G be any graph Q-cospectral with T_{n}^{2}. Then G and T_{n}^{2} have the same degree sequence and G has no triangles.

Proof. If G has an isolated vertex, by Lemma 4.1, there exists an integer c such that $3 n=4^{c}$, a contradiction. Hence G has no isolated vertices.

Let a_{i} be the number of vertices of degree i in G (note, $a_{0}=0$). Let $\Delta(G)$ be the maximum degree of G. Since T_{n}^{2} is a tree, by Lemma 2.7, the Q-index of T_{n}^{2} equals to its L-index. From Corollary 3.2 we know that the Q-index of T_{n}^{2} is smaller than $\frac{7+\sqrt{33}}{2}$. By Lemma 2.2, we have $\Delta(G)+1<\frac{7+\sqrt{33}}{2}$, so $\Delta(G) \leq 5$. By Lemma 2.4, we have

$$
\begin{gathered}
\sum_{i=1}^{5} a_{i}=3 n, \sum_{i=1}^{5} i a_{i}=2(3 n-1)=6 n-2 \\
\sum_{i=1}^{5} i^{2} a_{i}=2 n+3^{2} \times 2+4^{2}(n-2)=18 n-14
\end{gathered}
$$

$$
\sum_{i=1}^{5} i^{3} a_{i}+6 t(G)=2 n+3^{3} \times 2+4^{3}(n-2)=66 n-74
$$

where $t(G)$ is the number of triangles in G. Solving the above equations, we have

$$
a_{1}=2 n+t(G)+a_{5}, a_{2}=-3 t(G)-4 a_{5}, a_{3}=2+3 t(G)+6 a_{5}, a_{4}=n-2-t(G)-4 a_{5} .
$$

By $a_{2}=-3 t(G)-4 a_{5} \geq 0$, we have $a_{2}=4 a_{5}=t(G)=0$. So we get

$$
a_{1}=2 n, a_{2}=0, a_{3}=2, a_{4}=n-2
$$

i.e., G and T_{n}^{2} have the same degree sequence.

For a graph G, let u and v be any two vertices of G. We say that u, v is an adjacent vertex pair if u and v are adjacent. If the degrees of u and v are $d(u)$ and $d(v)$, we say that u, v is an adjacent vertex pair with degrees $d(u)$ and $d(v)$. Let (i, j) denote the number of adjacent vertex pairs with degrees i and j in G.

Lemma 4.3. Let G be any graph Q-cospectral with T_{n}^{2}. Then

$$
(1,3)=4,(1,4)=2 n-4,(3,3)=0,(3,4)=2,(4,4)=n-3
$$

i.e., the line graph of G and the line graph of T_{n}^{2} have the same degree sequence.

Proof. Let $L(G)$ and $L\left(T_{n}^{2}\right)$ be the line graphs of G and T_{n}^{2}, respectively. From Lemma 2.5 we know that $L(G)$ and $L\left(T_{n}^{2}\right)$ are A-cospectral. For two adjacent vertices v_{1}, v_{2} of degrees $d\left(v_{1}\right), d\left(v_{2}\right)$ in G, the degree of the corresponding vertex $v_{1} v_{2}$ in $L(G)$ is $d\left(v_{1}\right)+d\left(v_{2}\right)-2$. We denote this correspond by

$$
d\left(v_{1}\right) \sim d\left(v_{2}\right) \rightarrow d\left(v_{1}\right)+d\left(v_{2}\right)-2
$$

By Lemma 4.2, G and T_{n}^{2} have the same degree sequence and G has no triangles. All possible correspondence for vertex degrees between G and $L(G)$ are listed as follow.

$$
1 \sim 3 \rightarrow 2,1 \sim 4 \rightarrow 3,3 \sim 3 \rightarrow 4,3 \sim 4 \rightarrow 5,4 \sim 4 \rightarrow 6
$$

Let a_{i} be the number of vertices of degree i in G, then $a_{1}=2 n, a_{2}=0, a_{3}=2, a_{4}=n-2$. By Lemma 2.8, we have $N_{C_{3}}(L(G))=N_{C_{3}}\left(L\left(T_{n}^{2}\right)\right)$. Lemma 4.1 implies that G cannot contain an even cycle. Since G has no triangles, we have $N_{C_{4}}(L(G))=N_{C_{4}}\left(L\left(T_{n}^{2}\right)\right)=(n-2) N_{C_{4}}\left(K_{4}\right)$. Since $L(G)$ and $L\left(T_{n}^{2}\right)$ are A-cospectral, $N_{P_{2}}(L(G))=N_{P_{2}}\left(L\left(T_{n}^{2}\right)\right)$. For any graph H with vertex degrees $d_{1}, d_{2}, \ldots, d_{n}$, we have

$$
N_{P_{3}}(H)=\sum_{i=1}^{n}\binom{d_{i}}{2}
$$

From the above equation and Lemma 2.8, we have

$$
\left\{\begin{array}{l}
N_{P_{3}}(L(G))=N_{P_{3}}\left(L\left(T_{n}^{2}\right)\right)=4+3(2 n-4)+10 \times 2+15(n-3)=21 n-33 \tag{1}\\
N_{P_{3}}(L(G))=(1,3)+3(1,4)+6(3,3)+10(3,4)+15(4,4)
\end{array}\right.
$$

Considering vertex degrees of G, by $a_{3}=2$, we have $5 \leq(1,3)+(3,3)+(3,4) \leq 6$. It is easy to see that $(1,3)+(1,4)=a_{1}=2 n$. Note that G and T_{n}^{2} both have $3 n-1$ edges. Hence the following facts hold:

$$
\left\{\begin{array}{l}
(1,3)+(1,4)+(3,3)+(3,4)+(4,4)=3 n-1 \tag{2}\\
(1,3)+(1,4)=2 n \\
5 \leq(1,3)+(3,3)+(3,4) \leq 6
\end{array}\right.
$$

Let $x=(1,3)+(3,3)+(3,4)$. From (1) and (2) we can get

$$
7(1,3)+4(3,4)=9 x-18
$$

If $x=5$, then $(3,3)=1,(1,3)+(3,4)=4$. By $7(1,3)+4(3,4)=27$, we have $(1,3)=\frac{11}{3}$, a contradiction. Hence $x=6,(3,3)=0,(1,3)+(3,4)=6$. By $7(1,3)+4(3,4)=36$, we can get

$$
(1,3)=4,(1,4)=2 n-4,(3,3)=0,(3,4)=2,(4,4)=n-3 .
$$

In this case, $L(G)$ and $L\left(T_{n}^{2}\right)$ have the same degree sequence.
It is well known that the second smallest L-eigenvalue of a graph is larger than 0 if and only if this graph is connected. Hence if two graphs are L-cospectral, then they have the same number of components.

The coalescence of two graphs M_{1} and M_{2}, denoted by $M_{1} \cdot M_{2}$, is the graph obtained by identifying a vertex of M_{1} with a vertex of M_{2}. For a subgraph W of $K_{d_{1}} \cdot K_{d_{2}}\left(d_{1}, d_{2} \geq 3\right)$, if two cliques $K_{d_{1}}, K_{d_{2}}$ both have edges of W, i.e., the edges of W are distributed in different cliques, we say that W is a double W-subgraph of $K_{d_{1}} \cdot K_{d_{2}}$. Let $K_{d_{1}} \cdot K_{d_{2}}(W)$ denote the number of double W-subgraphs in $K_{d_{1}} \cdot K_{d_{2}}$.

For a subgraph P of a graph H, if the edges of P are distributed in three cliques of H, then P_{4} is called a triple P-subgraph of H. Let $(H)_{P}^{3}$ be the number of triple P-subgraphs in H.

Now we will consider the L-spectral determination of graph T_{n}^{2} shown in Fig.2. If $n=1$, then $T_{n}^{2}=P_{3}$. It is known that a path is determined by its L-spectrum (see [13]). It is also known that T_{2}^{2} is determined by its L-spectrum (cf. [7, Theorem 3.1]). Hence T_{n}^{2} is determined by its L-spectrum when $n \leq 2$.

Theorem 4.4. Graph T_{n}^{2} is determined by its L-spectrum.

Proof. It is known that T_{n}^{2} is determined by its L-spectrum when $n \leq 2$. So we only consider the case that $n>2$. Let G be any graph L-cospectral with T_{n}^{2}. Since G and T_{n}^{2} have the same number of components, G is a tree. By Lemma 2.7, G is Q-cospectral with T_{n}^{2} and their Q-spectra coincide with their L-spectra. Let $L(G)$ and $L\left(T_{n}^{2}\right)$ be the line graphs of G and T_{n}^{2}, respectively. From Lemma 2.5 we know that $L(G)$ and $L\left(T_{n}^{2}\right)$ are A-cospectral. Let a_{i} be the number of vertices of degree i in G. By Lemma 4.2, we have $a_{1}=2 n, a_{2}=0, a_{3}=2, a_{4}=n-2$. By Lemma 4.3, we can get $(1,3)=4,(1,4)=2 n-4,(3,3)=0,(3,4)=$ $2,(4,4)=n-3$. Hence G has two vertices with degree 3 , each vertex of degree 3 in G has two pendant vertices and one vertex of degree 4 as its neighbors. Let $N_{F}(G)$ be the number of subgraphs of G isomorphic to a graph F. Since $L(G)$ and $L\left(T_{n}^{2}\right)$ are A-cospectral, we have $N_{P_{2}}(L(G))=N_{P_{2}}\left(L\left(T_{n}^{2}\right)\right)$. By Lemma 2.8, we have $N_{C_{3}}(L(G))=N_{C_{3}}\left(L\left(T_{n}^{2}\right)\right)$. Note that G is a tree. Lemma 4.2 implies that $N_{C_{4}}(L(G))=N_{C_{4}}\left(L\left(T_{n}^{2}\right)\right)$. By Lemma 2.8, we have $N_{P_{3}}(L(G))=N_{P_{3}}\left(L\left(T_{n}^{2}\right)\right)$. Let $U_{4}, U_{5}, B_{4}, B_{5}$ be the graphs shown in Fig.3. Since G is a tree and G and T_{n}^{2} have the same degree sequence, by Lemma 4.3, we have $N_{K_{1,3}}(L(G))=N_{K_{1,3}}\left(L\left(T_{n}^{2}\right)\right), N_{C_{6}}(L(G))=$ $N_{C_{6}}\left(L\left(T_{n}^{2}\right)\right)=0, N_{B_{4}}(L(G))=N_{B_{4}}\left(L\left(T_{n}^{2}\right)\right)=a_{4} N_{B_{4}}\left(K_{4}\right)$. Line graphs $L(G)$ and $L\left(T_{n}^{2}\right)$ can be regarded as the graphs obtained from several complete graphs by some coalescence operations. A vertex of degree $d \geq 3$ in G corresponds to a clique K_{d} of $L(G)$, two adjacent vertices with degrees $d_{1}, d_{2} \geq 3$ in G corresponds to the coalescence $K_{d_{1}} \cdot K_{d_{2}}$ in $L(G)$. By calculating, we have

$$
\begin{gathered}
N_{U_{4}}(L(G))=N_{U_{4}}\left(L\left(T_{n}^{2}\right)\right)=a_{4} N_{U_{4}}\left(K_{4}\right)+(4,4) K_{4} \cdot K_{4}\left(U_{4}\right)+(3,4) K_{4} \cdot K_{3}\left(U_{4}\right), \\
N_{U_{5}}(L(G))=N_{U_{5}}\left(L\left(T_{n}^{2}\right)\right)=(4,4) K_{4} \cdot K_{4}\left(U_{5}\right)+(3,4) K_{4} \cdot K_{3}\left(U_{5}\right), \\
N_{B_{5}}(L(G))=N_{B_{5}}\left(L\left(T_{n}^{2}\right)\right)=(4,4) K_{4} \cdot K_{4}\left(B_{5}\right)+(3,4) K_{4} \cdot K_{3}\left(B_{5}\right) .
\end{gathered}
$$

By Lemma 2.8, we get $N_{C_{5}}(L(G))=N_{C_{5}}\left(L\left(T_{n}^{2}\right)\right)$. Hence the following facts hold:

$$
\left\{\begin{array}{l}
N_{P_{2}}(L(G))=N_{P_{2}}\left(L\left(T_{n}^{2}\right)\right), N_{P_{3}}(L(G))=N_{P_{3}}\left(L\left(T_{n}^{2}\right)\right), N_{C_{3}}(L(G))=N_{C_{3}}\left(L\left(T_{n}^{2}\right)\right), \tag{3}\\
N_{C_{4}}(L(G))=N_{C_{4}}\left(L\left(T_{n}^{2}\right)\right), N_{K_{1,3}}(L(G))=N_{K_{1,3}}\left(L\left(T_{n}^{2}\right)\right), N_{B_{4}}(L(G))=N_{B_{4}}\left(L\left(T_{n}^{2}\right)\right), \\
N_{B_{5}}(L(G))=N_{B_{5}}\left(L\left(T_{n}^{2}\right)\right), N_{U_{5}}(L(G))=N_{U_{5}}\left(L\left(T_{n}^{2}\right)\right), N_{C_{6}}(L(G))=N_{C_{6}}\left(L\left(T_{n}^{2}\right)\right) .
\end{array}\right.
$$

From equations (3) and Lemma 2.8 we get $N_{P_{4}}(L(G))=N_{P_{4}}\left(L\left(T_{n}^{2}\right)\right)$.

By calculating, we have

$$
\begin{aligned}
& N_{P_{4}}(L(G))=a_{4} N_{P_{4}}\left(K_{4}\right)+(4,4) K_{4} \cdot K_{4}\left(P_{4}\right)+(3,4) K_{4} \cdot K_{3}\left(P_{4}\right)+(L(G))_{P_{4}}^{3} \\
& N_{P_{4}}\left(L\left(T_{n}^{2}\right)\right)=a_{4} N_{P_{4}}\left(K_{4}\right)+(4,4) K_{4} \cdot K_{4}\left(P_{4}\right)+(3,4) K_{4} \cdot K_{3}\left(P_{4}\right)+\left(L\left(T_{n}^{2}\right)\right)_{P_{4}}^{3} .
\end{aligned}
$$

Since $N_{P_{4}}(L(G))=N_{P_{4}}\left(L\left(T_{n}^{2}\right)\right)$, we have $(L(G))_{P_{4}}^{3}=\left(L\left(T_{n}^{2}\right)\right)_{P_{4}}^{3}$. If there exist vertices of degree 4 outside the path between two vertices of degree 3 in G, then $(L(G))_{P_{4}}^{3}>\left(L\left(T_{n}^{2}\right)\right)_{P_{4}}^{3}$, a contradiction. Hence all vertices of degree 4 in G belong to the path between two vertices of degree 3, i.e., $G=T_{n}^{2}$.

Next we will consider the Q-spectral determination of graph T_{n}^{2}.
Theorem 4.5. Graph T_{n}^{2} is determined by its Q-spectrum.
Proof. Let G be any graph Q-cospectral with T_{n}^{2}. First, we show that the corona $C_{g} \circ 2 K_{1}$ can not be a subgraph of G for any integer $g \geq 3$. By Lemma 2.7 and Corollary 3.2, the Q-index of T_{n}^{2} is smaller than $\frac{7+\sqrt{33}}{2}$. If there exists an integer g such that $C_{g} \circ 2 K_{1}$ is a subgraph of G, by Corollary 3.3 and Lemma 2.3, the Q-index of G is larger than or equal to $\frac{7+\sqrt{33}}{2}$, a contradiction. Hence $C_{g} \circ 2 K_{1}$ can not be a subgraph of G.

If G is connected, then G is a tree. By Lemma 2.7, G and T_{n}^{2} have the same L-spectrum. From Theorem 4.4 we can get $G=T_{n}^{2}$.

If G is disconnected, by Lemma 4.1, G is the union of a tree and several odd unicyclic graphs. Suppose that G_{1}, \ldots, G_{c} are odd unicyclic components of G, T is the component of G which is a tree. Let a_{i} be the number of vertices of degree i in G. By Lemma 4.2, $a_{1}=2 n, a_{2}=0, a_{3}=2, a_{4}=n-2$. By Lemma 4.3, we can get $(1,3)=4,(1,4)=2 n-4,(3,3)=0,(3,4)=2,(4,4)=n-3$. Since $C_{g} \circ 2 K_{1}$ can not be a subgraph of G for any integer $g \geq 3$, we have $c \leq 2$.

If $c=2$, then there are exactly one vertex of degree 3 in the unique cycle of $G_{i}(i=1,2)$. Hence $(3,4) \geq 4$, a contradiction with $(3,4)=2$. If $c=1$, then there are at least one vertex of degree 3 in the unique cycle of G_{1}. By $(3,4)=2,(1,3)=4$ we know that the star $K_{1,3}$ is a component of G, i.e., $T=K_{1,3}$. From Lemma 4.1 we can get $3 n=4 \times 4=16$, a contradiction.

Finally we will consider the Q-spectral determination of graph T_{n}^{3}.
Theorem 4.6. Graph T_{n}^{3} is determined by its Q-spectrum.
Proof. From Lemma 2.3 we know that the Q-index of T_{n-2}^{3} is smaller than the Q-index of T_{n}^{2}. By Lemma 2.7 and Corollary 3.2, the Q-index of T_{n}^{2} is smaller than $\frac{7+\sqrt{33}}{2}$. Hence the Q-index of T_{n}^{3} is smaller than $\frac{7+\sqrt{33}}{2}$.

Let G be any graph Q-cospectral with T_{n}^{3}. If G has an isolated vertex, by Lemma 4.1, there exists an integer c such that $3 n+2=4^{c}$, a contradiction. Hence G has no isolated vertices.

Now we show that the corona $C_{g} \circ 2 K_{1}$ can not be a subgraph of G for any integer $g \geq 3$. If there exists an integer g such that $C_{g} \circ 2 K_{1}$ is a subgraph of G, by Corollary 3.3 and Lemma 2.3, the Q-index of G is larger than or equal to $\frac{7+\sqrt{33}}{2}$. But the Q-index of T_{n}^{3} is smaller than $\frac{7+\sqrt{33}}{2}$, a contradiction. Hence $C_{g} \circ 2 K_{1}$ can not be a subgraph of G for any integer $g \geq 3$.

If G is connected, then G is a tree. By Lemma 2.7, G and T_{n}^{3} have the same L-spectrum. From Theorem 2.9 we can get $G=T_{n}^{3}$. Next we only consider the case that G is disconnected. Let a_{i} be the number of vertices of degree i in $G, \Delta(G)$ be the maximum degree of G. Since G has no isolated vertices, we have $a_{0}=0$. Since the Q-index of G is smaller than $\frac{7+\sqrt{33}}{2}$, by Lemma 2.2, we have $\Delta(G)+1<\frac{7+\sqrt{33}}{2}$, so $\Delta(G) \leq 5$. Let $t(G)$ be the number of triangles in G. By Lemma 2.4, we have

$$
\begin{gathered}
\sum_{i=1}^{5} a_{i}=3 n+2, \sum_{i=1}^{5} i a_{i}=2(3 n+1)=6 n+2, \sum_{i=1}^{5} i^{2} a_{i}=2 n+2+4^{2} n=18 n+2, \\
\sum_{i=1}^{5} i^{3} a_{i}+6 t(G)=2 n+2+4^{3} n=66 n+2 .
\end{gathered}
$$

Solving the above equations, we have

$$
a_{1}=2 n+2+t(G)+a_{5}, a_{2}=-4 a_{5}-3 t(G), a_{3}=6 a_{5}+3 t(G), a_{4}=n-t(G)-4 a_{5} .
$$

Since $a_{2} \geq 0$, we have $a_{5}=t(G)=0$. So we get $a_{1}=2 n+2, a_{2}=a_{3}=0, a_{4}=n$. Since G is disconnected, by Lemma 4.1, G is the union of a tree and several odd unicyclic graphs. In this case, there exists an integer g such that $C_{g} \circ 2 K_{1}$ is a subgraph of G. But $C_{g} \circ 2 K_{1}$ can not be a subgraph of G for any integer $g \geq 3$, a contradiction.

5. Acknowledgments

The authors thank Prof. Dragan Stevanović and the referee for a very careful reading of the paper and for their valuable suggestions.

References

[1] R. Boulet, The centipede is determined by its Laplacian spectrum, C. R. Acad. Sci. Paris, Ser. I 346 (2008) 711-716.
[2] C. Bu, J. Zhou, Starlike trees whose maximum degree exceed 4 are determined by their Q-spectra, Linear Algebra Appl. 436 (2012) 143-151.
[3] D. Cvetković, P. Rowlinson, S.K. Simić, Signless Laplacians of finite graphs, Linear Algebra Appl. 423 (2007) 155-171.
[4] Hs.H. Günthard, H. Primas, Zusammenhang von Graphtheorie und Mo-Theotie von Molekeln mit Systemen konjugierter Bindungen, Helv. Chim. Acta 39 (1956) 1645-1653.
[5] M. Lepović, I. Gutman, No starlike trees are cospectral, Discrete Math. 242 (2002) 291-295.
[6] F.J. Liu, Q.X. Huang, Q.H. Liu, Spectral characterization of \dagger-shape trees, Electronic Journal of Linear Algebra, 22 (2011) $822-837$.
[7] X.G. Liu, Y.P. Zhang, P.L. Lu, One special double starlike graph is determined by its Laplacian spectrum, Appl. Math. Lett. 22 (2009) 435-438.
[8] P.L. Lu, X.D. Zhang, Y.P. Zhang, Determination of double quasi-star tree from its Laplacian spectrum, J. Shanghai Univ (Engl Ed) 14(3) (2010) 163-166.
[9] G.R. Omidi, K. Tajbakhsh, The starlike trees are determined by their Laplacian spectrum, Linear Algebra Appl. 422 (2007) 654-658.
[10] G.R. Omidi, E. Vatandoost, Starlike trees with maximum degree 4 are determined by their signless Laplacian spectra, Electronic Journal of Linear Algebra, 20 (2010) 274-290.
[11] X.L. Shen, Y.P. Hou, Some trees are determined by their Laplacian spectra, J. Nat. Sci. Hunan Norm. Univ. 29 (1) (2006) 21-24 (in Chinese).
[12] Z. Stanić, On determination of caterpillars with four terminal vertices by their Laplacian spectrum, Linear Algebra Appl. 431 (2009) 2035-2048.
[13] E.R. van Dam, W.H. Haemers, Which graphs are determined by their spectra?, Linear Algebra Appl. 373 (2003) 241-272.
[14] W. Wang, C.X. Xu, On the spectral characterization of T-shape trees, Linear Algebra Appl. 414 (2006) 492-501.
[15] Y.P. Wu, H.Q. Liu, Lexicographical ordering by spectral moments of trees with a prescribed diameter, Linear Algebra Appl. 433 (2010) 1707-1713.

[^0]: 2010 Mathematics Subject Classification. 05C50.
 Keywords. Laplacian spectrum, signless Laplacian spectrum, Caterpillar, Spectral determination.
 Received: 8 Aug 2011; Accepted: 5 Nov 2011
 Communicated by Dragan Stevanović
 Email addresses: buchangjiang@hrbeu.edu.cn (Changjiang Bu), zhoujiang@4113112@163.com (Jiang Zhou), lihongbo56789@126.com (Hongbo Li)

