Filomat 26:6 (2012), 1123–1131 DOI 10.2298/FIL1206123B Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Spectral determination of some chemical graphs

Changjiang Bu^a, Jiang Zhou^b, Hongbo Li^c

^aCollege of Science, Harbin Engineering University, Harbin 150001, PR China ^bCollege of Science, Harbin Engineering University, Harbin 150001, PR China ^cCollege of Science, Harbin Engineering University, Harbin 150001, PR China

Abstract. Let T_n^k denote the caterpillar obtained by attaching *k* pendant edges at two pendant vertices of the path P_n and two pendant edges at the other vertices of P_n . It is proved that T_n^k is determined by its signless Laplacian spectrum when k = 2 or 3, while T_n^2 by its Laplacian spectrum.

1. Introduction

All graphs are simple and undirected in this paper. Let A(G) be the adjacency matrix of G, and D(G) the diagonal matrix of vertex degrees. The matrices D(G) - A(G) and D(G) + A(G) are called the *Laplacian matrix* and the *signless Laplacian matrix* of G, respectively. The spectrum of A(G), D(G) - A(G) and D(G) + A(G) are called the *L-spectrum* and the *Q-spectrum* of G, respectively. The eigenvalues of D(G) - A(G) and D(G) + A(G) are called the *L-eigenvalues* and the *Q-eigenvalues* of G, respectively. Since D(G) - A(G) and D(G) + A(G) are real symmetric and positive semi-definite, all their eigenvalues are nonnegative. The largest eigenvalues of D(G) - A(G) and D(G) + A(G) are called the *L-eigenvalue* of a graph is 0. The characteristic polynomials of D(G) - A(G) and D(G) + A(G) are called the *L-polynomial* and the *Q-polynomial* of G, respectively. We say that G is determined by its *L-spectrum* (resp. *Q-spectrum*) if there is no other non-isomorphic graph with the same *L*-spectrum (resp. *Q-spectrum*). Two graphs are said to be *A-cospectral* (resp. *L-cospectral*) if they have the same *A*-spectrum (resp. *L-spectrum*, *Q*-spectrum). As usual, P_n , C_n and K_n denote the path, the cycle and the complete graph of order n, respectively. Let $K_{m,n}$ denote the complete bipartite graph with parts of size m and n.

The problem "which graphs are determined by their spectra?" originates from chemistry. Günthard and Primas [4] raised this question in the context of Hückel's theory. Since this problem is generally very difficult, van Dam and Haemers [13] proposed a more modest problem, that is "Which trees are determined by their spectra?" Some results for spectral determination of starlike trees can be found in [2,5,6,9,10,14]. Some double starlike trees determined by their *L*-spectra are given in [7,8]. Some caterpillars determined by their *L*-spectra are given in [1,11,12].

The theory of graph spectra has many important applications in chemistry, especially in treating hydrocarbons. The molecular graph of a hydrocarbon is a tree with maximal degree 4. Let T_n^k denote the

Received: 8 Aug 2011; Accepted: 5 Nov 2011

²⁰¹⁰ Mathematics Subject Classification. 05C50.

Keywords. Laplacian spectrum, signless Laplacian spectrum, Caterpillar, Spectral determination.

Communicated by Dragan Stevanović

Email addresses: buchangjiang@hrbeu.edu.cn (Changjiang Bu), zhoujiang04113112@163.com (Jiang Zhou),

lihongbo56789@126.com (Hongbo Li)

caterpillar obtained by attaching *k* pendant edges at two pendant vertices of P_n and two pendant edges at the other vertices of P_n . For $k \le 3$, T_n^k is the molecular graph of certain hydrocarbon. For instance, T_n^3 is the molecular graph of a linear alkane (see Fig.1). In this paper, we prove that T_n^k is determined by its Q-spectrum when k = 2 or 3, while T_n^2 by its L-spectrum. The graph T_n^2 is shown in Fig.2.

Fig. 1. Some examples for graph T_n^3

Fig. 2. The graph T_n^2

2. Preliminaries

In this section, we give some properties which play important role throughout this paper.

Lemma 2.1. [3] For a graph G, the multiplicity of the Q-eigenvalue 0 of G is equal to the number of bipartite components of G.

Lemma 2.2. [2] Let G be a connected graph of order n > 1, and the maximum degree of G is Δ . Let q(G) be the Q-index of G. Then $q(G) \ge \Delta + 1$, with equality if and only if G is the star $K_{1,n-1}$.

Lemma 2.3. [2] For a connected graph G, let H be a proper subgraph of G. Let q(G) and q(H) be the Q-indices of G and H, respectively. Then q(H) < q(G).

Lemma 2.4. [3] Let G be a graph with n vertices, m edges, t triangles and degree sequence $d_1, d_2, ..., d_n$. Assume that $q_1, q_2, ..., q_n$ are the Q-eigenvalues of G. Let $T_k = \sum_{i=1}^n q_i^k$, then

$$T_0 = n, T_1 = \sum_{i=1}^n d_i = 2m, T_2 = 2m + \sum_{i=1}^n d_i^2, T_3 = 6t + 3\sum_{i=1}^n d_i^2 + \sum_{i=1}^n d_i^3.$$

For a graph *G*, let $\phi_A(G, x)$ be the characteristic polynomial of the adjacency matrix of *G*, $\phi_Q(G, x)$ be the *Q*-polynomial of *G*.

Lemma 2.5. [3] Let G be a graph of order n and size m, L(G) be the line graph of G. Then

 $\phi_A(L(G), x) = (x+2)^{m-n} \phi_Q(G, x+2).$

A connected graph with *n* vertices is said to be *unicyclic* if it has *n* edges. If the girth of an unicyclic graph is odd (resp. even), then this unicyclic graph is said to be *odd* (*resp. even*) *unicyclic*.

Lemma 2.6. [2] For a connected graph G with m edges, let L(G) be the line graph of G, $\phi_A(L(G), x)$ be the characteristic polynomial of the adjacency matrix of L(G). The following statements hold: (i) If G is odd unicyclic, then $\phi_A(L(G), -2) = (-1)^m 4$. (ii) If G is a tree, then $\phi_A(L(G), -2) = (-1)^m (m + 1)$. (iii) If G is neither odd unicyclic nor a tree, then $\phi_A(L(G), -2) = 0$.

Lemma 2.7. [3] For any bipartite graph, the Q-polynomial coincides with the L-polynomial.

For a graph *G* with *n* vertices, let $\lambda_1, \lambda_2, ..., \lambda_n$ be the eigenvalues of the adjacency matrix of *G*. For an integer $k \ge 0$, the number $\sum_{i=1}^{n} \lambda_i^k$ is called the *k*-th *spectral moment* of *G*, denoted by $S_k(G)$. Let $N_F(G)$ denote the number of subgraphs of *G* isomorphic to a graph *F*.

Let $K_{1,n-1}$ be a star of order n, U_n be the graph obtained from a cycle C_{n-1} by attaching a pendant vertex to one vertex of C_{n-1} . Let B_4, B_5 be two graphs obtained from two triangles T_1, T_2 by identifying one edge of T_1 with one edge of T_2 and identifying one vertex of T_1 with one vertex of T_2 , respectively (see Fig. 3).

Fig. 3. Four graphs U_4 , U_5 , B_4 , B_5

Lemma 2.8. [15] For any graph G, we have

$$\begin{split} S_3(G) &= 6N_{C_3}(G), \\ S_4(G) &= 2N_{P_2}(G) + 4N_{P_3}(G) + 8N_{C_4}(G), \\ S_5(G) &= 30N_{C_3}(G) + 10N_{U_4}(G) + 10N_{C_5}(G), \\ S_6(G) &= 2N_{P_2}(G) + 12N_{P_3}(G) + 24N_{C_3}(G) + 40N_{C_4}(G) + 6N_{P_4}(G) \\ &+ 12N_{K_{13}}(G) + 36N_{B_4}(G) + 24N_{B_5}(G) + 12N_{U_5}(G) + 12N_{C_6}(G). \end{split}$$

In [11], Shen and Hou proved that the graph T_n^3 is determined by its *L*-spectrum.

Theorem 2.9. [11] *Graph* T_n^3 *is determined by its L*-spectrum.

3. The spectrum of the corona of two graphs

In order to get our main results, we will give an upper bound for the *L*-index of graph T_n^2 in this section. Let *G* be a graph with *n* vertices, *H* be a graph with *m* vertices. The *corona* of *G* and *H*, denoted by $G \circ H$, is the graph with n + mn vertices obtained from *G* and *n* copies of *H* by joining the *i*-th vertex of *G* to each vertex in the *i*-th copy of H(i = 1, ..., n). For a graph *F*, let *rF* denote the union of *r* disjoint copies of *F*. Let $\mu_i(G)$ (resp. $q_i(G)$) denote the *i*-th largest *L*-eigenvalue (resp. *Q*-eigenvalue) of a graph *G*. If *G* has distinct *L*-eigenvalues $\xi_1, \xi_2, \ldots, \xi_m$ (resp. *Q*-eigenvalue $\eta_1, \eta_2, \ldots, \eta_m$) with multiplicities k_1, k_2, \ldots, k_m , we shall write $\xi_1^{(k_1)}, \xi_2^{(k_2)}, \ldots, \xi_m^{(k_m)}$ (resp. $\eta_1^{(k_1)}, \eta_2^{(k_2)}, \ldots, \eta_m^{(k_m)}$) for the *L*-spectrum (resp. *Q*-spectrum) of *G*. Let $\phi_L(G, x)$ and $\phi_Q(G, x)$ be the *L*-polynomial and *Q*-polynomial of *G*, respectively. The following theorem is known in the literature, but to make the paper more selfcontained we give here the proof.

Theorem 3.1. Let G be a graph with n vertices, H be a graph with m vertices. The following statements hold: (a) $\phi_L(G \circ H, x) = \phi_L(G, \frac{x^2 - (m+1)x}{x-1})[\phi_L(H, x-1)]^n$, i.e., the L-spectrum of $G \circ H$ is

$$(\mu_i(H)+1)^{(n)}, \frac{(\mu_j(G)+m+1)\pm\sqrt{(\mu_j(G)+m-1)^2+4m}}{2}$$
 $(i=1,\ldots,m-1,j=1,\ldots,n).$

(b) If H is an r-regular graph, then $\phi_Q(G \circ H, x) = \phi_Q(G, \frac{x^2 - (m+2r+1)x + 2mr}{x-2r-1})[\phi_Q(H, x-1)]^n$, i.e., the Q-spectrum of $G \circ H$ is

$$(q_i(H)+1)^{(n)}, \frac{(q_j(G)+m+2r+1)\pm\sqrt{(q_j(G)+m-2r-1)^2+4m}}{2}$$
 $(i=2,\ldots,m,j=1,\ldots,n).$

Proof. Let L(G) and L(H) be the Laplacian matrices of G and H, respectively. The L-polynomial of $G \circ H$ is

$$\begin{vmatrix} (x-m)I_n - L(G) & J_1 & \cdots & J_n \\ J_1^{\mathsf{T}} & (x-1)I_m - L(H) \\ \vdots & & \ddots \\ J_n^{\mathsf{T}} & & (x-1)I_m - L(H) \end{vmatrix}$$

where $J_k(k = 1, ..., n)$ is a $n \times m$ matrix in which each entry of the *k*-row is 1 and all other entries are 0. Since the row sum of $(x - 1)I_m - L(H)$ is x - 1, we have

$$\phi_{L}(G \circ H, x) = \begin{cases} (x - m - \frac{m}{x-1})I_{n} - L(G) & J_{1} & \cdots & J_{n} \\ O & (x-1)I_{m} - L(H) \\ \vdots & & \ddots \\ O & & (x-1)I_{m} - L(H) \end{cases}$$
$$= \phi_{L}(G, \frac{x^{2} - (m+1)x}{x-1})[\phi_{L}(H, x-1)]^{n}.$$

Since the smallest L-eigenvalue of a graph is 0, we get

$$\phi_L(G \circ H, x) = \prod_{j=1}^n [x^2 - (\mu_j(G) + m + 1)x + \mu_j(G)] \prod_{i=1}^{m-1} (x - \mu_i(H) - 1)^n.$$

So the *L*-spectrum of $G \circ H$ is

$$(\mu_i(H)+1)^{(n)}, \frac{(\mu_j(G)+m+1)\pm\sqrt{(\mu_j(G)+m-1)^2+4m}}{2} \quad (i=1,\ldots,m-1, j=1,\ldots,n).$$

Hence part (a) holds.

If *H* is an *r*-regular graph, then every row sum of the signless Laplacian matrix of *H* is 2r. Similar to the above arguments, we can get part (b). \Box

Corollary 3.2. The L-index of graph T_n^2 is smaller than $\frac{7+\sqrt{33}}{2}$.

Proof. Note that $T_n^2 = P_n \circ 2K_1$. The *L*-spectra of P_n and $2K_1$ are $2 + 2 \cos \frac{\pi i}{n}$ (i = 1, ..., n) and $0^{(2)}$, respectively. By Theorem 3.1, the *L*-spectrum of T_n^2 is

$$1^{(n)}, \frac{\mu_i + 3 \pm \sqrt{(\mu_i + 1)^2 + 8}}{2} \ (i = 1, \dots, n),$$

where $\mu_i = 2 + 2 \cos \frac{\pi i}{n}$. Since the *L*-index of T_n^2 is $\frac{\mu_1 + 3 \pm \sqrt{(\mu_1 + 1)^2 + 8}}{2}$, by $\mu_1 < 4$, we get $\frac{\mu_1 + 3 \pm \sqrt{(\mu_1 + 1)^2 + 8}}{2} < \frac{7 + \sqrt{33}}{2}$.

Corollary 3.3. The Q-index of $C_n \circ 2K_1$ is $\frac{7+\sqrt{33}}{2}$.

Proof. The *Q*-spectra of C_n and $2K_1$ are $2 + 2 \cos \frac{2\pi i}{n}$ (i = 1, ..., n) and $0^{(2)}$, respectively. By Theorem 3.1, the *Q*-spectrum of $C_n \circ 2K_1$ is

$$1^{(n)}, \frac{q_i + 3 \pm \sqrt{(q_i + 1)^2 + 8}}{2} \ (i = 1, \dots, n)$$

where $q_i = 2 + 2\cos\frac{2\pi i}{n}$. Clearly the *Q*-index of $C_n \circ 2K_1$ is $\frac{7+\sqrt{33}}{2}$. \Box

4. Spectral determination of graph T_n^2 and graph T_n^3

In this section, we will prove that T_n^k is determined by its *Q*-spectrum when k = 2 or 3, while T_n^2 by its *L*-spectrum.

It is known that two *Q*-cospectral graphs have the same number of vertices and edges. This property also holds for *A*-spectrum and *L*-spectrum.

Lemma 4.1. Let *G* be a graph *Q*-cospectral with a tree *T* of order *n*, then one of the following holds: (1) *G* is a tree;

(2) *G* is the union of a tree with *f* vertices and *c* odd unicyclic graphs, and $n = 4^{c} f$.

Proof. Since *G* is *Q*-cospectral with a tree of order *n*, *G* is a graph of order *n* and size n - 1. If *G* is connected, then *G* is a tree. If *G* is disconnected, then *G* has at least one component which is a tree. From Lemma 2.1 we know that *G* has exactly one bipartite component, so *G* is the union of a tree and several odd unicyclic graphs. Suppose that *G* is the union of a tree of order *f* and *c* odd unicyclic graphs. By Lemma 2.5, the line graphs of *G* and *T* have the same *A*-spectrum. From Lemma 2.6 we can get $n = 4^c f$. \Box

For a graph *G* which is *Q*-cospectral with T_n^2 , we will show in lemma below that *G* and T_n^2 have the same degree sequence.

Lemma 4.2. Let G be any graph Q-cospectral with T_n^2 . Then G and T_n^2 have the same degree sequence and G has no triangles.

Proof. If *G* has an isolated vertex, by Lemma 4.1, there exists an integer *c* such that $3n = 4^c$, a contradiction. Hence *G* has no isolated vertices.

Let a_i be the number of vertices of degree i in G (note, $a_0 = 0$). Let $\Delta(G)$ be the maximum degree of G. Since T_n^2 is a tree, by Lemma 2.7, the Q-index of T_n^2 equals to its L-index. From Corollary 3.2 we know that the Q-index of T_n^2 is smaller than $\frac{7+\sqrt{33}}{2}$. By Lemma 2.2, we have $\Delta(G) + 1 < \frac{7+\sqrt{33}}{2}$, so $\Delta(G) \le 5$. By Lemma 2.4, we have

$$\sum_{i=1}^{5} a_i = 3n, \quad \sum_{i=1}^{5} ia_i = 2(3n-1) = 6n-2,$$
$$\sum_{i=1}^{5} i^2 a_i = 2n + 3^2 \times 2 + 4^2(n-2) = 18n - 14$$

Changjiang Bu et al. / Filomat 26:6 (2012), 1123-1131

$$\sum_{i=1}^{5} i^3 a_i + 6t(G) = 2n + 3^3 \times 2 + 4^3(n-2) = 66n - 74$$

where t(G) is the number of triangles in *G*. Solving the above equations, we have

$$a_1 = 2n + t(G) + a_5, a_2 = -3t(G) - 4a_5, a_3 = 2 + 3t(G) + 6a_5, a_4 = n - 2 - t(G) - 4a_5.$$

By $a_2 = -3t(G) - 4a_5 \ge 0$, we have $a_2 = 4a_5 = t(G) = 0$. So we get

$$a_1 = 2n, a_2 = 0, a_3 = 2, a_4 = n - 2,$$

i.e., *G* and T_n^2 have the same degree sequence. \Box

For a graph *G*, let *u* and *v* be any two vertices of *G*. We say that *u*, *v* is an *adjacent vertex pair* if *u* and *v* are adjacent. If the degrees of *u* and *v* are d(u) and d(v), we say that *u*, *v* is an adjacent vertex pair with degrees d(u) and d(v). Let (i, j) denote the number of adjacent vertex pairs with degrees *i* and *j* in *G*.

Lemma 4.3. Let G be any graph Q-cospectral with T_n^2 . Then

$$(1,3) = 4, (1,4) = 2n - 4, (3,3) = 0, (3,4) = 2, (4,4) = n - 3,$$

i.e., the line graph of G and the line graph of T_n^2 *have the same degree sequence.*

Proof. Let L(G) and $L(T_n^2)$ be the line graphs of G and T_n^2 , respectively. From Lemma 2.5 we know that L(G) and $L(T_n^2)$ are A-cospectral. For two adjacent vertices v_1, v_2 of degrees $d(v_1), d(v_2)$ in G, the degree of the corresponding vertex v_1v_2 in L(G) is $d(v_1) + d(v_2) - 2$. We denote this correspond by

$$d(v_1) \sim d(v_2) \rightarrow d(v_1) + d(v_2) - 2$$

By Lemma 4.2, *G* and T_n^2 have the same degree sequence and *G* has no triangles. All possible correspondence for vertex degrees between *G* and *L*(*G*) are listed as follow.

$$1 \sim 3 \rightarrow 2$$
, $1 \sim 4 \rightarrow 3$, $3 \sim 3 \rightarrow 4$, $3 \sim 4 \rightarrow 5$, $4 \sim 4 \rightarrow 6$.

Let a_i be the number of vertices of degree i in G, then $a_1 = 2n$, $a_2 = 0$, $a_3 = 2$, $a_4 = n - 2$. By Lemma 2.8, we have $N_{C_3}(L(G)) = N_{C_3}(L(T_n^2))$. Lemma 4.1 implies that G cannot contain an even cycle. Since G has no triangles, we have $N_{C_4}(L(G)) = N_{C_4}(L(T_n^2)) = (n - 2)N_{C_4}(K_4)$. Since L(G) and $L(T_n^2)$ are A-cospectral, $N_{P_2}(L(G)) = N_{P_2}(L(T_n^2))$. For any graph H with vertex degrees d_1, d_2, \ldots, d_n , we have

$$N_{P_3}(H) = \sum_{i=1}^n \binom{d_i}{2}.$$

From the above equation and Lemma 2.8, we have

$$\begin{cases} N_{P_3}(L(G)) = N_{P_3}(L(T_n^2)) = 4 + 3(2n-4) + 10 \times 2 + 15(n-3) = 21n - 33, \\ N_{P_3}(L(G)) = (1,3) + 3(1,4) + 6(3,3) + 10(3,4) + 15(4,4). \end{cases}$$
(1)

Considering vertex degrees of *G*, by $a_3 = 2$, we have $5 \le (1,3) + (3,3) + (3,4) \le 6$. It is easy to see that $(1,3) + (1,4) = a_1 = 2n$. Note that *G* and T_n^2 both have 3n - 1 edges. Hence the following facts hold:

$$\begin{cases} (1,3) + (1,4) + (3,3) + (3,4) + (4,4) = 3n - 1, \\ (1,3) + (1,4) = 2n, \\ 5 \le (1,3) + (3,3) + (3,4) \le 6. \end{cases}$$
(2)

1128

Let x = (1,3) + (3,3) + (3,4). From (1) and (2) we can get

$$7(1,3) + 4(3,4) = 9x - 18.$$

If x = 5, then (3,3) = 1, (1,3) + (3,4) = 4. By 7(1,3) + 4(3,4) = 27, we have $(1,3) = \frac{11}{3}$, a contradiction. Hence x = 6, (3,3) = 0, (1,3) + (3,4) = 6. By 7(1,3) + 4(3,4) = 36, we can get

$$(1,3) = 4, (1,4) = 2n - 4, (3,3) = 0, (3,4) = 2, (4,4) = n - 3.$$

In this case, L(G) and $L(T_n^2)$ have the same degree sequence. \Box

It is well known that the second smallest *L*-eigenvalue of a graph is larger than 0 if and only if this graph is connected. Hence if two graphs are *L*-cospectral, then they have the same number of components.

The *coalescence* of two graphs M_1 and M_2 , denoted by $M_1 \cdot M_2$, is the graph obtained by identifying a vertex of M_1 with a vertex of M_2 . For a subgraph W of $K_{d_1} \cdot K_{d_2}(d_1, d_2 \ge 3)$, if two cliques K_{d_1}, K_{d_2} both have edges of W, i.e., the edges of W are distributed in different cliques, we say that W is a *double* W-subgraph of $K_{d_1} \cdot K_{d_2}$. Let $K_{d_1} \cdot K_{d_2}(W)$ denote the number of double W-subgraphs in $K_{d_1} \cdot K_{d_2}$.

For a subgraph *P* of a graph *H*, if the edges of *P* are distributed in three cliques of *H*, then P_4 is called a *triple P-subgraph* of *H*. Let $(H)_p^3$ be the number of triple *P*-subgraphs in *H*.

Now we will consider the *L*-spectral determination of graph T_n^2 shown in Fig.2. If n = 1, then $T_n^2 = P_3$. It is known that a path is determined by its *L*-spectrum (see [13]). It is also known that T_2^2 is determined by its *L*-spectrum (cf. [7, Theorem 3.1]). Hence T_n^2 is determined by its *L*-spectrum when $n \le 2$.

Theorem 4.4. *Graph* T_n^2 *is determined by its L*-*spectrum.*

Proof. It is known that T_n^2 is determined by its *L*-spectrum when $n \le 2$. So we only consider the case that n > 2. Let *G* be any graph *L*-cospectral with T_n^2 . Since *G* and T_n^2 have the same number of components, *G* is a tree. By Lemma 2.7, *G* is *Q*-cospectral with T_n^2 and their *Q*-spectra coincide with their *L*-spectra. Let L(G) and $L(T_n^2)$ be the line graphs of *G* and T_n^2 , respectively. From Lemma 2.5 we know that L(G) and $L(T_n^2)$ are *A*-cospectral. Let a_i be the number of vertices of degree *i* in *G*. By Lemma 4.2, we have $a_1 = 2n, a_2 = 0, a_3 = 2, a_4 = n - 2$. By Lemma 4.3, we can get (1,3) = 4, (1,4) = 2n - 4, (3,3) = 0, (3,4) = 2, (4,4) = n - 3. Hence *G* has two vertices with degree 3, each vertex of degree 3 in *G* has two pendant vertices and one vertex of degree 4 as its neighbors. Let $N_F(G)$ be the number of subgraphs of *G* isomorphic to a graph *F*. Since L(G) and $L(T_n^2)$ are *A*-cospectral, we have $N_{P_2}(L(G)) = N_{P_2}(L(T_n^2))$. By Lemma 2.8, we have $N_{C_3}(L(G)) = N_{C_3}(L(T_n^2))$. Note that *G* is a tree. Lemma 4.2 implies that $N_{C_4}(L(G)) = N_{C_4}(L(T_n^2))$. By Lemma 2.8, we have $N_{P_3}(L(G)) = N_{P_3}(L(T_n^2))$. Let U_4, U_5, B_4, B_5 be the graphs shown in Fig.3. Since *G* is a tree and *G* and T_n^2 have the same degree sequence, by Lemma 4.3, we have $N_{K_{1,3}}(L(G)) = N_{K_{1,3}}(L(T_n^2)), N_{C_6}(L(G)) = N_{C_6}(L(T_n^2)) = 0, N_{B_4}(L(G)) = N_{B_4}(L(T_n^2)) = a_4N_{B_4}(K_4)$. Line graphs L(G) and $L(T_n^2)$ can be regarded as the graphs obtained from several complete graphs by some coalescence operations. A vertex of degree $d \ge 3$ in *G* corresponds to a clique K_d of L(G), two adjacent vertices with degrees $d_1, d_2 \ge 3$ in *G* corresponds to the coalescence $K_{d_1} \cdot K_{d_2}$ in L(G). By calculating, we have

$$\begin{split} N_{U_4}(L(G)) &= N_{U_4}(L(T_n^2)) = a_4 N_{U_4}(K_4) + (4,4)K_4 \cdot K_4(U_4) + (3,4)K_4 \cdot K_3(U_4), \\ N_{U_5}(L(G)) &= N_{U_5}(L(T_n^2)) = (4,4)K_4 \cdot K_4(U_5) + (3,4)K_4 \cdot K_3(U_5), \end{split}$$

$$N_{B_5}(L(G)) = N_{B_5}(L(T_n^2)) = (4,4)K_4 \cdot K_4(B_5) + (3,4)K_4 \cdot K_3(B_5).$$

By Lemma 2.8, we get $N_{C_5}(L(G)) = N_{C_5}(L(T_n^2))$. Hence the following facts hold:

$$\begin{cases} N_{P_2}(L(G)) = N_{P_2}(L(T_n^2)), N_{P_3}(L(G)) = N_{P_3}(L(T_n^2)), N_{C_3}(L(G)) = N_{C_3}(L(T_n^2)), \\ N_{C_4}(L(G)) = N_{C_4}(L(T_n^2)), N_{K_{1,3}}(L(G)) = N_{K_{1,3}}(L(T_n^2)), N_{B_4}(L(G)) = N_{B_4}(L(T_n^2)), \\ N_{B_5}(L(G)) = N_{B_5}(L(T_n^2)), N_{U_5}(L(G)) = N_{U_5}(L(T_n^2)), N_{C_6}(L(G)) = N_{C_6}(L(T_n^2)). \end{cases}$$
(3)

From equations (3) and Lemma 2.8 we get $N_{P_4}(L(G)) = N_{P_4}(L(T_n^2))$.

By calculating, we have

$$N_{P_4}(L(G)) = a_4 N_{P_4}(K_4) + (4,4)K_4 \cdot K_4(P_4) + (3,4)K_4 \cdot K_3(P_4) + (L(G))_{P_4}^3,$$

$$N_{P_4}(L(T_n^2)) = a_4 N_{P_4}(K_4) + (4,4)K_4 \cdot K_4(P_4) + (3,4)K_4 \cdot K_3(P_4) + (L(T_n^2))_{P_4}^{\circ}.$$

Since $N_{P_4}(L(G)) = N_{P_4}(L(T_n^2))$, we have $(L(G))_{P_4}^3 = (L(T_n^2))_{P_4}^3$. If there exist vertices of degree 4 outside the path between two vertices of degree 3 in *G*, then $(L(G))_{P_4}^3 > (L(T_n^2))_{P_4}^3$, a contradiction. Hence all vertices of degree 4 in *G* belong to the path between two vertices of degree 3, i.e., $G = T_n^2$.

Next we will consider the *Q*-spectral determination of graph T_n^2 .

Theorem 4.5. Graph T_n^2 is determined by its Q-spectrum.

Proof. Let *G* be any graph *Q*-cospectral with T_n^2 . First, we show that the corona $C_g \circ 2K_1$ can not be a subgraph of *G* for any integer $g \ge 3$. By Lemma 2.7 and Corollary 3.2, the *Q*-index of T_n^2 is smaller than $\frac{7+\sqrt{33}}{2}$. If there exists an integer *g* such that $C_g \circ 2K_1$ is a subgraph of *G*, by Corollary 3.3 and Lemma 2.3, the *Q*-index of *G* is larger than or equal to $\frac{7+\sqrt{33}}{2}$, a contradiction. Hence $C_g \circ 2K_1$ can not be a subgraph of *G*.

If *G* is connected, then *G* is a tree. By Lemma 2.7, *G* and T_n^2 have the same *L*-spectrum. From Theorem 4.4 we can get $G = T_n^2$.

If *G* is disconnected, by Lemma 4.1, *G* is the union of a tree and several odd unicyclic graphs. Suppose that G_1, \ldots, G_c are odd unicyclic components of *G*, *T* is the component of *G* which is a tree. Let a_i be the number of vertices of degree *i* in *G*. By Lemma 4.2, $a_1 = 2n$, $a_2 = 0$, $a_3 = 2$, $a_4 = n - 2$. By Lemma 4.3, we can get (1, 3) = 4, (1, 4) = 2n - 4, (3, 3) = 0, (3, 4) = 2, (4, 4) = n - 3. Since $C_g \circ 2K_1$ can not be a subgraph of *G* for any integer $g \ge 3$, we have $c \le 2$.

If c = 2, then there are exactly one vertex of degree 3 in the unique cycle of G_i (i = 1, 2). Hence (3, 4) ≥ 4 , a contradiction with (3, 4) = 2. If c = 1, then there are at least one vertex of degree 3 in the unique cycle of G_1 . By (3, 4) = 2, (1, 3) = 4 we know that the star $K_{1,3}$ is a component of G, i.e., $T = K_{1,3}$. From Lemma 4.1 we can get $3n = 4 \times 4 = 16$, a contradiction. \Box

Finally we will consider the *Q*-spectral determination of graph T_n^3 .

Theorem 4.6. Graph T_n^3 is determined by its *Q*-spectrum.

Proof. From Lemma 2.3 we know that the *Q*-index of T_{n-2}^3 is smaller than the *Q*-index of T_n^2 . By Lemma 2.7 and Corollary 3.2, the *Q*-index of T_n^2 is smaller than $\frac{7+\sqrt{33}}{2}$. Hence the *Q*-index of T_n^3 is smaller than $\frac{7+\sqrt{33}}{2}$.

Let *G* be any graph Q-cospectral with T_n^3 . If *G* has an isolated vertex, by Lemma 4.1, there exists an integer *c* such that $3n + 2 = 4^c$, a contradiction. Hence *G* has no isolated vertices.

Now we show that the corona $C_g \circ 2K_1$ can not be a subgraph of *G* for any integer $g \ge 3$. If there exists an integer *g* such that $C_g \circ 2K_1$ is a subgraph of *G*, by Corollary 3.3 and Lemma 2.3, the *Q*-index of *G* is larger than or equal to $\frac{7+\sqrt{33}}{2}$. But the *Q*-index of T_n^3 is smaller than $\frac{7+\sqrt{33}}{2}$, a contradiction. Hence $C_g \circ 2K_1$ can not be a subgraph of *G* for any integer $g \ge 3$.

If *G* is connected, then *G* is a tree. By Lemma 2.7, *G* and T_n^3 have the same *L*-spectrum. From Theorem 2.9 we can get $G = T_n^3$. Next we only consider the case that *G* is disconnected. Let a_i be the number of vertices of degree *i* in *G*, $\Delta(G)$ be the maximum degree of *G*. Since *G* has no isolated vertices, we have $a_0 = 0$. Since the *Q*-index of *G* is smaller than $\frac{7+\sqrt{33}}{2}$, by Lemma 2.2, we have $\Delta(G) + 1 < \frac{7+\sqrt{33}}{2}$, so $\Delta(G) \le 5$. Let t(G) be the number of triangles in *G*. By Lemma 2.4, we have

$$\sum_{i=1}^{5} a_i = 3n+2, \ \sum_{i=1}^{5} ia_i = 2(3n+1) = 6n+2, \ \sum_{i=1}^{5} i^2 a_i = 2n+2+4^2n = 18n+2,$$
$$\sum_{i=1}^{5} i^3 a_i + 6t(G) = 2n+2+4^3n = 66n+2.$$

Solving the above equations, we have

$$a_1 = 2n + 2 + t(G) + a_5, a_2 = -4a_5 - 3t(G), a_3 = 6a_5 + 3t(G), a_4 = n - t(G) - 4a_5.$$

Since $a_2 \ge 0$, we have $a_5 = t(G) = 0$. So we get $a_1 = 2n + 2$, $a_2 = a_3 = 0$, $a_4 = n$. Since *G* is disconnected, by Lemma 4.1, *G* is the union of a tree and several odd unicyclic graphs. In this case, there exists an integer *g* such that $C_g \circ 2K_1$ is a subgraph of *G*. But $C_g \circ 2K_1$ can not be a subgraph of *G* for any integer $g \ge 3$, a contradiction. \Box

5. Acknowledgments

The authors thank Prof. Dragan Stevanović and the referee for a very careful reading of the paper and for their valuable suggestions.

References

- [1] R. Boulet, The centipede is determined by its Laplacian spectrum, C. R. Acad. Sci. Paris, Ser. I 346 (2008) 711–716.
- [2] C. Bu, J. Zhou, Starlike trees whose maximum degree exceed 4 are determined by their Q-spectra, Linear Algebra Appl. 436 (2012) 143–151.
- [3] D. Cvetković, P. Rowlinson, S.K. Simić, Signless Laplacians of finite graphs, Linear Algebra Appl. 423 (2007) 155–171.
- [4] Hs.H. Günthard, H. Primas, Zusammenhang von Graphtheorie und Mo-Theotie von Molekeln mit Systemen konjugierter Bindungen, Helv. Chim. Acta 39 (1956) 1645–1653.
- [5] M. Lepović, I. Gutman, No starlike trees are cospectral, Discrete Math. 242 (2002) 291–295.
- [6] F.J. Liu, Q.X. Huang, Q.H. Liu, Spectral characterization of t-shape trees, Electronic Journal of Linear Algebra, 22 (2011) 822–837.
 [7] X.G. Liu, Y.P. Zhang, P.L. Lu, One special double starlike graph is determined by its Laplacian spectrum, Appl. Math. Lett. 22 (2009) 435–438.
- [8] P.L. Lu, X.D. Zhang, Y.P. Zhang, Determination of double quasi-star tree from its Laplacian spectrum, J. Shanghai Univ (Engl Ed) 14(3) (2010) 163–166.
- [9] G.R. Omidi, K. Tajbakhsh, The starlike trees are determined by their Laplacian spectrum, Linear Algebra Appl. 422 (2007) 654–658.
- [10] G.R. Omidi, E. Vatandoost, Starlike trees with maximum degree 4 are determined by their signless Laplacian spectra, Electronic Journal of Linear Algebra, 20 (2010) 274–290.
- [11] X.L. Shen, Y.P. Hou, Some trees are determined by their Laplacian spectra, J. Nat. Sci. Hunan Norm. Univ. 29 (1) (2006) 21–24 (in Chinese).
- [12] Z. Stanić, On determination of caterpillars with four terminal vertices by their Laplacian spectrum, Linear Algebra Appl. 431 (2009) 2035–2048.
- [13] E.R. van Dam, W.H. Haemers, Which graphs are determined by their spectra?, Linear Algebra Appl. 373 (2003) 241–272.
- [14] W. Wang, C.X. Xu, On the spectral characterization of T-shape trees, Linear Algebra Appl. 414 (2006) 492–501.
- [15] Y.P. Wu, H.Q. Liu, Lexicographical ordering by spectral moments of trees with a prescribed diameter, Linear Algebra Appl. 433 (2010) 1707–1713.