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Abstract. Let Tk
n denote the caterpillar obtained by attaching k pendant edges at two pendant vertices of

the path Pn and two pendant edges at the other vertices of Pn. It is proved that Tk
n is determined by its

signless Laplacian spectrum when k = 2 or 3, while T2
n by its Laplacian spectrum.

1. Introduction

All graphs are simple and undirected in this paper. Let A(G) be the adjacency matrix of G, and D(G) the
diagonal matrix of vertex degrees. The matrices D(G)−A(G) and D(G)+A(G) are called the Laplacian matrix
and the signless Laplacian matrix of G, respectively. The spectrum of A(G),D(G) − A(G) and D(G) + A(G) are
called the A-spectrum, the L-spectrum and the Q-spectrum of G, respectively. The eigenvalues of D(G)−A(G)
and D(G)+A(G) are called the L-eigenvalues and the Q-eigenvalues of G, respectively. Since D(G)−A(G) and
D(G)+A(G) are real symmetric and positive semi-definite, all their eigenvalues are nonnegative. The largest
eigenvalues of D(G) − A(G) and D(G) + A(G) are called the L-index and the Q-index of G, respectively. It is
well known that the smallest L-eigenvalue of a graph is 0. The characteristic polynomials of D(G)−A(G) and
D(G) + A(G) are called the L-polynomial and the Q-polynomial of G, respectively. We say that G is determined
by its L-spectrum (resp. Q-spectrum) if there is no other non-isomorphic graph with the same L-spectrum
(resp. Q-spectrum). Two graphs are said to be A-cospectral (resp. L-cospectral, Q-cospectral) if they have the
same A-spectrum (resp. L-spectrum, Q-spectrum). As usual, Pn,Cn and Kn denote the path, the cycle and
the complete graph of order n, respectively. Let Km,n denote the complete bipartite graph with parts of size
m and n.

The problem “which graphs are determined by their spectra?” originates from chemistry. Günthard
and Primas [4] raised this question in the context of Hückel’s theory. Since this problem is generally very
difficult, van Dam and Haemers [13] proposed a more modest problem, that is “Which trees are determined
by their spectra?” Some results for spectral determination of starlike trees can be found in [2,5,6,9,10,14].
Some double starlike trees determined by their L-spectra are given in [7,8]. Some caterpillars determined
by their L-spectra are given in [1,11,12].

The theory of graph spectra has many important applications in chemistry, especially in treating hy-
drocarbons. The molecular graph of a hydrocarbon is a tree with maximal degree 4. Let Tk

n denote the
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caterpillar obtained by attaching k pendant edges at two pendant vertices of Pn and two pendant edges
at the other vertices of Pn. For k ≤ 3, Tk

n is the molecular graph of certain hydrocarbon. For instance, T3
n

is the molecular graph of a linear alkane (see Fig.1). In this paper, we prove that Tk
n is determined by its

Q-spectrum when k = 2 or 3, while T2
n by its L-spectrum. The graph T2

n is shown in Fig.2.

Fig. 1. Some examples for graph T3
n
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Fig. 2. The graph T2
n
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2. Preliminaries

In this section, we give some properties which play important role throughout this paper.

Lemma 2.1. [3] For a graph G, the multiplicity of the Q-eigenvalue 0 of G is equal to the number of bipartite
components of G.

Lemma 2.2. [2] Let G be a connected graph of order n > 1, and the maximum degree of G is ∆. Let q(G) be the
Q-index of G. Then q(G) ≥ ∆ + 1, with equality if and only if G is the star K1,n−1.

Lemma 2.3. [2] For a connected graph G, let H be a proper subgraph of G. Let q(G) and q(H) be the Q-indices of G
and H, respectively. Then q(H) < q(G).

Lemma 2.4. [3] Let G be a graph with n vertices, m edges, t triangles and degree sequence d1, d2, . . . , dn. Assume
that q1, q2, . . . , qn are the Q-eigenvalues of G. Let Tk =

∑n
i=1 qk

i , then

T0 = n,T1 =

n∑
i=1

di = 2m,T2 = 2m +
n∑

i=1

d2
i ,T3 = 6t + 3

n∑
i=1

d2
i +

n∑
i=1

d3
i .
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For a graph G, let ϕA(G, x) be the characteristic polynomial of the adjacency matrix of G, ϕQ(G, x) be the
Q-polynomial of G.

Lemma 2.5. [3] Let G be a graph of order n and size m, L(G) be the line graph of G. Then

ϕA(L(G), x) = (x + 2)m−nϕQ(G, x + 2).

A connected graph with n vertices is said to be unicyclic if it has n edges. If the girth of an unicyclic
graph is odd (resp. even), then this unicyclic graph is said to be odd (resp. even) unicyclic.

Lemma 2.6. [2] For a connected graph G with m edges, let L(G) be the line graph of G,ϕA(L(G), x) be the characteristic
polynomial of the adjacency matrix of L(G). The following statements hold:
(i) If G is odd unicyclic, then ϕA(L(G),−2) = (−1)m4.
(ii) If G is a tree, then ϕA(L(G),−2) = (−1)m(m + 1).
(iii) If G is neither odd unicyclic nor a tree, then ϕA(L(G),−2) = 0.

Lemma 2.7. [3] For any bipartite graph, the Q-polynomial coincides with the L-polynomial.

For a graph G with n vertices, let λ1, λ2, . . . , λn be the eigenvalues of the adjacency matrix of G. For an
integer k ≥ 0, the number

∑n
i=1 λ

k
i is called the k-th spectral moment of G, denoted by Sk(G). Let NF(G) denote

the number of subgraphs of G isomorphic to a graph F.
Let K1,n−1 be a star of order n, Un be the graph obtained from a cycle Cn−1 by attaching a pendant vertex

to one vertex of Cn−1. Let B4,B5 be two graphs obtained from two triangles T1,T2 by identifying one edge
of T1 with one edge of T2 and identifying one vertex of T1 with one vertex of T2, respectively (see Fig. 3).

Fig. 3. Four graphs U4,U5,B4,B5
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Lemma 2.8. [15] For any graph G, we have

S3(G) = 6NC3 (G),
S4(G) = 2NP2 (G) + 4NP3 (G) + 8NC4 (G),
S5(G) = 30NC3 (G) + 10NU4 (G) + 10NC5 (G),
S6(G) = 2NP2 (G) + 12NP3 (G) + 24NC3 (G) + 40NC4 (G) + 6NP4 (G)

+ 12NK1,3 (G) + 36NB4 (G) + 24NB5 (G) + 12NU5 (G) + 12NC6 (G).

In [11], Shen and Hou proved that the graph T3
n is determined by its L-spectrum.

Theorem 2.9. [11] Graph T3
n is determined by its L-spectrum.

3. The spectrum of the corona of two graphs

In order to get our main results, we will give an upper bound for the L-index of graph T2
n in this section.

Let G be a graph with n vertices, H be a graph with m vertices. The corona of G and H, denoted by G ◦H,
is the graph with n +mn vertices obtained from G and n copies of H by joining the i-th vertex of G to each
vertex in the i-th copy of H(i = 1, . . . ,n). For a graph F, let rF denote the union of r disjoint copies of F.
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Let µi(G) (resp. qi(G)) denote the i-th largest L-eigenvalue (resp. Q-eigenvalue) of a graph G. If G has
distinct L-eigenvalues ξ1, ξ2, . . . , ξm (resp. Q-eigenvalue η1, η2, . . . , ηm) with multiplicities k1, k2, . . . , km, we
shall write ξ(k1)

1 , ξ
(k2)
2 , . . . , ξ

(km)
m (resp. η(k1)

1 , η
(k2)
2 , . . . , η

(km)
m ) for the L-spectrum (resp. Q-spectrum) of G. Let

ϕL(G, x) and ϕQ(G, x) be the L-polynomial and Q-polynomial of G, respectively. The following theorem is
known in the literature, but to make the paper more selfcontained we give here the proof.

Theorem 3.1. Let G be a graph with n vertices, H be a graph with m vertices. The following statements hold:
(a) ϕL(G ◦H, x) = ϕL(G, x2−(m+1)x

x−1 )[ϕL(H, x − 1)]n, i.e., the L-spectrum of G ◦H is

(µi(H) + 1)(n),
(µ j(G) +m + 1) ±

√
(µ j(G) +m − 1)2 + 4m

2
(i = 1, . . . ,m − 1, j = 1, . . . , n).

(b) If H is an r-regular graph, then ϕQ(G ◦ H, x) = ϕQ(G, x2−(m+2r+1)x+2mr
x−2r−1 )[ϕQ(H, x − 1)]n, i.e., the Q-spectrum of

G ◦H is

(qi(H) + 1)(n),
(q j(G) +m + 2r + 1) ±

√
(q j(G) +m − 2r − 1)2 + 4m

2
(i = 2, . . . ,m, j = 1, . . . , n).

Proof. Let L(G) and L(H) be the Laplacian matrices of G and H, respectively. The L-polynomial of G ◦H is∣∣∣∣∣∣∣∣∣∣∣∣
(x −m)In − L(G) J1 · · · Jn

J⊤1 (x − 1)Im − L(H)
...

. . .
J⊤n (x − 1)Im − L(H)

∣∣∣∣∣∣∣∣∣∣∣∣ ,
where Jk(k = 1, . . . ,n) is a n×m matrix in which each entry of the k-row is 1 and all other entries are 0. Since
the row sum of (x − 1)Im − L(H) is x − 1, we have

ϕL(G ◦H, x) =

∣∣∣∣∣∣∣∣∣∣∣∣
(x −m − m

x−1 )In − L(G) J1 · · · Jn
O (x − 1)Im − L(H)
...

. . .
O (x − 1)Im − L(H)

∣∣∣∣∣∣∣∣∣∣∣∣
= ϕL(G,

x2 − (m + 1)x
x − 1

)[ϕL(H, x − 1)]n.

Since the smallest L-eigenvalue of a graph is 0, we get

ϕL(G ◦H, x) =
n∏

j=1

[x2 − (µ j(G) +m + 1)x + µ j(G)]
m−1∏
i=1

(x − µi(H) − 1)n.

So the L-spectrum of G ◦H is

(µi(H) + 1)(n),
(µ j(G) +m + 1) ±

√
(µ j(G) +m − 1)2 + 4m

2
(i = 1, . . . ,m − 1, j = 1, . . . , n).

Hence part (a) holds.
If H is an r-regular graph, then every row sum of the signless Laplacian matrix of H is 2r. Similar to the

above arguments, we can get part (b).

Corollary 3.2. The L-index of graph T2
n is smaller than 7+

√
33

2 .
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Proof. Note that T2
n = Pn ◦ 2K1. The L-spectra of Pn and 2K1 are 2+ 2 cos πi

n (i = 1, . . . ,n) and 0(2), respectively.
By Theorem 3.1, the L-spectrum of T2

n is

1(n),
µi + 3 ±

√
(µi + 1)2 + 8
2

(i = 1, . . . , n),

whereµi = 2+2 cos πi
n . Since the L-index of T2

n is
µ1+3±

√
(µ1+1)2+8
2 , byµ1 < 4, we get

µ1+3±
√

(µ1+1)2+8
2 < 7+

√
33

2 .

Corollary 3.3. The Q-index of Cn ◦ 2K1 is 7+
√

33
2 .

Proof. The Q-spectra of Cn and 2K1 are 2 + 2 cos 2πi
n (i = 1, . . . ,n) and 0(2), respectively. By Theorem 3.1, the

Q-spectrum of Cn ◦ 2K1 is

1(n),
qi + 3 ±

√
(qi + 1)2 + 8
2

(i = 1, . . . ,n),

where qi = 2 + 2 cos 2πi
n . Clearly the Q-index of Cn ◦ 2K1 is 7+

√
33

2 .

4. Spectral determination of graph T2
n and graph T3

n

In this section, we will prove that Tk
n is determined by its Q-spectrum when k = 2 or 3, while T2

n by its
L-spectrum.

It is known that two Q-cospectral graphs have the same number of vertices and edges. This property
also holds for A-spectrum and L-spectrum.

Lemma 4.1. Let G be a graph Q-cospectral with a tree T of order n, then one of the following holds:
(1) G is a tree;
(2) G is the union of a tree with f vertices and c odd unicyclic graphs, and n = 4c f .

Proof. Since G is Q-cospectral with a tree of order n, G is a graph of order n and size n− 1. If G is connected,
then G is a tree. If G is disconnected, then G has at least one component which is a tree. From Lemma 2.1
we know that G has exactly one bipartite component, so G is the union of a tree and several odd unicyclic
graphs. Suppose that G is the union of a tree of order f and c odd unicyclic graphs. By Lemma 2.5, the line
graphs of G and T have the same A-spectrum. From Lemma 2.6 we can get n = 4c f .

For a graph G which is Q-cospectral with T2
n, we will show in lemma below that G and T2

n have the same
degree sequence.

Lemma 4.2. Let G be any graph Q-cospectral with T2
n. Then G and T2

n have the same degree sequence and G has no
triangles.

Proof. If G has an isolated vertex, by Lemma 4.1, there exists an integer c such that 3n = 4c, a contradiction.
Hence G has no isolated vertices.

Let ai be the number of vertices of degree i in G (note, a0 = 0). Let ∆(G) be the maximum degree of G.
Since T2

n is a tree, by Lemma 2.7, the Q-index of T2
n equals to its L-index. From Corollary 3.2 we know that

the Q-index of T2
n is smaller than 7+

√
33

2 . By Lemma 2.2, we have ∆(G) + 1 < 7+
√

33
2 , so ∆(G) ≤ 5. By Lemma

2.4, we have
5∑

i=1

ai = 3n,
5∑

i=1

iai = 2(3n − 1) = 6n − 2,

5∑
i=1

i2ai = 2n + 32 × 2 + 42(n − 2) = 18n − 14,
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5∑
i=1

i3ai + 6t(G) = 2n + 33 × 2 + 43(n − 2) = 66n − 74,

where t(G) is the number of triangles in G. Solving the above equations, we have

a1 = 2n + t(G) + a5, a2 = −3t(G) − 4a5, a3 = 2 + 3t(G) + 6a5, a4 = n − 2 − t(G) − 4a5.

By a2 = −3t(G) − 4a5 ≥ 0, we have a2 = 4a5 = t(G) = 0. So we get

a1 = 2n, a2 = 0, a3 = 2, a4 = n − 2,

i.e., G and T2
n have the same degree sequence.

For a graph G, let u and v be any two vertices of G. We say that u, v is an adjacent vertex pair if u and v are
adjacent. If the degrees of u and v are d(u) and d(v), we say that u, v is an adjacent vertex pair with degrees
d(u) and d(v). Let (i, j) denote the number of adjacent vertex pairs with degrees i and j in G.

Lemma 4.3. Let G be any graph Q-cospectral with T2
n. Then

(1, 3) = 4, (1, 4) = 2n − 4, (3, 3) = 0, (3, 4) = 2, (4, 4) = n − 3,

i.e., the line graph of G and the line graph of T2
n have the same degree sequence.

Proof. Let L(G) and L(T2
n) be the line graphs of G and T2

n, respectively. From Lemma 2.5 we know that L(G)
and L(T2

n) are A-cospectral. For two adjacent vertices v1, v2 of degrees d(v1), d(v2) in G, the degree of the
corresponding vertex v1v2 in L(G) is d(v1) + d(v2) − 2. We denote this correspond by

d(v1) ∼ d(v2)→ d(v1) + d(v2) − 2.

By Lemma 4.2, G and T2
n have the same degree sequence and G has no triangles. All possible correspondence

for vertex degrees between G and L(G) are listed as follow.

1 ∼ 3→ 2, 1 ∼ 4→ 3, 3 ∼ 3→ 4, 3 ∼ 4→ 5, 4 ∼ 4→ 6.

Let ai be the number of vertices of degree i in G, then a1 = 2n, a2 = 0, a3 = 2, a4 = n − 2. By Lemma 2.8,
we have NC3 (L(G)) = NC3 (L(T2

n)). Lemma 4.1 implies that G cannot contain an even cycle. Since G has
no triangles, we have NC4 (L(G)) = NC4 (L(T2

n)) = (n − 2)NC4 (K4). Since L(G) and L(T2
n) are A-cospectral,

NP2 (L(G)) = NP2 (L(T2
n)). For any graph H with vertex degrees d1, d2, . . . , dn, we have

NP3 (H) =
n∑

i=1

(
di
2

)
.

From the above equation and Lemma 2.8, we haveNP3 (L(G)) = NP3 (L(T2
n)) = 4 + 3(2n − 4) + 10 × 2 + 15(n − 3) = 21n − 33,

NP3 (L(G)) = (1, 3) + 3(1, 4) + 6(3, 3) + 10(3, 4) + 15(4, 4).
(1)

Considering vertex degrees of G, by a3 = 2, we have 5 ≤ (1, 3) + (3, 3) + (3, 4) ≤ 6. It is easy to see that
(1, 3) + (1, 4) = a1 = 2n. Note that G and T2

n both have 3n − 1 edges. Hence the following facts hold:
(1, 3) + (1, 4) + (3, 3) + (3, 4) + (4, 4) = 3n − 1,
(1, 3) + (1, 4) = 2n,
5 ≤ (1, 3) + (3, 3) + (3, 4) ≤ 6.

(2)
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Let x = (1, 3) + (3, 3) + (3, 4). From (1) and (2) we can get

7(1, 3) + 4(3, 4) = 9x − 18.

If x = 5, then (3, 3) = 1, (1, 3) + (3, 4) = 4. By 7(1, 3) + 4(3, 4) = 27, we have (1, 3) = 11
3 , a contradiction. Hence

x = 6, (3, 3) = 0, (1, 3) + (3, 4) = 6. By 7(1, 3) + 4(3, 4) = 36, we can get

(1, 3) = 4, (1, 4) = 2n − 4, (3, 3) = 0, (3, 4) = 2, (4, 4) = n − 3.

In this case, L(G) and L(T2
n) have the same degree sequence.

It is well known that the second smallest L-eigenvalue of a graph is larger than 0 if and only if this graph
is connected. Hence if two graphs are L-cospectral, then they have the same number of components.

The coalescence of two graphs M1 and M2, denoted by M1 ·M2, is the graph obtained by identifying a
vertex of M1 with a vertex of M2. For a subgraph W of Kd1 · Kd2 (d1, d2 ≥ 3), if two cliques Kd1 ,Kd2 both have
edges of W, i.e., the edges of W are distributed in different cliques, we say that W is a double W-subgraph of
Kd1 · Kd2 . Let Kd1 · Kd2 (W) denote the number of double W-subgraphs in Kd1 · Kd2 .

For a subgraph P of a graph H, if the edges of P are distributed in three cliques of H, then P4 is called a
triple P-subgraph of H. Let (H)3

P be the number of triple P-subgraphs in H.
Now we will consider the L-spectral determination of graph T2

n shown in Fig.2. If n = 1, then T2
n = P3.

It is known that a path is determined by its L-spectrum (see [13]). It is also known that T2
2 is determined by

its L-spectrum (cf. [7, Theorem 3.1]). Hence T2
n is determined by its L-spectrum when n ≤ 2.

Theorem 4.4. Graph T2
n is determined by its L-spectrum.

Proof. It is known that T2
n is determined by its L-spectrum when n ≤ 2. So we only consider the case that

n > 2. Let G be any graph L-cospectral with T2
n. Since G and T2

n have the same number of components,
G is a tree. By Lemma 2.7, G is Q-cospectral with T2

n and their Q-spectra coincide with their L-spectra.
Let L(G) and L(T2

n) be the line graphs of G and T2
n, respectively. From Lemma 2.5 we know that L(G)

and L(T2
n) are A-cospectral. Let ai be the number of vertices of degree i in G. By Lemma 4.2, we have

a1 = 2n, a2 = 0, a3 = 2, a4 = n − 2. By Lemma 4.3, we can get (1, 3) = 4, (1, 4) = 2n − 4, (3, 3) = 0, (3, 4) =
2, (4, 4) = n − 3. Hence G has two vertices with degree 3, each vertex of degree 3 in G has two pendant
vertices and one vertex of degree 4 as its neighbors. Let NF(G) be the number of subgraphs of G isomorphic
to a graph F. Since L(G) and L(T2

n) are A-cospectral, we have NP2 (L(G)) = NP2 (L(T2
n)). By Lemma 2.8, we have

NC3 (L(G)) = NC3 (L(T2
n)). Note that G is a tree. Lemma 4.2 implies that NC4 (L(G)) = NC4 (L(T2

n)). By Lemma
2.8, we have NP3 (L(G)) = NP3 (L(T2

n)). Let U4,U5,B4,B5 be the graphs shown in Fig.3. Since G is a tree and
G and T2

n have the same degree sequence, by Lemma 4.3, we have NK1,3 (L(G)) = NK1,3 (L(T2
n)),NC6 (L(G)) =

NC6 (L(T2
n)) = 0,NB4 (L(G)) = NB4 (L(T2

n)) = a4NB4 (K4). Line graphs L(G) and L(T2
n) can be regarded as the

graphs obtained from several complete graphs by some coalescence operations. A vertex of degree d ≥ 3
in G corresponds to a clique Kd of L(G), two adjacent vertices with degrees d1, d2 ≥ 3 in G corresponds to
the coalescence Kd1 · Kd2 in L(G). By calculating, we have

NU4 (L(G)) = NU4 (L(T2
n)) = a4NU4 (K4) + (4, 4)K4 · K4(U4) + (3, 4)K4 · K3(U4),

NU5 (L(G)) = NU5 (L(T2
n)) = (4, 4)K4 · K4(U5) + (3, 4)K4 · K3(U5),

NB5 (L(G)) = NB5 (L(T2
n)) = (4, 4)K4 · K4(B5) + (3, 4)K4 · K3(B5).

By Lemma 2.8, we get NC5 (L(G)) = NC5 (L(T2
n)). Hence the following facts hold:

NP2 (L(G)) = NP2 (L(T2
n)),NP3 (L(G)) = NP3 (L(T2

n)),NC3 (L(G)) = NC3 (L(T2
n)),

NC4 (L(G)) = NC4 (L(T2
n)),NK1,3 (L(G)) = NK1,3 (L(T2

n)),NB4 (L(G)) = NB4 (L(T2
n)),

NB5 (L(G)) = NB5 (L(T2
n)),NU5 (L(G)) = NU5 (L(T2

n)),NC6 (L(G)) = NC6 (L(T2
n)).

(3)

From equations (3) and Lemma 2.8 we get NP4 (L(G)) = NP4 (L(T2
n)).
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By calculating, we have

NP4 (L(G)) = a4NP4 (K4) + (4, 4)K4 · K4(P4) + (3, 4)K4 · K3(P4) + (L(G))3
P4
,

NP4 (L(T2
n)) = a4NP4 (K4) + (4, 4)K4 · K4(P4) + (3, 4)K4 · K3(P4) + (L(T2

n))3
P4
.

Since NP4 (L(G)) = NP4 (L(T2
n)), we have (L(G))3

P4
= (L(T2

n))3
P4

. If there exist vertices of degree 4 outside the
path between two vertices of degree 3 in G, then (L(G))3

P4
> (L(T2

n))3
P4

, a contradiction. Hence all vertices of
degree 4 in G belong to the path between two vertices of degree 3, i.e., G = T2

n.

Next we will consider the Q-spectral determination of graph T2
n.

Theorem 4.5. Graph T2
n is determined by its Q-spectrum.

Proof. Let G be any graph Q-cospectral with T2
n. First, we show that the corona C1 ◦ 2K1 can not be a

subgraph of G for any integer 1 ≥ 3. By Lemma 2.7 and Corollary 3.2, the Q-index of T2
n is smaller than

7+
√

33
2 . If there exists an integer 1 such that C1 ◦ 2K1 is a subgraph of G, by Corollary 3.3 and Lemma 2.3, the

Q-index of G is larger than or equal to 7+
√

33
2 , a contradiction. Hence C1 ◦ 2K1 can not be a subgraph of G.

If G is connected, then G is a tree. By Lemma 2.7, G and T2
n have the same L-spectrum. From Theorem

4.4 we can get G = T2
n.

If G is disconnected, by Lemma 4.1, G is the union of a tree and several odd unicyclic graphs. Suppose
that G1, . . . ,Gc are odd unicyclic components of G, T is the component of G which is a tree. Let ai be the
number of vertices of degree i in G. By Lemma 4.2, a1 = 2n, a2 = 0, a3 = 2, a4 = n − 2. By Lemma 4.3, we can
get (1, 3) = 4, (1, 4) = 2n − 4, (3, 3) = 0, (3, 4) = 2, (4, 4) = n − 3. Since C1 ◦ 2K1 can not be a subgraph of G for
any integer 1 ≥ 3, we have c ≤ 2.

If c = 2, then there are exactly one vertex of degree 3 in the unique cycle of Gi(i = 1, 2). Hence (3, 4) ≥ 4,
a contradiction with (3, 4) = 2. If c = 1, then there are at least one vertex of degree 3 in the unique cycle of
G1. By (3, 4) = 2, (1, 3) = 4 we know that the star K1,3 is a component of G, i.e., T = K1,3. From Lemma 4.1
we can get 3n = 4 × 4 = 16, a contradiction.

Finally we will consider the Q-spectral determination of graph T3
n.

Theorem 4.6. Graph T3
n is determined by its Q-spectrum.

Proof. From Lemma 2.3 we know that the Q-index of T3
n−2 is smaller than the Q-index of T2

n. By Lemma 2.7

and Corollary 3.2, the Q-index of T2
n is smaller than 7+

√
33

2 . Hence the Q-index of T3
n is smaller than 7+

√
33

2 .
Let G be any graph Q-cospectral with T3

n. If G has an isolated vertex, by Lemma 4.1, there exists an
integer c such that 3n + 2 = 4c, a contradiction. Hence G has no isolated vertices.

Now we show that the corona C1 ◦2K1 can not be a subgraph of G for any integer 1 ≥ 3. If there exists an
integer 1 such that C1 ◦ 2K1 is a subgraph of G, by Corollary 3.3 and Lemma 2.3, the Q-index of G is larger

than or equal to 7+
√

33
2 . But the Q-index of T3

n is smaller than 7+
√

33
2 , a contradiction. Hence C1 ◦ 2K1 can not

be a subgraph of G for any integer 1 ≥ 3.
If G is connected, then G is a tree. By Lemma 2.7, G and T3

n have the same L-spectrum. From Theorem 2.9
we can get G = T3

n. Next we only consider the case that G is disconnected. Let ai be the number of vertices
of degree i in G, ∆(G) be the maximum degree of G. Since G has no isolated vertices, we have a0 = 0. Since
the Q-index of G is smaller than 7+

√
33

2 , by Lemma 2.2, we have ∆(G) + 1 < 7+
√

33
2 , so ∆(G) ≤ 5. Let t(G) be

the number of triangles in G. By Lemma 2.4, we have

5∑
i=1

ai = 3n + 2,
5∑

i=1

iai = 2(3n + 1) = 6n + 2,
5∑

i=1

i2ai = 2n + 2 + 42n = 18n + 2,

5∑
i=1

i3ai + 6t(G) = 2n + 2 + 43n = 66n + 2.
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Solving the above equations, we have

a1 = 2n + 2 + t(G) + a5, a2 = −4a5 − 3t(G), a3 = 6a5 + 3t(G), a4 = n − t(G) − 4a5.

Since a2 ≥ 0, we have a5 = t(G) = 0. So we get a1 = 2n + 2, a2 = a3 = 0, a4 = n. Since G is disconnected, by
Lemma 4.1, G is the union of a tree and several odd unicyclic graphs. In this case, there exists an integer
1 such that C1 ◦ 2K1 is a subgraph of G. But C1 ◦ 2K1 can not be a subgraph of G for any integer 1 ≥ 3, a
contradiction.
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