The number of restricted lattice paths revisited

Helmut Prodinger ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, University of Stellenbosch, 7602 Stellenbosch, South Africa

Abstract

Ilić and Ilić have recently discussed lattice paths starting and ending at the x-axis which are bounded by two horizontal lines. We establish a link of this to an old paper by Panny and Prodinger where this was already treated.

In [1] the number of random walks from $(0,0)$ to $(2 n, 0)$ with up-steps and down-steps of one unit each was discussed, under the condition that the walk (path) never touches the line $-h$ and k. Here, we want to shed additional light on this, by pointing out that this appeared essentially already in our 1985 paper [2]. Since all this is not complicated, we review the essential steps here. We allow the path to touch $-h$ and k, but not $-h-1$ and $k+1$. Further, let $\psi_{i}(z)$ be the generating function, for $-h \leq i \leq k$, of paths in the sense just described that lead to level i. Eventually, we are interested in $\psi_{0}(z)$.

The following system of linear equations is self-explanatory (and discussed at length in [2]):

$$
\left[\begin{array}{cccccc}
1 & -z & 0 & \ldots & & \\
-z & 1 & -z & 0 & \ldots & \\
0 & -z & 1 & -z & 0 & \ldots \\
& & & \cdots & & \\
& & & -z & 1 & -z \\
& & & & -z & 1
\end{array}\right]\left[\begin{array}{c}
\psi_{-h}(z) \\
\vdots \\
\psi_{0}(z) \\
\vdots \\
\psi_{k}(z)
\end{array}\right]=\left[\begin{array}{c}
0 \\
\vdots \\
1 \\
\vdots \\
0
\end{array}\right] .
$$

We use Cramer's rule to solve this:

$$
\psi_{0}(z)=\frac{a_{h-1} a_{k-1}}{a_{h+k}}
$$

where a_{i} is the determinant of the square matrix with $i+1$ rows and columns. Since a_{i} satisfies a recursion of second order, it is easy to get

$$
a_{i}=\frac{1}{1-v^{2}} \frac{1-v^{2 i+4}}{\left(1+v^{2}\right)^{i+1}}
$$

where the substitution $z=v /\left(1+v^{2}\right)$ was used for convenience.
We want to make the parameters h and k explicit and define

$$
f_{h, k}(z)=\psi_{0}(z)
$$

[^0]The example with lines -2 and 5 corresponds to our $f_{1,4}(z)$. We compute (with Maple):

$$
\begin{aligned}
f_{1,4}(z) & =1+2 z^{2}+5 z^{4}+14 z^{6}+42 z^{8}+131 z^{10}+417 z^{12}+1341 z^{14}+4334 z^{16}+14041 z^{18} \\
& +45542 z^{20}+147798 z^{22}+479779 z^{24}+1557649 z^{26}+5057369 z^{28}+\ldots,
\end{aligned}
$$

in agreement with [1].
Since (by Cauchy's integral formula or Lagrange inversion)

$$
\begin{aligned}
{\left[z^{2 n}\right] f_{h, k}(z)=} & {\left[v^{2 n}\right]\left(1+v^{2}\right)^{2 n} \frac{\left(1-v^{2 h+2}\right)\left(1-v^{2 k+2}\right)}{\left(1-v^{2 h+2 k+4}\right)} } \\
= & {\left[v^{n}\right](1+v)^{2 n} \frac{\left(1-v^{h+1}\right)\left(1-v^{k+1}\right)}{\left(1-v^{h+k+2}\right)} } \\
= & \sum_{j \geq 0}\left[\binom{2 n}{n-j(h+k+2)}-\binom{2 n}{n-j(h+k+2)-h-1}\right. \\
& \left.\quad-\binom{2 n}{n-j(h+k+2)-k-1}+\binom{2 n}{n-(j+1)(h+k+2)}\right],
\end{aligned}
$$

we have even an explicit formula. For $h=1$ and $k=4$, this gives the sequence

$$
1,2,5,14,42,131,417,1341,4334,14041,45542,147798,479779,1557649,5057369, \ldots,
$$

as expected.

References

[1] A. Ilić and A. Ilić, On the number of restricted Dyck paths, Filomat, 25 (2011), 191-201.
[2] W. Panny and H. Prodinger, The expected height of paths for several notions of height, Stud. Sci. Math. Hung., 20 (1985), 119-132.

[^0]: 2010 Mathematics Subject Classification. Primary 11B39
 Keywords. Lattice path enumeration, Cramer's rule, generating function
 Received: 11 September 2011; Accepted: 11 September 2011
 Communicated by Dragan Stevanović
 Email address: hproding@sun.ac.za (Helmut Prodinger)

