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Available at: http://www.pmf.ni.ac.rs/filomat

Screenableness in countable products

Jianjun Wanga, Peiyong Zhub

aSchool of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China
bSchool of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China

Abstract. In this note, it is shown that the product
∏

n∈ω Xn is screenable if {Xn : n ∈ ω} is a countable
collection of Čech-scattered screenable spaces. And a group of equivalent conditions of screenableness of
products is obtained.

1. Introduction

The notion of C-scattered spaces was introduced and investigated by Telgarsky [14]. Furthermore,
utilizing it to products, he proved that if X is a paracompact C-scattered space, then the product X × Y
is paracompact for each paracompact space Y. In these connections, C-scattered spaces have been widely
used in study of topological spaces characterized by coverings to their countable products. As an excellent
result, Friedler et al. [5], Hohti and Pelant [7] showed that if {Xn : n ∈ ω} is a countable collection of
C-scattered paracompact spaces, then the product

∏
n∈ω Xn is paracompact.

As a generalization of C-scattered spaces, Čech-scattered spaces introduced by Hohti and Ziqiu [8] play
the same fundamental role in the study of paracompactness of countable products. In 2005, Aoki and
Tanaka [1] extended the Hohti and Ziqiu’s results by proving that if Y is a perfect paracompact space, and
{Xn : n ∈ ω} is a countable collection of Čech-scattered paracompact spaces, then the product Y ×∏n∈ω Xn
is paracompact.

Bing [3] defined a space to be screenable if every open cover has a σ-disjoint refinement. And Greever
[6] showed that this property played an important role in study of the equivalency between countably
paracompact spaces and paracompact spaces. However, Balogh [2] constructed a normal, screenable,
nonparacompact space in ZFC. And Peiyong [10] demonstrated that there is a first countable regular
screenable space X such that Xn is screenable for each n ∈ ω, but Xω is not screenable. In view of the above,
it is natural to pose the following two questions:

Question 1.1. Is the product
∏

n∈ω Xn screenable if {Xn : n ∈ ω} is a countable collection of Čech-scattered screenable
spaces?

Question 1.2. If a product space S=
∏

n∈ω Xn is countably paracompact and for each n ∈ ω, space Xn is screenable,
is S screenable?
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The aim of this note is to give an affirmative answer to question 1.1. In addition, a great advance has
been got on with the results of inverse limit and Tychonoff products of topological spaces characterized by
coverings, see [11,15]. Particularly, the paper [15] discussed the preserved property of the inverse limits
of normal screenable spaces. Dropping the condition of normality, we prove that the screenable spaces is
invariable under inverse limit operations. Using it, a group of equivalent conditions of screenableness of
countable products is obtained. Moreover, the answer to Question 1.2 is positive.

Throughout this paper, each space is assumed to be a Tychonoff space in Section 3. Each space has at
least two points without any separation axiom in Section 4, and all maps are continuous. Let ω be the set
of natural numbers.

2. Preliminaries

In the rest of this section, we state some notation and basic facts. Undefined terminology can be found
in Engelking [4].

Recall that a space X is scattered if every nonempty closed subset A has an isolated point a. And a
space X is said to be C-scattered (Čech-scattered) if every nonempty closed subset A of X, there exists a point
a ∈ A which has a compact (Čech-complete) neighborhood in A. Evidently, all of the scattered spaces, locally
compact spaces and C-scattered spaces are Čech-scattered.

Let X be a space. For a subset S of X, |S| (S) denotes its cardinality (closure). Assume that S is closed.
Put

S∗={x ∈ S : x has no Čech-complete neighborhood in S}.
Let S0=S, S(α+1)=(S(α))∗, and S(α)=∩β<αS(β) for a limit ordinal α. Note that each S(α) is closed in X.

Furthermore, a space X is Čech-scattered if and only if X(α)=∅ for some ordinal α. Obviously, a Čhech-
scattered space is hereditary for its closed (open) subspace. A closed subset S of X is called topped if S∩ S(α)

is nonempty Čech-complete and S ∩ S(α+1)=∅ for some ordinal α. For each x ∈ X, there is a unique ordinal
α such that x ∈ X(α) \X(α+1). Let rank(x)=α. Then, there is an open neighborhood baseV of x in X such that
for each V ∈ V, V is topped in X and α(V)=rank(x). A collectionV of subsets of X is a refinement ofU if
each member ofV is contained in some member ofU and ∪V=∪U.

To complete our proof, the following lemmas will be needed.

Lemma 2.1. ([1]) The product X × Y is Čhech-scattered if X and Y are Čech-scattered spaces.

Lemma 2.2. ([4]) A Tychonoff space X is Čech-complete if and only if there exists a countable family {Ai}i∈ω of open
covers of the space X with the property that any family F of closed subsets of X, which has the finite intersection
property and contains sets of diameter less thanAi for i ∈ ω, has nonempty intersection.

Note that the intersection ∩F is countable compact in Lemma 2.2. Therefore, if X is screenable, then
∩F is compact.

Lemma 2.3. ([9]) A space X is λ-paracompact if and only if for every directed open cover U of X with cardinality
≤ λ, there is a locally finite open coverV of X such that {V : V ∈ V} refinesU. A space X is countably paracompact
if and only if λ=ω.

3. Countable products of screenable spaces

The following lemmas play important roles in the study of our main result. They will be stated briefly.

Lemma 3.1. Let X be a Čech-scattered screenable space, and α=inf{β : β is an ordinal number and X(β)=∅}. Then
there exists a σ-disjoint open coverV=∪n∈ωVn of X such that for each V ∈ V,

(a) if α is a successor ordinal, then V
(α)

is Čech-complete,

(b) if α is a limit ordinal, then V
(β)
=∅ for some β < α.
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Lemma 3.2. Let X be a locally Čech-complete screenable space, and α=inf{β : β is an ordinal number and X(β)=∅}.
For every open coverU of X, there exists a σ-disjoint open coverV=∪n∈ωVn of X such that for each V ∈ V,

(a) V ⊂ U for some U ∈ U,

(b) V
(β)

is Čech-complete for some β < α.

Lemma 3.3. If X is a Čech-scattered screenable space, then for every open coverU of X, there exists a σ-disjoint open
coverV=∪n∈ωVn of X such that for each V ∈ V, V is topped and is contained in some element ofU.

Proof. This proof is a modification of [Lemma 3.3, 12]. Then, by Lemma 3.1 and Lemma 3.2, it is true.

Now, we state our main theorem.

Theorem 3.4. Let X be a Čech-scattered space with Top(X)={a}. Then the product Xω is screenable if X is screenable.

Proof. Let G be an arbitrary open covering of Xω. We can assume that G is closed under finite unions. We
are going to find a σ-disjoint open refinement of G.

Let B be a base of Xω, consisting of all sets of the form D=
∏

i∈ωDi and for each i ∈ ω, Di is topped, i.e,
Top(Di) is Čech-complete. Then, there is a sequence {Wi,m(D) : m ∈ ω} of open covers of Top(Di), such that
if F is a collection of nonempty closed subset of Top(Di) with the finite intersection property such that for
each m ∈ ω, there are Fm ∈ F and Wm ∈ Wi,m(D) with Fm ⊂ Wm, then the intersection ∩F is nonempty. Let
n(D)=inf{i : D j=X, for j ≥ i}. And then, define C as follows:

(*) (D,Wi,m(D)) ∈ C, m ∈ ω, if D=
∏

i∈ωDi ∈ B andWi,m(D) is an open cover of Top(Di), satisfying the
conditions described above.

Let (D,Wi,m(D)) ∈ C for each m ∈ ω. In case of that i < n(D), let m=1. Then for each W ∈ Wi,1(D), there
is an open subset W′

of Di such that W=W′ ∩Top(Di). Moreover, {W′
: W ∈ Wi,m(D)} ∪ {Di −Top(Di)} covers

Di and hence, it follows from Lemma 3.3 that there is an open coveringHi(D)=∪ j<ωHi, j(D) of Di such that
(i) for each j ∈ ω,Hi, j(D) is disjoint,
(ii) for each A ∈ Hi, j(D), j ∈ ω, A is topped and contained in some member of {W′

: W ∈ Wi,m(D)}∪ {Di −
Top(Di)}.

In case of that i=n(D), we can also take a σ-disjoint open covering Hn(D)(D) of Di such that for each
A ∈ Ri(D), A is topped. And there is a proper member A0 ∈ Hn(D)(D) with a ∈ A0 and for each A∗ ∈
Hn(D)(D) − {A0}, a < A∗.

Let R(D) j=
∏

i≤n(D)Hi. j(D). Then R(D)=∪ j∈ωR j(D) is a σ-disjoint open covering of
∏

i≤n(D) Di and R(D) ⊂
B. Fix an R=

∏
i≤n(D) Ri ∈ R(D) with Top(R) ∩ Top(

∏
i≤n(D) Di) , ∅. Then, Top(Ri) ∩ Top(Di) , ∅ for each

i ≤ n(R). And then, we deduce that
Top(Ri) ∩ Top(Di)=Ri ∩ Top(Di) = Top(Ri).

Hence, by (ii), Top(Ri) ⊂ W for some W ∈ Wi,1(D). Put P(R)=R × X × · · ·=∏i∈ω P(R)i. Then P(R) ∈ B
and Top(P(R))=Top(R) × {a} × · · · . Namely, Top(P(R)) is Čech-complete. Next, we define R satisfying (∗∗) as
follows:

(∗∗) if there are some basic open subsets E1, E2 and E3 in Xω and some G ∈ G such that Top(P(R)) ⊂ E1 ⊂
E1 ⊂ E2 ⊂ E2 ⊂ E3 ⊂ E3 ⊂ G.

Assume that R satisfies the condition (∗∗). Let k(R)=inf{n(E1) : E1, E2 and E3 are some basic open subsets
in Xω with n(E1)=n(E2)=n(E3) such that Top(P(R)) ⊂ E1 ⊂ E1 ⊂ E2 ⊂ E2 ⊂ E2 ⊂ E3 ⊂ E3 ⊂ G for some G ∈ G}.
Then, we can take some basic open subsets E1(R)=

∏
i∈ω E1(R)i, E2(R)=

∏
i∈ω E2(R)i and E3(R)=

∏
i∈ω E3(R)i in

Xω and some G(R) ∈ G such that
(1) (a) Top(P(R)) ⊂ E1(R) ⊂ E1(R) ⊂ E2(R) ⊂ E2(R) ⊂ E3(R) ⊂ E3(R) ⊂ G(R).

(b) k(R)=n(E1(R)).
Let r(R)=max{n(D)+ 1, k(R)}. Define Z(R)=

∏
i<r(R)(P(R)i ∩E3(R)i)×X× · · ·=∏i∈ω Z(R)i. By the definition

of Z(R), we assume that
(2) (a) for i ∈ ωwith k(R) ≤ i < r(R), let Z(R)i=P(R)i,
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(b) for i ∈ ωwith i < k(R) and i < n(D), let Z(R)i=P(R)i ∩ E3(R)i,
(c) for i ∈ ωwith n(D) ≤ i < k(R), let Z(R)i={a},
(d) in case of that r(R)=n(D)+ 1, let Z(R)i=X for each i ≥ n(D)+ 1; in case of that r(R)=k(R) > n(D)+ 1,

let Z(H)i=X for i ≥ k(R).
Then, Z(R) is a basic open subset of Xω such that Top(P(R)) ⊂ Z(R), and contained in some member of

G and for each i ∈ ω, Z(R)i is topped.
PutA(R)=P({0, 1, · · · , r(R) − 1}). Fix an A ∈ A(R). We define DA(R)=

∏
i∈ωDA,i(R) as follows:

(3) (a) if i ∈ A with i < n(D), let DA,i(R)=P(R)i − P(R)i ∩ E2(R)i,
(b) if i ∈ A with r(R)=k(R) > i ≥ n(D), let DA,i(R)=X − {a},
(c) if i < r(R) with i < A, let DA,i(R)=P(R)i ∩ E1(R)i,
(d) for each i with i ≥ r(R), let DA,i(R)=X.

Clearly, for each A,B ∈ A(R) with A , B, DA(R)∩DB(R)=∅. And if i satisfies (3) (c) or (d), then DA,i(R) is
topped. And if i ∈ A with k(R) ≤ i < r(R), then DA,i(R)=∅. Now, we consider the other cases:

(i) if i ∈ A with i <max {n(D) + 1, k(R)};
(ii) if i ∈ A with r(R)=k(R) > i ≥ n(D);
(iii) if i=r(R).
If i satisfies the conditions (i) or (ii), then DA,i(R) does not need to be topped and hence, there is an open

coveringB(DA,i(R)) of DA,i(R) such that for each B ∈ B(DA,i(R)), B is topped. Then, there is a σ-disjoint, open
refinementDA,i(R)=∪n∈ωDA,i,n(R) of B(DA,i(R)), covering DA,i(R) and for each D∗i ∈ DA,i(R), D∗i is topped. If
i satisfies (iii), there is a proper σ-disjoint, open collection DA,r(R)(R)=∪n∈ωDA,r(R),n(R), covering X and for
each D∗i ∈ DA,r(R)(R), D∗i is topped. Next, we defineD∗A,n(R), n ∈ ω, as follows:

(4) D∗=
∏

i∈ωD∗i ∈ D∗A,n(R) if for each i ∈ ω,
(a) if i ∈ A with k(R) ≤ i < n(D), let D∗i=∅,
(b) if i satisfies one of the conditions (i), (ii) and (iii), let D∗i ∈ DA,i,n(R),
(c) if i < A with i < r(R), let D∗i=DA,i,n(R),
(d) let D∗i=X for each i > r(R).

PutDA,n(R)={D∗ ∈ D∗A,n(R) : D∗ , ∅}. Then, we infer that
(5)DA,n(R), n ∈ ω, is disjoint in Xω.
Indeed, let D1=

∏
i∈ωD1

i , D2=
∏

i∈ωD2
i ∈ DA,n(R) with D1 , D2(, ∅). Then D1

i , D2
i for some i ∈ ω. By 4

(b), D1
i ∩D2

i is disjoint. Hence the proof of (5) is true.
Moreover, letDn(R)=∪{DA,n(R) : A ∈ A(R)}. Hence, by (5) and the definition of Z(R),D(R)=∪n∈ωDn(R)

satisfies the following:
(6)D(R) is σ-disjoint in Xω and R=Z(R) ∪ (∪D(R)).
Fix an A ∈ A(R). Take a D∗=

∏
i∈ωD∗i ∈ DA,n(R) for each n ∈ ω. Clearly, the length of D∗ is r(R). Then

n(D∗) > n(D) and for each i ∈ ω, α(D∗i ) ≤ α(Di).
Let i ≤ n(D). If α(D∗i )=α(Di), then Top(D∗i ) ⊂ Top(Ri) since Top(Ri)∩ Top(Di) , ∅. And letWi,m(D∗)={W ∩

D∗ : W ∈ Wi,m+1(D)}, m ∈ ω. Then (D∗,Wi,m(D∗)) ∈ C.
Since A , ∅, there is an i ∈ A such that if i < k(R), Top(Di) ∩D∗i=∅. In other words, α(D∗i ) < α(Di). And if

i ≥ k(R), D∗i=∅. Hence, there is an i < k(R) such that α(D∗i ) < α(Di) if k(R) < n(D).
For each j ∈ ω, we put
Z j(D)={Z(R) : R ∈ R j(D)},
D j(D)=∪{D(R) : R ∈ R j(D)}.

When R does not satisfy (∗∗) or Top(R) ∩ Top(
∏

i≤n(D) Di)=∅, let Z j(D)={∅}, D j(D)={D∗} for each j ∈ ω,
where D∗=R ×X × · · · . We can also take a proper sequence {Wi,m(D∗) : m ∈ ω} such that (D∗,Wi,m(D∗)) ∈ C,
m ∈ ω, as before.

The following statements are straightforward from the above.
(7) (a)Z(D)=∪ j∈ωZ j(D) is a σ-disjoint collection of basic open subsets of Xω such that every member of

Z(D) is contained in some member of G,
(b)D(D)=∪ j∈ωD j(D) is a σ-disjoint collection of basic open subsets of Xω,
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(c) D=∪Z(D) ∪ (∪D(D)),
for each D∗=

∏
i∈ωD∗i ∈ D(R), R=

∏
i≤n(D) Ri ∈ R(D),

(d) n(D∗) > n(D) and for each i ∈ ω, α(D∗i ) ≤ α(Di),
(e) (D∗,Wi,m(D∗)) ∈ C such that for each i ≤ n(D), if α(D∗i )=α(Di), then Top(D∗i ) ⊂ Top(Ri) and for each

m ∈ ω,Wi,m(D∗)={W ∩D∗ : W ∈ Wi,m+1(D)},
(f) if R satisfies (∗∗) with k(R) < n(D), then there is an i < k(R) such that α(D∗i ) < α(Di).

Now, proceeding by induction on n ∈ ω, we define two families Zn and Dn as follows. Let Z0={∅},
D0={D(0)}, where D(0)= Xω. PutWi,m={{a}} for each i,m ∈ ω. Now assume that n=m. Both of the families
Zn andDn of basic open subsets of Xω, satisfy the following:

(8) (a) Zn=∪{Z(D) : D ∈ Dn−1} is a σ-disjoint collection of basic open subsets of Xω such that every
member ofZn is contained in some member of G,

(b)Dn=∪{D(D) : D ∈ Dn−1} is a σ-disjoint collection of basic open subsets of Xω,
for each D=

∏
i∈ωDi ∈ Dn−1, D∗=

∏
i∈ωD∗i ∈ D(R), R=

∏
i≤n(D) Ri ∈ R(D),

(c) (D,Wi,m(D)) ∈ C
(d) D=∪Z(D) ∪ (∪D(D)),
(e) n(D∗) > n(D),
(f) for each i ∈ ω, α(D∗i ) ≤ α(Di),
(g) (D∗,Wi,m(D∗)) ∈ C such that for each i ≤ n(D), if α(D∗i )=α(Di), then Top(D∗i ) ⊂ Top(Ri) and for each

m ∈ ω,Wi,m(D∗)={W ∩D∗ : W ∈ Wi,m+1(D)},
(h) if R satisfies (∗∗) with k(R) < n(D), then there is an i < k(R) such that α(D∗i ) < α(Di).

By the above constructions, we infer that the familiesZn+1 andDn+1 satisfy the consequents of (8) (a) ∼
(h). PutZ=∪n∈ωZn. Our proof will be complete if we show the following claim.

Claim 3.5. Z is a σ-disjoint open refinement of G.

By (8) (a), (b) and the induction, Z is a σ-disjoint collection of open sets in Xω. It suffices to show that
Z covers Xω. To show this, assume the contrary. Let x=(xk) ∈ Xω − ∪Z. By (7) and (8) repeatedly, there are
{A(m) : m ≥ 1} ⊂ A(R(m)), {R(m) : m ≥ 1} ⊂ R(D(m − 1)), {D(m) : m ∈ ω} ⊂ D(R(m)) ⊂ B, where D(m) and
R(m) are denoted by

∏
i∈ωD(m)i and

∏
i≤D(m−1) R(m)i respectively, satisfying that: for each m ≥ 1,

(9) (a) x=(xk) ∈ D(m), n(D(m)) > n(D(m − 1)) and for each i ∈ ω, α(D(m)i) ≤ α(D(m − 1)i),
(b) for each i ≤ n(D(m)), if α(D(m + 1)i)=α(D(m)i), then Top(D(m + 1)i) ⊂ Top(R(m)i) and for each

j ∈ ω,Wi, j(D(m + 1))={W ∩D(m + 1)i : W ∈ Wi, j+1(D(m))},
(c) if each R(m) satisfies (∗∗) with k(R(m)) < n(D(m − 1)), then there is an i < k(R(m)) such that

α(D(m)i) < α(D(m − 1)i).
Fix an i ∈ ω. By (9) (a), n(D(m)) > n(D(m − 1)) for each m ≥ 1. Then there is an si ∈ ω such that

i < n(D(si)). Let s∗i=inf{m ∈ ω : i < n(D(m))}. And then, n(D(m)) > i for each m ≥ s∗i . In addition, by (9)
(a), α(D(m)i) ≤ α(D(m − 1)i) for each m ≥ 1. Then, there is a ti ∈ ω such that α(D(t)i)=α(D(ti)i) for each
t ≥ ti. Let m∗i=max{s∗i , ti}. Hence, i < n(D(m∗i )) and α(D(m)i)=α(D(m∗i )i) for m ≥ m∗i . Moreover, by (9) (b),
Top(D(m + 1)i) ⊂ Top(R(m)i) for m ≥ m∗i . Then there is a sequence {W(m) : m ≥ m∗i } of open subsets of X such
that for each m ≥ m∗i , W(m) ∈ Wi,m−m∗i+1(D(m∗i )) and Top(R(m)i) ⊂Wm.

Let Ki=∩m≥m∗i Top(D(m)i)=∩m≥m∗i Top(R(m)i). It follows from Lemma 2.2 that Ki is nonempty and compact.
And then, let K=

∏
i∈ω Ki. Clearly, K is compact. Hence, by Wallace theorem in Engelking [4], K ⊂ G for

some G ∈ G. Define p=inf{n(V) : K ⊂ V ⊂ V ⊂ G}, where V=
∏

i∈ωVi is an open subset of Xω. Then, there
exists an m0 ∈ ω such that p < n(D(m0)). Let m1=max{m∗i : i < p}. And let m∗=max{m0,m1}. Then, we infer
that p < n(D(m∗)) and for each i < p, m∗i ≤ m∗ and Top(D(m∗)i) ⊂ Vi.

Then R(m∗ + 1) ⊂ V and hence, R(m∗ + 1) satisfies (∗∗). Then, by (9) (c), k(R(m∗ + 1)) ≤ p < n(D(m∗)). Thus,
there is an i < k(R(m∗ + 1)) such that α(D(m∗ + 1)i) < α(D(m∗)i), which is a contradiction.

It follows from the Claim 3.5 that Xω is screenable.
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Remark 3.6. If {Xn : n ∈ ω} is a countable collection of Čech-scattered screenable spaces, we can assume
that Xn=X for each n ∈ ω, and X is topped with Top(X)={a} for some a ∈ X, see [1, 8]. Therefore, by Theorem
3.4, the product

∏
n∈ωXn is screenable.

4. The equivalency of screenable spaces

For an inverse system {Xn, πn
m, ω} and its limit S, let πn be the projection from S into Xn for each n ∈ ω

(for the detailed definition of inverse limit, see [2.5, 4]).

Lemma 4.1. Let {Xn, πn
m, ω} be an inverse system and S its inverse limit with each projection πn being an open and

onto map. Suppose that S is countably paracompact. If each space Xn is screenable, then so is S.

Proof. Let G={Gξ : ξ ∈ Ξ} be an open cover of S. For each n ∈ ω and ξ ∈ Ξ, let Vn,ξ=∪{V : V is open
in Xn and π−1

n (V) ⊂ Gξ} and put Vn=∪{Vn,ξ : ξ ∈ Ξ}. Then {π−1
n (Vn) : n ∈ ω} is an open cover of S with

π−1
n (Vn) ⊂ π−1

n+1(Vn+1) for each n ∈ ω. By the countably paracompactness of S, there is a monotone increasing
collection {En : n ∈ ω} of open sets of S such that En ⊂ π−1

n (Vn) for each n ∈ ω. Fix an n ∈ ω. Define
Zn=∪{V : V is open in Xn and π−1

n (V) ⊂ En}. Then {π−1
n (Zn) : n ∈ ω} is an open cover of S with π−1

n (Zn) ⊂ En.
Again since S is countably paracompact, there is a locally finite open covering {Wn : n ∈ ω} of S such that
Wn ⊂ π−1

n (Zn) for each n ∈ ω. Take an n ∈ ω. Clearly, Zn ⊂ Vn and hence, there is an open refinement
On=∪i∈ωOn,i of {Vn,ξ : ξ ∈ Ξ} such that for each i ∈ ω, On,i={On,i,ξ : ξ ∈ Ξ} is disjoint in Zn.

For each n, i ∈ ω, putHn,i={Wn ∩ π−1
n (On,i,ξ) : ξ ∈ Ξ}. Then, it is easy to check thatH=∪n∈ω ∪i∈ωHn,i is a

σ-disjoint open refinement of G.

Theorem 4.2. If a product space S=
∏

i∈ωXi is countably paracompact, then the following are equivalent:
(1) S is screenable;
(2) The product

∏
i∈σXi is screenable for each σ ∈ [ω]<ω;

(3) The product
∏

i<n Xi is screenable for each n ∈ ω.

Proof. (1)⇒(2)⇒(3) hold trivially. Now, we infer that (3)⇒(1):
For each n ∈ ω, let σn={0, 1, · · · ,n}. Then, Σ={σn : n ∈ ω} is directed by the relation⊂. Define Xσn=

∏
i<n Xi

for each n ∈ ω. For each i, j ∈ ω with i ≤ j, let πσi
σ j

: Xσ j → Xσi be the projection map. Then, each πσi
σ j

is open
and onto. Denote S′=lim←−{Xσi , π

σi
σ j
}. Then, it is easy to check that S′ is homeomorphism with S. It follows

from Lemma 4.1 that S′ is screenable, and hence so is S.

By [Theorem 2, 9] and Theorem 4.2, the following result is obtained.

Corollary 4.3. Let {Xn : n ∈ ω} be a countable collection of screenable spaces. Then the product
∏

n∈ωXn is
paracompact if and only if it is countably paracompact.

Acknowledgement
The authors would like to express their thanks to the Nature Scientific Fund Committee of China for its

subsidy to this subject.

References

[1] E. Aoki, N. Mori, H. Tanaka, Paracompactmess and the Lindelof property in countable products, Topology Appl. 146-147 (2005)
57–66.

[2] Z.T. Balogh, A normal screenable nonparacompact space in ZFC, Proc. Amer. Math. Soc. 126 (1998) 1835–1844.
[3] R.H. Bing, Metrization of topological spaces, Canad. J. Math. 3 (1951) 175–186.
[4] R. Engeleking, General Topology, Heldermann Verlag, Berlin, 1989.
[5] L.M. Friedler, H.W. Martin, S.W. Williams, Paracompact C-scattered spaces, Pacific J. Math. 129 (1987) 277–298.
[6] B.J. Greever, On screenable topological spaces, Proc. Japan Acad 44 (1968) 434–438.
[7] A. Hohti, J. Pelant, On supercomplete uniform spaces IV: Countable products, Fund. Math. 136 (1990) 115–120.
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