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Abstract. In this paper, we study a nondifferentiable minimax fractional programming problem under
the assumptions of generalized second order (F , α, ρ, d)−convexity. A second order parametric dual is
formulated. Weak, strong and converse duality theorems are established in order to relate the primal and
dual problems under the afore-said assumptions.

1. Introduction

We consider the following nondifferentiable minimax fractional programming problem:

(NFP) Minimize sup
y∈Y

f (x,y)+(xTBx)1/2

1(x,y)−(xTCx)1/2 ,

subject to h(x) ≤ 0,

where Y is a compact subset of Rl, f (., .), 1(., .) : Rn × Rl → R, and h(.) : Rn → Rm are twice differentiable
functions. B and C are n × n positive semidefinite symmetric matrices. Throughout this paper, we assume
that 1(x, y) − (xTBx)1/2 > 0 and f (x, y) + (xTBx)1/2 ≥ 0 for each (x, y) in X × Y where X ⊆ Rn.

Minimax mathematical programming and deriving the duality theorems for them have been of much
interest in the recent past. Schmitendorf [19] presented necessary and sufficient optimality conditions for
a minimax programming problem. Tanimoto [20] used these optimality conditions to construct a dual
problem and discussed duality theorems, which were extended for the fractional analogue of generalized
minimax problem by Yadav and Mukherjee [21]. Lai et al. [11] established necessary and sufficient optimal-
ity conditions for a nondifferentiable minimax fractional problem with generalized convexity and applied
these optimality conditions to construct a parametric dual model and also discussed duality theorems. Lai
and Lee [10] obtained duality theorems for two parameter-free dual models of nondifferentiable minimax
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fractional problem involving generalized convexity assumptions. Ahmad and Husain [3] derived necessary
and sufficient optimality conditions for minimax fractional programming problems involving generalized
convex functions.

Second order duality provides tighter bounds for the value of the objective function when approxi-
mations are used. For more datailts, the authors may consult ([16], pp. 93). One more advantage of second
order duality when applicable is that if a feasible point in the primal is given and first order duality does
not apply, then we can use second order duality to provide a lower bound of the value of the primal (see [9]).

Mangasarian [15] first formulated the second order dual for a nonlinear programming problem and
discussed second order duality results under certain inequalities. Mond [16] reproved second order duality
results assuming rather simple inequalities. Bector and Chandra [8] constructed a second order dual for
a fractional programming problem and established usual duality results under the assumptions [16] by
naming these as bonvex/boncave functions.

Inspired by Ahmad et al. [1, 5], Mond [17], and Zhang and Mond [22] , we formulate a second
order parametric dual for a nondifferentiable minimax fractional programming problem involving square
root terms of positive semidefinite quadratic forms. Second order duality results are proved by using the
concept of second order generalized (F , α, ρ, d)−convexity. These results generalize a number of results
[1, 4–6, 12–14] appeared in the literature.

2. Notation and preliminaries

Recall the definitions of sublinear functional and that of a unified formulation of generalized convexity,
called generalized second order (F , α, ρ, d)-convexity from Ahmad and Husain [2]:

Definition 2.1. A functional F : X × X × Rn 7→ R is said to be sublinear in its third argument, if for all
x, x̄ ∈ X

(i) F (x, x̄; a + b) ≤ F (x, x̄; a) + F (x, x̄; b), ∀ a, b ∈ Rn;
(ii) F (x, x̄; βa) = βF (x, x̄; a), ∀ β ∈ R, β ≥ 0, and ∀ a ∈ Rn.

From (ii), it is clear that F (x, x̄; 0) = 0.

Let F be a sublinear functional; let f : X 7→ R be twice differentiable at x̄ ∈ X; and let ρ ∈ R.

Definition 2.2. A twice differentiable function f over X is said to be second order (F , α, ρ, d)-pseudoconvex
at x̄ ∈ X, if there exist functions α : X×X 7→ R+ \ {0}, d(., .) : X×X 7→ R and a real number ρ such that for all
x ∈ X and for all p ∈ Rn,

F (x, x̄;α(x, x̄){∇ f (x̄) + ∇2 f (x̄)p}) ≥ −ρd2(x, x̄)⇒ f (x) ≥ f (x̄) − 1
2

pT∇2 f (x̄)p.

Definition 2.3. A twice differentiable function f over X is said to be second order strictly (F , α, ρ, d)-
pseudoconvex at x̄ ∈ X, if there exist functions α : X × X 7→ R+ \ {0}, d(., .) : X × X 7→ R and a real number ρ
such that for all x ∈ X and for all p ∈ Rn,

F (x, x̄;α(x, x̄){∇ f (x̄) + ∇2 f (x̄)p}) ≥ −ρd2(x, x̄)⇒ f (x) > f (x̄) − 1
2

pT∇2 f (x̄)p.

Definition 2.4. A twice differentiable function f over X is said to be second order (F , α, ρ, d)-quasiconvex
at x̄ ∈ X, if there exist functions α : X×X 7→ R+ \ {0}, d(., .) : X×X 7→ R and a real number ρ such that for all
x ∈ X and for all p ∈ Rn,

f (x) ≤ f (x̄) − 1
2

pT∇2 f (x̄)p⇒ F (x, x̄;α(x, x̄){∇ f (x̄) + ∇2 f (x̄)p}) ≤ −ρd2(x, x̄).
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Let S = {x ∈ X : h(x) ≤ 0} denote the set of all feasible solutions of (NFP). Any point x ∈ S is called the
feasible point of (NFP). For each (x, y) ∈ Rn × Rl, we define

ϕ(x, y) =
f (x, y) + (xTBx)1/2

1(x, y) − (xTCx)1/2
,

such that for each (x, y) ∈ S × Y,

f (x, y) + (xTBx)1/2 ≥ 0 and 1(x, y) − (xTCx)1/2 > 0.

For each x ∈ S,we define
J(x) = { j ∈ J : h j(x) = 0},

where
J = {1, 2, · · · ,m},

Y(x) =
{

y ∈ Y : f (x,y)+(xTBx)1/2

1(x,y)−(xTCx)1/2 = sup
z∈Y

f (x,z)+(xTBx)1/2

1(x,z)−(xTCx)1/2

}
.

K(x) =
{
(s, t, ỹ) ∈ N × Rs

+ × Rms : 1 ≤ s ≤ n + 1, t = (t1, t2, · · · , ts) ∈ Rs
+

with
s∑

i=1
ti = 1, ỹ = (ȳ1, ȳ2, · · · , ȳs) with ȳi ∈ Y(x)(i = 1, 2, · · · , s)

}
.

Since f and 1 are continuously differentiable and Y is compact in Rl, it follows that for each x∗ ∈
S,Y(x∗) , ∅, and for any ȳi ∈ Y(x∗),we have a positive constant

k◦ = ϕ(x∗, ȳi) =
f (x∗, ȳi) + (x∗TBx∗)1/2

1(x∗, ȳi) − (x∗TCx∗)1/2
.

Generalized Schwartz Inequality

Let A be a positive-semidefinite matrix of order n. Then, for all, x,w ∈ Rn,

xTAw ≤ (xTAx)
1
2 (wTAw)

1
2 .

Equality holds if for some λ ≥ 0,

Ax = λAw.

Evidently, if (wTAw)
1
2 ≤ 1, we have

xTAw ≤ (xTAx)
1
2 .

If the functions f , 1 and h in problem (NFP) are continuously differentiable with respect to x ∈ Rn, then Lai
et al. [11] derived the following first order necessary conditions for optimality of (NFP).

Theorem 2.1 (Necessary Conditions). If x∗ is a solution of (NFP) satisfying x∗TBx∗ > 0, x∗TCx∗ > 0, and
∇h j(x∗), j ∈ J(x∗) are linearly independent, then there exist (s, t∗, ȳ) ∈ K(x∗), k◦ ∈ R+,w, v ∈ Rn, and µ∗ ∈ Rm

+

such that

s∑
i=1

t∗i

{
∇ f (x∗, ȳi) + Bw − k◦(∇1(x∗, ȳi) − Cv)

}
+ ∇

m∑
j=1
µ∗jh j(x∗) = 0,
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f (x∗, ȳi) + (x∗TBx∗)
1
2 − k◦

(
1(x∗, ȳi) − (x∗TCx∗)

1
2

)
= 0, i = 1, 2, · · · , s,

m∑
j=1
µ∗jh j(x∗) = 0,

t∗i ≥ 0 (i = 1, 2, · · · , s),
s∑

i=1
t∗i = 1,

wTBw ≤ 1, vTCv ≤ 1,

(x∗TBx∗)1/2 = x∗TBw,

(x∗TCx∗)1/2 = x∗TCv.

.

3. Parametric nondifferentiable fractional duality

We formulate the following second order parametric dual associated to (NFP):

(NMD) max
(s,t,ȳ)∈K(z)

sup
(z,µ,k,v,w,p)∈H(s,t,ȳ)

k,

where H(s, t, ȳ) denotes the set of all (z, µ, k, v,w, p) ∈ Rn × Rm
+ × R+ × Rn satisfying

s∑
i=1

ti[▽ f (z, ȳi) + ▽2 f (z, ȳi)p + Bw − k{▽1(z, ȳi) + ▽21(z, ȳi)p − Cv}] −
m∑

j=1

[▽uT
j h j(z) − ▽2uT

j h j(z)p] = 0, (3.1)

s∑
i=1

ti[ f (z, ȳi) −
1
2

pT ▽2 f (z, ȳi)p + zTBw − k{1(z, ȳi) −
1
2

pT ▽2 1(z, ȳi)p − zTCv}] ≥ 0, (3.2)

m∑
j=1
µ jh j(z)− 1

2 pT▽2
m∑

j=1
µ jh j(z)p ≥ 0, (3.3)

wTBw ≤ 1, (3.4)

vTCv ≤ 1, (3.5)

(s, t, ȳ) ∈ K(z). (3.6)

If, for a triplet (s, t, ȳ) ∈ K(z), the set H(s, t, ȳ) = ∅, then we define the supremum over it to be −∞.

Let Z be the set of all feasible solutions of (NMD).

Theorem 3.1 (Weak duality). Let x ∈ S and (z, µ, k, v,w, s, t, ȳ, p) ∈ Z. If for each (z, µ, k, v,w, s, t, ȳ, p) ∈ Z,

(i)
m∑

j=1
µ jh j(.) is second order (F , α, ρ, d)-quasiconvex at z,

(ii)
s∑

i=1
ti[ f (., yi) + (.)TBw − k{1(., yi) − (.)TCv}] is second order (F , α, σ, d)-pseudoconvex at z; and

(iii) ρ + σ ≥ 0,
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then

sup
y∈Y

f (x, y) + (xTBx)1/2

1(x, y) − (xTCx)1/2
≥ k.

Proof. Suppose contrary to the result that

sup
y∈Y

f (x, y) + (xTBx)1/2

1(x, y) − (xTCx)1/2
< k.

Thus, we have

f (x, ȳi) + (xTBx)1/2 − k(1(x, ȳi) − (xTCx)1/2) < 0, for all ȳi ∈ Y(x), i = 1, 2, . . . , s.

It follows from ti ≥ 0, i = 1, 2, . . . , s, that

ti

[
f (x, ȳi) + (xTBx)1/2 − k(1(x, ȳi) − (xTCx)1/2)

]
≤ 0,

with at least one strict inequality, since t = (t1, t2, . . . , ts) , 0. Taking summation over i, we have

s∑
i=1

ti

[
f (x, ȳi) + (xTBx)1/2 − k(1(x, ȳi) − (xTCx)1/2)

]
5 0,

which together with (3.2) and Schwartz inequality gives
s∑

i=1
ti( f (x, ȳi) + xTBw − k(1(x, ȳi) − xTCv)) < 0 ≤

s∑
i=1

ti[ f (z, ȳi) − 1
2 pT ▽2 f (z, ȳi)p + zTBw

− k{1(z, ȳi) −
1
2

pT ▽2 1(z, ȳi)p − zTCv}]. (3.7)

Using hypothesis (ii), we get

F (x, z;α(x, z)
s∑

i=1

ti[▽ f (z, ȳi) + ▽2 f (z, ȳi)p + Bw − k{▽1(z, ȳi) + ▽21(z, ȳi)p − Cv}]) < −σd2(x, z). (3.8)

Since x ∈ S and (z, µ, k, v,w, s, t, ȳ, p) ∈ Z, we have

m∑
j=1

µTh j(x) ≤ 0 ≤
m∑

j=1

(µTh j(z) − 1
2

pT∇2µTh j(z)p).

The second order (F , α, ρ, d)-quasiconvexity of µTh(.) at z gives

F (x, z;α(x, z)
m∑

j=1

{∇µTh j(z) + ∇2µTh j(z)p}) ≤ −ρd2(x, z). (3.9)

Adding (3.8) and (3.9), we get

F (x, z;α(x, z){
s∑

i=1
ti[▽ f (z, ȳi) + ▽2 f (z, ȳi)p + Bw − k{▽1(z, ȳi) + ▽21(z, ȳi)p − Cv}] −

m∑
j=1

[▽ut
jh j(z)

− ▽2ut
jh j(z)p]}) < −(ρ + σ)d2(x, z)

Since α(x, z) > 0 and ρ + σ ≥ 0,we have

F (x, z;
s∑

i=1
ti[▽ f (z, ȳi) + ▽2 f (z, ȳi)p + Bw − k{▽1(z, ȳi) + ▽21(z, ȳi)p − Cv}] −

m∑
j=1

[▽uT
j h j(z) − ▽2uT

j h j(z)p]) < 0,

which contradicts (3.1), since F (x, z; 0) = 0.
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Theorem 3.2 (Strong duality). Assume that x∗ is an optimal solution of (NFP) and ∇h j(x∗), j ∈ J(x∗)
is linearly independent. Then there exist (s̄, t̄, ȳ∗) ∈ K(x∗) and (x∗, µ̄, k̄, v̄, w̄, p̄ = 0) ∈ H(s̄, t̄, ȳ∗) such
that (x∗, µ̄, k̄, v̄, w̄, s̄, t̄, ȳ∗, p̄ = 0) is a feasible solution of (NFD). Further, if the hypotheses of weak du-
ality theorem (Theorem 3.1) are satisfied for all feasible solutions (z, µ, k, v,w, s, t, ȳ, p̄) of (NFD), then
(x∗, µ̄, k̄, v̄, w̄, s̄, t̄, ȳ∗, p̄ = 0) is an optimal solution of (NFD) and the two objectives have the same opti-
mal values.

Proof. If x∗ be an optimal solution of (NFP) and ∇h j(x∗), j ∈ J(x∗) is linearly independent, then by Theorem
2.1, there exist (s̄, t̄, ȳ∗) ∈ K(x∗) and (x∗, µ̄, k̄, v̄, w̄, p̄ = 0) ∈ H(s̄, t̄, ȳ∗) such that (x∗, µ̄, k̄, v̄, w̄, s̄, t̄, ȳ∗, p̄ = 0) is
feasible for (NFD) and problems (NFP) and (NFD) have the same objective values and

k̄ =
f (x∗, ȳ∗i ) + (x∗TBx∗)1/2

1(x∗, ȳ∗i ) − (x∗TCx∗)1/2
.

The optimality of this feasible solution for (NFD) thus follows from Theorem 3.1.

Theorem 3.3 (Strict converse duality). Assume that x∗ and (z̄, µ̄, k̄, v̄, w̄, s̄, t̄, ȳ∗, p̄ = 0) are the optimal solutions

of (NFP) and (NFD), respectively and ∇h j(x∗), j ∈ J(x∗) is linearly independent. Suppose that
s∑

i=1
ti{ f (., ȳi) +

(.)TBw − k̄
(
1(., ȳi) − (.)TCv

)
} is second order srtictly (F , α, σ, d)-pseudoconvex at z and

m∑
j=1
µ jh j(.) is second

order (F , α, ρ, d)-quasiconvex at z .Then x∗ = z̄, that is, z̄ is an optimal point in (NFP) and

sup
y∈Y

f (z̄, ȳ∗) + (z̄TBz̄)1/2

1(z̄, ȳ∗) − (z̄TCz̄)1/2
= k̄.

Proof. We shall assume that x∗ , z̄ and reach a contradiction. From the strong duality theorem (Theorem
3.2), it follows that

sup
y∈Y

f (x∗, ȳ∗) + (x∗TBx∗)1/2

1(x∗, ȳ∗) − (x∗TCx∗)1/2
= k̄. (3.10)

Now, we proceed similar as in the proof of Theorem 3.1, replacing x by x∗ and (z, µ, k, v,w, s, t, ȳ, p = 0) by
(z̄, µ̄, ū, v̄, w̄, s̄, t̄, ȳ∗, p̄ = 0), so that we we arrive at the strict inequality

sup
y∈Y

f (x∗, ȳ∗) + (x∗TBx∗)1/2

1(x∗, ȳ∗) − (x∗TCx∗)1/2
> k.

But this contradicts the fact

sup
y∈Y

f (x∗, ȳ∗) + (x∗TBx∗)1/2

1(x∗, ȳ∗) − (x∗TCx∗)1/2
= k = k̄,

and we conclude that x∗ = z̄. Hence, the proof of the theorem is complete.

4. Special cases

(i) If B = 0 and C = 0, then (NFP) and (NMD) reduce the problems discussed by Husain et al. [7].
(ii) Let B = 0 , C = 0 and p = 0. Then (NFP) and (NMD) reduce the problems discussed in [13, 14].

(iii) If Y = ϕ, then (NFP) and (NMD) reduce to the following primal and dual problems:
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(FP) Minimize f (x,y)+(xTBx)1/2

1(x,y)−(xTCx)1/2 ,

subject to h(x) ≤ 0.

(MD) Maximize K(z,u, v,w, z, p) = k
!

subject to

[▽ f (z) + ▽2 f (z)p + Bw] − k[▽1(z) + ▽21(z)p − Cv] − ▽uTh(z) − ▽2uTh(z)p = 0,

[ f (z) − 1
2 pT ▽2 f (z)p + zTBw] − k[1(z) − 1

2 pT ▽2 1(z)p − zTCv] ≤ 0,

uTh(z) − 1
2 pT ▽2 uTh(z)p ≥ 0,

wTBw ≤ 1,

vTCv ≤ 1,

u ≥ 0, k ≥ 0.

The above problems considered in [5] by changing maximize(minimize) by minimize (maximize).

5. Conclusion

It is well known [18] that second order duality is useful computationally as it provides a tighter lower
bound. So it is very important to extend the validity of existing results to second order. As a follow up, the
notion of second order (F , α, ρ, d)-convexity and its generalizations is adopted, which include many other
generalized convexity concepts in mathematical programming as special cases. This concept is appropri-
ate to discuss the weak, strong and strict converse duality theorems for a second order dual (NMD) of a
nondifferentiable minimax fractional programming problem (NFP).

The question arise as to whether the second order fractional duality results developed in this paper
hold for the following complex nondifferentiable minimax fractional problem:

Minimize sup
ν∈W

Re[ f (ξ,ν)+(zTBz)1/2]
Re[1(ξ,ν)−(zTCz)1/2] ,

subject to −h(ξ) ∈ S, ξ ∈ C2n,

where ξ = (z, z̄), ν = (ω,ω) for z ∈ Cn, ω ∈ Cl, f (., .) : C2n × C2l → C and 1(., .) : C2n × C2l → C are analytic
with respect to ω, W ia a specified compact subset in C2l,S is a polyhedral cone in Cm and h : C2n → Cm is
analytic. Also B,C ∈ Cn×n are positive semidefinite Hermitian matrices.
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