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Remarks on neighborhood star-Lindelöf spaces
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Abstract. A space X is said to be neighborhood star-Lindelöf if for every open cover U of X there exists
a countable subset A of X such that for every open O ⊇ A, X = St(O,U). In this paper, we continue
to investigate the relationship between neighborhood star-Lindelöf spaces and related spaces, and study
topological properties of neighborhood star-Lindelöf spaces.

1. Introduction

By a space, we mean a topological space. In the rest of this section, we give definitions of terms
which are used in this paper. Let X be a space and U a collection of subsets of X. For A ⊆ X, let
St(A,U) =

∪{U ∈ U : U ∩ A , ∅}. As usual, we write St(x,U) for St({x},U).
Recall that a space X is strongly starcompact (see [5,7,8] - under different name) if for every open cover

U of X there exists a finite subset A of X such that X = St(A,U); A space X is strongly star-Lindelöf (see [1,
2, 5, 8, 9] - under different name) if for every open coverU of X there exists a countable subset A of X such
that X = St(A,U); A space X is starcompact (resp., star-Lindelöf)(see [5, 8] - under different name) if for every
open coverU of X there exists a finite (resp., countable) subsetV ofU such that X = St(

∪V,U). Clearly,
every strongly starcompact space is strongly star-Lindelöf, every strongly starcompact space starcompact,
every strongly star-Lindelöf space is star-Lindelöf and every strongly star-Lindelöf space is star-Lindelöf.
It is known that every countably compact space is strongly starcompact, and every Hausdorff strongly
starcompact space is countably compact (see [5, 8]).

It is natural in this context to introduce the following definitions:

Definition 1.1. ([3]) A space X is said to be weakly starcompact if for every open coverU of X there exists a
finite subset A of X such that for every open O ⊇ A, X = St(O,U).

Definition 1.2. ([4]) A space X is said to be neighborhood star-Lindelöf if for every open cover U of X there
exists a countable subset A of X such that for every open O ⊇ A, X = St(O,U).

From the definitions, it is clear that every weakly starcompact space is neighborhood star-Lindelöf, every
strongly star-Lindelöf space is neighborhood star-Lindelöf space and every neighborhood star-Lindelöf
space is star-Lindelöf.
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The purpose of this note is to investigate the relationship between neighborhood star-Lindelöf spaces
and related spaces, and study topological properties of neighborhood star-Lindelöf spaces.

Throughout this paper, let ω denote the first infinite cardinal, ω1 the first uncountable cardinal, c the
cardinality of the set of all real numbers. For a cardinal κ, let κ+ be the smallest cardinal greater than
κ. For each pair of ordinals α, β with α < β, we write [α, β) = {γ : α ≤ γ < β}, (α, β] = {γ : α < γ ≤ β},
(α, β) = {γ : α < γ < β} and [α, β] = {γ : α ≤ γ ≤ β}. As usual, a cardinal is an initial ordinal and an ordinal is
the set of smaller ordinals. Every cardinal is often viewed as a space with the usual order topology. Other
terms and symbols that we do not define follow [6].

2. Neighborhood star-Lindelöf spaces and related spaces

In this section, we give some examples to clarify the relationship between neighborhood star-Lindelöf
spaces and related spaces. Recall that a space is called Urysohn if every two distinct points have neigh-
borhood with disjoint closures. Clearly, the property is between the Hausdorff condition and regularity.
Bonanzinga et al. in [3] showed that the three properties, countable compactness, strongly starcompactness,
and weak starcompactness are equivalent for Urysonn spaces.

Example 2.1. There exists a Tychonoff neighborhood star-Lindelöf space X that is not weakly starcompact.

Proof. Let X = ω be the countably infinite discrete space. Clearly, X is not weakly starcompact. Since X
is countable, then X is strongly star-Lindelöf, hence X is neighborhood star-Lindelöf, since every strongly
star-Lindelöf space is neighborhood star-Lindelöf.

For the next example, we need the following Lemmas.

Lemma 2.2. A space X having a dense Lindelöf subspace is star-Lindelöf.

Proof. Let X have a dense Lindelöf subspace D. We show that X is star-Lindelöf. LetU be an open cover of
X. Since D is a dense Lindelöf subset of X. Then there exists a countable subsetV ofU such that D ⊆ ∪V.
Hence St(

∪V,U) = X, which shows that X is star-Lindelöf.

Lemma 2.3. ([4]) A space X is neighborhood star-Lindelöf if and only if for every open coverU of X there exists a
countable subset A of X such that St(x,U) ∩ A , ∅ for each x ∈ X.

Example 2.4. There exists a Tychonoff star-Lindelöf space that is not neighborhood star-Lindelöf.

Proof. Let D = {dα : α < c} be a discrete space of cardinality c and let Y = D ∪ {y∞} be one-point compactifi-
cation of D.

Let
X = (Y × [0, ω)) ∪ (D × {ω})

be the subspace of the product space Y × [0, ω]. Then that X is star-Lindelöf by lemma 2.2, since Y × [0, ω)
is a dense Lindelöf subset of X.

Next we show that X is not neighborhood star-Lindelöf. For each α < c, let

Uα = {dα} × [0, ω].

Then
Uα ∩Uα′ = ∅ for α , α′.

Let
U = {Uα : α < c} ∪ {Y × [0, ω)}.

Then U is an open cover of X. Let us consider the open cover U of X. It suffices to show that for any
countable subset A of X, there exists a point x ∈ X such that St(x,U) ∩ A = ∅ by Lemma 2.3. Let A be any
countable subset of X. Then {α : A ∩ Uα , ∅} is countable. Pick α0 < c such that A ∩ Uα0 = ∅. Since Uα0 is
the only element ofU containing the point ⟨dα0 , ω⟩, then St(⟨dα0 , ω⟩,U) = Uα0 . By the constructions of the
topology of X and the open coverU, we have St(⟨dα0 , ω⟩,U) = Uα0 . Thus we complete the proof.
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Remark 2.5. Bonanzinga et al. in [4] showed that there exists a Urysohn neighborhood star-Lindelöf space
that is not strongly star-Lindelöf. But the author does not know if there exists a Tychonoff example.

3. Properties of neighborhood star-Lindelöf spaces

In this section, we study topological properties of neighborhood star-Lindelöf spaces. The Isbell-Mrówka
space is X = ω∪R (see [10]), whereR is a maximal almost disjoint family of infinite subsets ofωwith |R| = c.
The space X is strongly star-Lindelöf, since ω is a countable dense subset of X. Thus X is neighborhood
star-Lindelöf. The space X shows that a closed subset of a Tychonoff neighborhood star-Lindelöf space X
need not be neighborhood star-Lindelöf, since R is a discrete closed subset of cardinality c. Now we give
a stronger example showing that a regular-closed subset of a Tychonoff neighborhood star-Lindelöf space
X need not be neighborhood star-Lindelöf. Here a subset A of a space X is said to be regular-closed in X if
clXintXA = A.

Example 3.1. There exists a Tychonoff neighborhood star-Lindelöf space having a regular-closed subspace which is
not neighborhood star-Lindelöf.

Proof. Let S1 be the same space X in the proof of Example 2.4. Then S1 is Tychonoff, not neighborhood
star-Lindelöf.

Let R be a maximal almost disjoint family of infinite subsets of ω with |R| = c. Let

S2 = R ∪ ([0, c+) × ω).

We topologize S2 as follows: [0, c+) × ω has the usual product topology and is an open subspace of X, and
a basic neighborhood of r ∈ R takes the form

Gβ,K(r) = ({α : β < α < c+} × (r \ K)) ∪ {r}

for β < c+ and a finite subset K of ω. To show that S2 is neighborhood star-Lindelöf. We need only show
that S2 is strongly star-Lindelöf, since every strongly star-Lindelöf space is neighborhood star-Lindelöf. To
this end, letU be an open cover of S2. For each n ∈ ω, since [0, c+)× {n} is countably compact, there exists a
finite subset Fn ⊆ [0, c+) × {n} such that

[0, c+) × {n} ⊆ St(Fn,U).

Let F′ =
∪

n∈ω Fn. Then
[0, c+) × ω ⊆ St(F′,U).

On the other hand, for each r ∈ R, take Ur ∈ U with r ∈ Ur, and fix αr < c+ and nr ∈ r such that

{⟨α,nr⟩ : αr < α < c
+} ⊆ Ur.

For each n ∈ ω, let
Rn = {r ∈ R : nr = n} and α′n = sup{αr : r ∈ Rn}.

Then α′n < c, since |Rn| ≤ c. Pick αn > α′n. Then Rn ⊆ St(⟨αn,n⟩,U). Thus, if we put F′′ = {⟨αn,n⟩ : n ∈ ω},
then R ⊆ St(F′′,U). Let F = F′ ∪ F′′. Then F is a countable subset of S2 such that S2 = St(F,U), which
completes the proof.

We assume S1 ∩ S2 = ∅. Let π : D × {ω} → R be a bijection. Let X be the quotient image of the disjoint
sum S1 ⊕ S2 obtained by identifying ⟨dα, ω⟩ of S1 with π(⟨dα, ω⟩}) of S2 for every α < c. Let φ : S1 ⊕ S2 → X
be the quotient map. It is clear that φ(S1) is a regular-closed subspace of X which is not neighborhood
star-Lindelöf, since it is homeomorphic to S1.

Finally we show that X is neighborhood star-Lindelöf. We need only show that X is strongly star-
Lindelöf. To this end, let U be an open covers of X. Since φ(S2) is homeomorphic to S2, then φ(S2) is
strongly star-Lindelóf, there exists a countable subset F′ ⊆ φ(S2) such that

φ(S2) ⊆ St(F1,U).
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On the other hand, for each n ∈ ω, since φ(Y × {n}) is homeomorphic to Y × {n}, then φ(Y × {n}) is compact,
we can find a finite subset Fn ⊆ φ(Y × {n}) such that

φ(Y × {n}) ⊆ St(Fn,U).

Let F = F′∪∪n∈ω Fn. Then F is a countable subset of X such that X = St(F,U),which completes the proof.

It is known that a continuous image of a strongly star-Lindelöf space is strongly star-Lindelöf. Similarly,
we show that neighborhood star-Lindelöfness is preserved by continuous mappings.

Theorem 3.2. A continuous image of a neighborhood star-Lindelöf space is neighborhood star-Lindelöf.

Proof. Let f : X → Y be a continuous mapping from a neighborhood star-Lindelöf space X onto a space Y.
LetU be an open cover of Y. Then f−1(U) = { f−1(U) : U ∈ U} is an open cover of X. Since X is neighborhood
star-Lindelöf, there exists a countable subset A of X such that for every open O ⊇ A, X = St(O, f−1(U)). Then
f (A) is a countable subset of Y such that for every open W ⊇ f (A), Y = St(W,U). In fact, let y ∈ Y. Then
there is x ∈ X such that f (x) = y. Let W be an open subset of Y such that f (A) ⊆ W. Then f−1(W) is an open
subset of X such that A ⊆ f−1(W), St( f−1(W), f−1(U)) = X, Hence there exists U ∈ U such that x ∈ f−1(U)
and f−1(U) ∩ f−1(W) , ∅. Thus y = f (x) ∈ f ( f−1(U)) = U and U ∩W , ∅. This means that y ∈ St(W,U).

Next we turn to consider preimages. To show that the preimage of a neighborhood star-Lindelöf space
under a closed 2-to-1 continuous map need not be neighborhood star-Lindelöf, we use the the Alexandorff
duplicate A(X) of a space X. The underlying set A(X) is X×{0, 1}; each point of X×{1} is isolated and a basic
neighborhood of ⟨x, 0⟩ ∈ X×{0} is a set of the form (U×{0})∪ ((U×{1}) \ {⟨x, 0⟩}),where U is a neighborhood
of x in X.

Example 3.3. There exists a closed 2-to-1 continuous map f : X → Y such that Y is a neighborhood star-Lindelöf
space, but X is not neighborhood star-Lindelöf.

Proof. Let Y be the same space S2 in the proof of Example 3.1. As we proved in Example 3.1 above, Y
is neighborhood star-Lindelöf. Let X be the Alexandorff duplicate A(Y) of the space Y. Then X is not
neighborhood star-Lindelöf. In fact, let A = {⟨r, 1⟩ : r ∈ R}. Then A is an open and closed subset of X
with |A| = c, and each point ⟨r, 1⟩ is isolated. Hence A(X) is not neighborhood star-Lindelöf, since every
open and closed subset of a neighborhood star-Lindelöf space is neighborhood star-Lindelöf and A is not
neighborhood star-Lindelöf. Let f : X → Y be the projection. Then f is a closed 2-to-1 continuous map,
which completes the proof.

Example 3.4. There exist a neighborhood star-Lindelöf space X and a compact space X such that X × Y is not
neighborhood star-Lindelöf .

Proof. Let X = ω∪R be the Isbell-Mrówka space [10], whereR is a maximal almost disjoint family of infinite
subsets of ωwith |R| = c. Then X is neighborhood star-Lindelöf.

Let D = {dα : α < c} be a discrete space of cardinality c and let Y = D ∪ {y∞} be the one-point
compactification of D.

We show that X ×Y is not neighborhood star-Lindelöf. Since |R| = c, we can enumerate R as {rα : α < c}.
Let

Un = {n} × Y for each n ∈ ω,
Vα = X × {dα} for each α < c

and
Wα = ({rα} ∪ ω) × (Y \ {dα}) for each α < c.

Let
U = {Un : n ∈ ω} ∪ {Vα : α < c} ∪ {Wα : α < c}.
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Then U is an open cover of X × Y. Observe that ⟨rα, dα⟩ ∈ U ∈ U if and only if U = Vα. Let us consider
the open coverU of X × Y. It suffices to show that for any countable subset A of X × Y, there exists a point
⟨x, y⟩ ∈ X × Y such that St(⟨x, y⟩,U) ∩ A = ∅ by Lemma 2.3. Let A be any countable subset of X × Y. Then
there exists α < c such that A ∩ Vα = ∅. Since Vα is the only element of U containing the point ⟨rα, dα⟩,
then St(⟨rα, dα⟩,U) = Vα. By the constructions of the topology of X × Y and the open cover U, we have
St(⟨rα, dα⟩,U) = Vα, which shows that X × Y is not neighborhood star-Lindelöf. Thus we complete the
proof.

Remark 3.5. Example 3.4 shows that the preimage of a neighborhood star-Lindelöf space under an open
perfect map need not be neighborhood star-Lindelöf.

The following well-known example shows that the product of two countably compact(and hence neigh-
borhood star-Lindelöf) spaces need not be neighborhood star-Lindelöf. Here we give the proof roughly for
the sake of completeness. For a Tychonoff space X, let βX denote the Čech-Stone compactification of X.

Example 3.6. There exist two countably compact spaces X and Y such that X×Y is not neighborhood star-Lindelöf.

Proof. Let D be a discrete space of cardinality c. We can define X =
∪
α<ω1

Eα and Y =
∪
α<ω1

Fα, where Eα
and Fα are the subsets of βD which are defined inductively so as to satisfy the following conditions (1),(2)
and (3):

(1) Eα ∩ Fβ = D if α , β;
(2) |Eα| ≤ c and |Fβ| ≤ c;
(3) every infinite subset of Eα(resp., Fα) has an accumulation point in Eα+1(resp.,Fα+1).
These sets Eα and Fα are well-defined since every infinite closed set in βD has cardinality 2c (see [11]).

Then X × Y is not neighborhood star-Lindelöf, because the diagonal {⟨d, d⟩ : d ∈ D} is a discrete open and
closed subset of X × Y with cardinality c and the open and closed subsets of neighborhood star-Lindelöf
spaces are neighborhood star-Lindelöf.

In [5, Example 3.3.3], van Douwen-Reed-Roscoe-Tree gave an example showing that there exist a
countably compact space X and a Lindelöf space Y such that X × Y is not strongly star-Lindelöf. Now, we
shall show that the product space X × Y is not neighborhood star-Lindelöf.

Example 3.7. There exist a countably compact (and neighborhood star-Lindelöf) space X and a Lindelöf space Y such
that X × Y is not neighborhood star-Lindelöf.

Proof. Let X = [0, ω1) with the usual order topology. Then X is countably compact. Let Y = [0, ω1] with the
following topology: each point α with α < ω1 is isolated and a set U containing ω1 is open if and only if
Y \U is countable. Then Y is Lindelöf.

Now, we show that X × Y is not neighborhood star-Lindelöf. For each α < ω1, let

Uα = [0, α] × [α,ω1] and Vα = (α,ω1) × {α}.

Then
Vα ∩ V′α = ∅ if α , α′ and Uα ∩ Vβ = ∅ for any α < c, β < c.

let
U = {Uα : α < ω1} ∪ {Vα : α < ω1}.

Then U is an open cover of X × Y. Let us consider the open cover U of X × Y. It suffices to show that
for any countable subset A of X × Y, there exists a point ⟨x, y⟩ ∈ X × Y such that St(⟨x, y⟩,U) ∩ A = ∅ by
Lemma 2.3. Let A be any countable subset of X × Y. Then there exists α < c such that A ∩ Vα = ∅. Since Vα
is the only element ofU containing the point ⟨α + 1, α⟩, then St(⟨α + 1, α⟩,U) = Vα and Vα ∩ A = ∅. By the
constructions of the topology of X and the open coverU, we have St(⟨α + 1, α⟩,U) = Vα, which shows that
X × Y is not neighborhood star-Lindelöf. Thus we complete the proof.
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Now we give some conditions under which neighborhood star-Lindelöfness implies strongly star-
Lindelöfness. Recall that a space X is paraLindelöf if every open coverU of X has a locally countable open
refinement.

Theorem 3.8. Every paraLindelöf neighborhood star-Lindelöf space is Lindelöf (hence star-Lindelöf).

Proof. Let X be a paraLindelöf neighborhood star-Lindelöf space andU be an open cover of X. Then there
exists a locally countable open refinementV ofU. For each x ∈ X, there exists an open neighborhood Vx
of x such that Vx ⊆ V for some V ∈ V and {V ∈ V : Vx ∩ V , ∅} is countable. LetV′ = {Vx : x ∈ X}. Then
V′ is an open refinement ofV. Since X is neighborhood star-Lindelöf, there exists a countable subset A of
X such that for every open O ⊇ A, X = St(O,V).

Let
O =

∪
{Vx ∈ V′ : x ∈ A}.

Then O is an open subset of X and A ⊆ O. Thus St(O,V) = X.
Let

V′′ = {V ∈ V : V ∩O , ∅}.

Then V′′ is a countable open cover of X. For each V ∈ V′′, choose UV ∈ U such that V ⊆ UV. Then
{UV : V ∈ V′′} is a countable subcover of U, which shows that X is Lindelöf. Thus we complete the
proof.

Since every strongly star-Lindelöf space is neighborhood star-Lindelöf, the following corollary follows
from Theorem 3.8.

Corollary 3.9. A paraLindelöf space X is neighborhood star-Lindelöf iff X is strongly star-Lindelöf.

Since every paracompact space is paraLindelöf, the following Corollary follows from Corollary 3.9.

Corollary 3.10. A paracompact space X is neighborhood star-Lindelöf iff X is strongly star-Lindelöf.

Recall that a space X is locally separable if x has a separable neighborhood at every point x ∈ X.

Theorem 3.11. Every locally separable neighborhood star-Lindelöf space is star-Lindel-öf .

Proof. Let X be a locally separable neighborhood star-Lindelöf space and U be an open cover of X. For
each x ∈ X, there exists an open separable subspace Vx of X such that x ∈ Vx ⊆ U for some U ∈ U, since
X is locally separable. Let V = {Vx : x ∈ X}. Then V is an open cover of X. Since X is neighborhood
star-Lindelöf, there exists a countable subset A of X such that for every open O ⊇ A, X = St(O,U).

Let
O =

∪
{Vx ∈ V : x ∈ A}.

Then O is an open subset of X and A ⊆ O. Thus St(O,U) = X. For each x ∈ A, since Vx is separable, there
exists a countable dense subset Dx of Vx.

Let
F =
∪
{Dx : x ∈ A}.

Then F is a countable subset of X and St(F,U) = X, which shows that X is star-Lindelöf.
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