On some types of convergence of sequences of functions in ideal context

Pratulananda Das ${ }^{\text {a }}$, Sudipta Dutta ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, Jadavpur University, Jadavpur, Kolkata - 32, West Bengal, India
${ }^{b}$ Department of Mathematics, Jadavpur University, Jadavpur, Kolkata - 32, West Bengal, India

Abstract

In this paper we consider the notion of I^{*}-uniform equal convergence introduced by Das, Dutta and $\mathrm{Pal}[15]$ and two related notions of convergence, namely, I^{*}-uniform discrete and I^{*}-strong uniform equal convergence. We then investigate some lattice properties of $\Phi^{T^{*}-u e}, \Phi^{T^{*}-u d}$ and $\Phi^{T^{*}-\text { sue }}$, the classes of all functions defined on a non-empty set X, which are \bar{I}^{*}-uniform equal limits, I^{*}-uniform discrete limits and I^{*}-strong uniform equal limits of sequences of functions belonging to a class of functions Φ respectively.

1. Introduction

The concept of convergence of a sequence of real numbers had been extended to statistical convergence independently by Fast [17], Steinhaus [30] and Schoenberg [29]. A lot of developments have been made on this interesting notion of convergence and related areas after the pioneering works of Šalát [28] and Fridy [18]. The concept of \mathcal{I}-convergence of real sequences was introduced by Kostyrko et. al.[20] as a generalization of statistical convergence using the notion of ideals. In [20], the concept of I^{*}-convergence was also introduced and a detailed study was carried out to explore its relation with I-convergence. For the last ten years several works have been done on I-convergence (see for example [10-13, 22-24]). Recently some significant investigations have been done on sequences of real functions by using the idea of statistical and \mathcal{I}-convergence (see $[2,5,6,15,21,25]$).

On the other hand in [8], Császár and Laczkovich introduced two new types of convergence of sequences of real valued functions under the name of Equal convergence and Discrete convergence (see also [7,9]) and studied the lattice properties of these classes of functions. Later Bukovská [3] also studied equal convergence under the name of Quasi-normal convergence. In [26], Papanastassiou defined and studied the notions of uniform equal convergence, uniform discrete convergence and strong uniform equal convergence for sequences of real valued functions. Later Das and Papanastassiou [16] studied several properties of these classes of functions, in particular lattice properties following the line of investigation of [8]. Very recently the above notion of equal convergence was generalized using ideals and the notion of I^{*}-uniform equal convergence of sequences of real valued functions was introduced by Das, Dutta and Pal [15].

[^0]In the present paper we consider the notion of I^{*}-uniform equal convergence and introduce two related notions of convergence, namely, I^{*}-uniform discrete convergence and I^{*}-strong uniform equal convergence which is stronger than I^{*}-uniform equal convergence for sequence of real valued functions. We then investigate some lattice properties of these classes of functions mainly following the line of investigation of [8] and [16].

2. Preliminaries

Throughout the paper \mathbb{N} will denote the set of all positive integers. A family $\mathcal{I} \subset 2^{\gamma}$ of subsets of a non-empty set Y is said to be an ideal in Y if (i) $A, B \in \mathcal{I}$ implies $A \cup B \in I$; $(i i) A \in I, B \subset A$ implies $B \in \mathcal{I}$, while an admissible ideal \mathcal{I} of Y further satisfies $\{x\} \in \mathcal{I}$ for each $x \in Y$. If \mathcal{I} is a non-trivial proper ideal in Y (i.e. $Y \notin \mathcal{I}, \mathcal{I} \neq\{\emptyset\}$), then the family of sets $F(\mathcal{I})=\{M \subset Y$: there exists $A \in \mathcal{I}: M=Y \backslash A\}$ is a filter in Y. It is called the filter associated with the ideal \mathcal{I}.

Recall that a sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ of real numbers is said to be \mathcal{I}-convergent to $x \in \mathbb{R}$ if for each $\varepsilon>0$ the set $A(\varepsilon)=\left\{n \in \mathbb{N}:\left|x_{n}-x\right| \geq \varepsilon\right\} \in \mathcal{I}$ [20]. The sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ is said to be \mathcal{I}^{*}-convergent to $x \in \mathbb{R}$ if there is a set $M \in F(\mathcal{I}), M=\left\{m_{1}<m_{2}<\ldots<m_{k}<\ldots\right\}$ such that $\lim _{k \rightarrow \infty} x_{m_{k}}=x$ [20]. A sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ of real numbers is said to be \mathcal{I}-divergent to ∞ or $-\infty$ if for any positive real number $G,\left\{n \in \mathbb{N}: x_{n} \leq G\right\} \in \mathcal{I}$ or $\left\{n \in \mathbb{N}: x_{n} \geq-G\right\} \in \mathcal{I}$ [24] (though in [24] the terms \mathcal{I}-convergent to $+\infty$ and \mathcal{I}-convergent to $-\infty$ were used).

We now recall the following types of convergence introduced in [8] which we generalized using the notion of ideals in [15]. Let X be a non-empty set and let $f, f_{n}, n=1,2,3, \ldots$ be real valued functions defined on X. f is called the discrete limit of the sequence $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ if for every $x \in X$, there exists $n_{0}=n_{0}(x)$ such that $f(x)=f_{n}(x)$ for $n \geq n_{0}$. The terminology is motivated by the fact that this condition means precisely the convergence of the sequence $\left\{f_{n}(x)\right\}_{n \in \mathbb{N}}$ to $f(x)$ with respect to the discrete topology of the real line. f is said to be the equal limit of the sequence $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ if there exists a sequence of positive numbers $\left\{\varepsilon_{n}\right\}_{n \in \mathbb{N}}$ tending to zero such that for every $x \in X$, there exists $n_{0}=n_{0}(x)$ with $\left|f_{n}(x)-f(x)\right|<\varepsilon_{n}$ for $n \geq n_{0}$.

We say that f is the I-equal limit of the sequence $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ if there exists a sequence $\left\{\varepsilon_{n}\right\}_{n \in \mathbb{N}}$ of positive reals with \mathcal{I} - $\lim _{n \rightarrow \infty} \varepsilon_{n}=0$ such that for any $x \in X$, the set $\left\{n \in \mathbb{N}:\left|f_{n}(x)-f(x)\right| \geq \varepsilon_{n}\right\} \in \mathcal{I} . f$ is said to be the \mathcal{I}^{*}-equal limit of $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ if there exists a set $M=\left\{m_{1}<m_{2}<\ldots<m_{k}<\ldots\right\} \in F(\mathcal{I})$ such that for all $x \in X, f(x)$ is the equal limit of the subsequence $\left\{f_{m_{k}}(x)\right\}_{k \in \mathbb{N}}$.

We also recall the following ideas of convergence of a sequence of functions from [2]. A sequence $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ of functions is said to be \mathcal{I}-pointwise convergent to f if for all $x \in X$ the sequence $\left\{f_{n}(x)\right\}_{n \in \mathbb{N}}$ is \mathcal{I}-convergent to $f(x)$ and in this case we write $f_{n} \xrightarrow{I} f$. The sequence $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ is said to be \mathcal{I}-uniformly convergent to f if for any $\varepsilon>0$ there exists $A \in \mathcal{I}$ such that for all $n \in A^{c}$ and for all $x \in X,\left|f_{n}(x)-f(x)\right|<\varepsilon$. f is said to be the \mathcal{I}^{*}-uniform limit of $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ if there exists a set $M=\left\{m_{1}<m_{2}<\ldots<m_{k}<\ldots\right\} \in F(\mathcal{I})$ such that for all $x \in X$, $f(x)$ is the uniform limit of the subsequence $\left\{f_{m_{k}}(x)\right\}_{k \in \mathbb{N}}$.

3. Main results

We first recall the following definition from the recent work of Das, Dutta and Pal [15].
Definition 3.1. $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ is said to be I^{*}-uniformly equally convergent to f if there exists a sequence $\left\{\varepsilon_{n}\right\}_{n \in \mathbb{N}}$ of positive reals with $\lim _{n} \varepsilon_{n}=0$, a set $M=M\left(\left\{\varepsilon_{n}\right\}\right) \in F(\mathcal{I})$ and $k=k\left(\left\{\varepsilon_{n}\right\}\right) \in \mathbb{N}$ such that $\mid\left\{n \in M:\left|f_{n}(x)-f(x)\right| \geq\right.$ $\left.\varepsilon_{n}\right\} \mid$ is at most $k=k\left(\left\{\varepsilon_{n}\right\}\right)$ for all $x \in X$. In this case we write $f_{n} \xrightarrow{I^{*}-u e} f$.

Clearly I^{*}-equal convergence is weaker than I^{*}-uniform equal convergence which is again weaker than I^{*}-uniform convergence.

Example 3.2. Let I be an admissible ideal of \mathbb{N} and $I \neq I_{\text {fin }}$, the ideal of all finite subsets of \mathbb{N}. Then I must contain an infinite set A. Take a pairwise disjoint family $\left\{A_{n}\right\}_{n \in \mathbb{N} \backslash A}$ of non-empty subsets of \mathbb{R}. Let $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ be the sequence of functions on \mathbb{R} defined by

$$
\begin{aligned}
f_{n} & =\chi_{A_{n}} \text { for all } n \in \mathbb{N} \backslash A \\
& =1 \text { for all } n \in A .
\end{aligned}
$$

Now clearly $\sup _{x \in \mathbb{R}}\left|f_{n}(x)\right|=1$ for all n and so $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ cannot converge I^{*}-uniformly to the constant function $f \equiv 0$. But since for any sequence $\left\{\varepsilon_{n}\right\}_{n \in \mathbb{N}}$ of positive reals with $\lim _{n} \varepsilon_{n}=0$, the set $\left\{n \in \mathbb{N} \backslash A: f_{n}(x) \geq \varepsilon_{n}\right\}$ has cardinality at most 1 for all $x \in \mathbb{R}$, so $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ converges I^{*}-uniformly equally to $f \equiv 0$. Clearly $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ does not converge uniformly equally to $f \equiv 0$.
Example 3.3. Consider the intervals of the form $\left[m, m+\frac{j}{m}\right], j=1,2, \ldots, m-1$ for each $m \in \mathbb{N}$ and $\left\{f_{i}\right\}_{i \in \mathbb{N}}$ be the enumeration of the characteristic functions of these intervals. Let $A \in I$. Then $M=\mathbb{N} \backslash A \in F(\mathcal{I})$ and so M must be infinite (since I is an admissible ideal). Let $M=\left\{n_{1}<n_{2}<n_{3}<\ldots\right\}$. Now consider the sequence $\left\{g_{k}\right\}_{k \in \mathbb{N}}$ of functions on \mathbb{R}

$$
\begin{aligned}
g_{k} & =1 \text { for all } k \in A \\
g_{n_{i}} & =f_{i} \text { for all } i \in \mathbb{N} .
\end{aligned}
$$

It is now easy to see that $\left\{g_{k}\right\}_{k \in \mathbb{N}}$ converges I^{*}-equally to zero function. But if $\lim _{n} \varepsilon_{n}=0$ for a given sequence $\left\{\varepsilon_{n}\right\}_{n \in \mathbb{N}}$, then $\left|\left\{n \in \mathbb{N} \backslash A:\left|g_{n}(x)\right| \geq \varepsilon_{n} \mid\right\}\right|=x-1$ for each $x \in \mathbb{N}$ which increases with x and also these n^{\prime} s overlap the whole set $\mathbb{N} \backslash A$ as x runs over \mathbb{N}. Hence $\left\{g_{k}\right\}_{k \in M}$ cannot converge \mathcal{I}^{*}-uniformly equally to $f \equiv 0$.

We first observe the following equivalent condition for \mathcal{I}^{*}-uniform equal convergence.
 integers I-divergent to ∞ such that

$$
\rho_{n}\left|f_{n}-f\right| \xrightarrow{I^{*}-u e} 0
$$

Proof. Suppose that $f_{n} \xrightarrow{T^{*}-u e} f$. Then there exists a sequence $\left\{\varepsilon_{n}\right\}_{n \in \mathbb{N}}$ of positive reals with $\lim _{n} \varepsilon_{n}=0$, a set $M=M\left(\left\{\varepsilon_{n}\right\}\right) \in F(\mathcal{I})$ and $k=k\left(\left\{\varepsilon_{n}\right\}\right) \in \mathbb{N}$ such that

$$
\begin{equation*}
\left|\left\{n \in M:\left|f_{n}(x)-f(x)\right| \geq \varepsilon_{n}\right\}\right| \leq k \text { for all } x \in X \tag{1}
\end{equation*}
$$

Now, define a sequence $\left\{\rho_{n}\right\}_{n \in \mathbb{N}}$ as

$$
\begin{aligned}
\rho_{n} & =\left[\frac{1}{\sqrt{\varepsilon_{n}}}\right], n \in M \\
& =1 \quad, n \notin M
\end{aligned}
$$

Obviously $\left\{\rho_{n}\right\}_{n \in \mathbb{N}}$ is an I-divergent to ∞. Hence from (1)

$$
\left|\left\{n \in M: \rho_{n}\left|f_{n}(x)-f(x)\right| \geq \sqrt{\varepsilon}_{n}\right\}\right| \leq k \text { for all } x \in X
$$

which implies $\rho_{n}\left|f_{n}-f\right| \xrightarrow{I^{*}-u e} 0$.
Conversely, if $\rho_{n}\left|f_{n}-f\right| \xrightarrow{I^{*}-u e} 0$ where $\left\{\rho_{n}\right\}_{n \in \mathbb{N}}$ is a sequence of positive integers I-divergent to ∞, then there exists a sequence $\left\{\lambda_{n}\right\}_{n \in \mathbb{N}}$ of positive reals with $\lim _{n} \lambda_{n}=0$ and $M=M\left(\left\{\lambda_{n}\right\}\right) \in F(\mathcal{I})$ and $k=k\left(\left\{\lambda_{n}\right\}\right) \in \mathbb{N}$ such that $\left|\left\{n \in M: \rho_{n}\left|f_{n}(x)-f(x)\right| \geq \lambda_{n}\right\}\right| \leq k$ for all $x \in X$. Define a sequence $\left\{\theta_{n}\right\}_{n \in \mathbb{N}}$ by

$$
\begin{aligned}
\theta_{n} & =\frac{\lambda_{n}}{\rho_{n}}, n \in M \\
& =\frac{1}{n}, n \notin M
\end{aligned}
$$

Then $\lim _{n} \theta_{n}=0$ and $\left|\left\{n \in M:\left|f_{n}(x)-f(x)\right| \geq \theta_{n}\right\}\right| \leq k$ for all $x \in X$. This completes the proof.
Lemma 3.5. Let $f_{n}: X \rightarrow \mathbb{R}, n \in \mathbb{N}$. If $f_{n} \xrightarrow{T^{+}-u e} 0$, then $f_{n}^{2} \xrightarrow{I^{*}-u e} 0$.
Proof. By definition, there exist a sequence $\left\{\varepsilon_{n}\right\}_{n \in \mathbb{N}}$ of positive reals with $\lim _{n} \varepsilon_{n}=0$, a set $M=M\left(\left\{\varepsilon_{n}\right\}\right) \in F(I)$ and $k=k\left(\left\{\varepsilon_{n}\right\}\right) \in \mathbb{N}$ such that

$$
\left|\left\{n \in M:\left|f_{n}(x)\right| \geq \varepsilon_{n}\right\}\right| \leq k \text { for all } x \in X .
$$

Then we have

$$
\left|\left\{n \in M:\left|f_{n}(x)\right|^{2} \geq \varepsilon_{n}^{2}\right\}\right| \leq k \text { for all } x \in X
$$

and so

$$
\left|\left\{n \in M:\left|f_{n}^{2}(x)\right| \geq \varepsilon_{n}^{2}\right\}\right| \leq k \text { for all } x \in X .
$$

Therefore $f_{n}^{2} \xrightarrow{T^{*}-u e} 0$.
Lemma 3.6. Let $f_{n}, f: X \rightarrow \mathbb{R}, n \in \mathbb{N}$. If f is bounded and $f_{n} \xrightarrow{T^{*}-u e} f$, then $f_{n} . f \xrightarrow{T^{*}-u e} f^{2}$.
Proof. Let B be a positive real number such that $|f(x)| \leq B$ for all $x \in X$. Since $f_{n} \xrightarrow{T^{*}-u e} f$, there exist a sequence $\left\{\varepsilon_{n}\right\}_{n \in \mathbb{N}}$ of positive reals with $\lim _{n} \varepsilon_{n}=0$, a set $M=M\left(\left\{\varepsilon_{n}\right\}\right) \in F(\mathcal{I})$ and $k=k\left(\left\{\varepsilon_{n}\right\}\right) \in \mathbb{N}$ such that

$$
\left|\left\{n \in M:\left|f_{n}(x)-f(x)\right| \geq \varepsilon_{n}\right\}\right| \leq k \text { for all } x \in X .
$$

Since $|f(x)|\left|f_{n}(x)-f(x)\right| \geq\left|\left(f_{n} \cdot f\right)(x)-f^{2}(x)\right|$, we have

$$
\begin{aligned}
\left\{n \in M:\left|\left(f_{n} \cdot f\right)(x)-f^{2}(x)\right| \geq \varepsilon_{n} \cdot B\right\} & \subseteq\left\{n \in M:|f(x)|\left|f_{n}(x)-f(x)\right| \geq \varepsilon_{n} \cdot B\right\} \\
& \subseteq\left\{n \in M:\left|f_{n}(x)-f(x)\right| \geq \varepsilon_{n}\right\}
\end{aligned}
$$

for each $x \in X$. Therefore $\left|\left\{n \in M:\left|\left(f_{n} \cdot f\right)(x)-f^{2}(x)\right| \geq \varepsilon_{n} . B\right\}\right| \leq k$ for all $x \in X$. This proves the result.
Theorem 3.7. If $f_{n} \xrightarrow{T^{*}-u e} f$ and $g_{n} \xrightarrow{T^{*}-u e} g$ then $f_{n} \cdot g_{n} \xrightarrow{T^{*}-u e} f . g$, where f and g are bounded.
Proof. Using Lemma 3.5, Lemma 3.6 and writing $f_{n} \cdot g_{n}=\frac{\left(f_{n}+g_{n}\right)^{2}-\left(f_{n}-g_{n}\right)^{2}}{4}$ we can deduce that $f_{n} \cdot g_{n} \xrightarrow{T^{*}-u e}$ f.g.

Let Φ be an arbitrary class of functions defined on a non-empty set X. We denote by $\Phi^{I^{*}-u e}$, the class of all functions defined on X, which are I^{*}-uniform equal limits of sequences of functions belonging to Φ. For any class of functions Φ on X we first recall the following definitions from [9].

Definition 3.8. (a) Φ is called a lattice if Φ contains all constants and $f, g \in \Phi$ implies $\max (f, g) \in \Phi$ and $\min (f, g) \in \Phi$.
(b) Φ is called a translation lattice if it is a lattice and $f \in \Phi, c \in \mathbb{R}$ implies $f+c \in \Phi$.
(c) Φ is called a congruence lattice if it is a translation lattice and $f \in \Phi$ implies $-f \in \Phi$.
(d) Φ is called a weakly affine lattice if it is a congruence lattice and there is a set $C \subset(0, \infty)$ such that C is not bounded and $f \in \Phi, c \in C$ implies $c f \in \Phi$.
(e) Φ is called an affine lattice if it is a congruence lattice and $f \in \Phi, c \in \mathbb{R}$ implies $c f \in \Phi$.
$(f) \Phi$ is called a subtractive lattice if it is a lattice and $f, g \in \Phi$ implies $f-g \in \Phi$.
$(g) \Phi$ is called an ordinary class if it is a subtractive lattice, $f, g \in \Phi$ implies $f . g \in \Phi$ and $f \in \Phi, f(x) \neq 0$, for all $x \in \mathrm{X}$ implies $1 / f \in \Phi$.

Theorem 3.9. Let Φ be a class of functions on X. If Φ is a lattice, a translation lattice, a congruence lattice, a weakly affine lattice, an affine lattice or a subtractive lattice, then so is $\Phi^{I^{*}-u e}$. Further if $f \in \Phi^{I^{*}-u e}$ is bounded, then $f^{2} \in \Phi^{T^{T}-u}$.

Proof. Let Φ be a lattice. Since Φ contains the constant functions, $\Phi^{T^{*}-u e}$ contains the constant functions. Let $f_{n} \xrightarrow{I^{*}-u e} f$. Then there exist a sequence $\left\{\varepsilon_{n}\right\}_{n \in \mathbb{N}}$ of positive reals with $\lim _{n} \varepsilon_{n}=0$, a set $M=M\left(\left\{\varepsilon_{n}\right\}\right) \in F(I)$ and $k=k\left(\left\{\varepsilon_{n}\right\}\right) \in \mathbb{N}$ such that $\left|\left\{n \in M:\left|f_{n}(x)-f(x)\right| \geq \varepsilon_{n}\right\}\right| \leq k$ for all $x \in X$. Now $\left|\left|f_{n}\right|(x)-|f|(x)\right| \leq\left|f_{n}(x)-f(x)\right|$. Therefore $\left|\left\{n \in M:\left|\left|f_{n}\right|(x)-|f|(x)\right| \geq \varepsilon_{n}\right\}\right| \leq k$ for each $x \in X$ i.e. $\left|f_{n}\right| \xrightarrow{T^{*}-u e}|f|$.

Next we show that if $f_{n} \xrightarrow{T^{*}-u e} f, g_{n} \xrightarrow{T^{*}-u e} g$ and $\alpha, \beta \in \mathbb{R}$, then $\alpha f_{n}+\beta g_{n} \xrightarrow{T^{*}-u e} \alpha f+\beta g$. Indeed, by definition there exist $M_{f}, M_{g} \in F(\mathcal{I}), \lim _{n} \varepsilon_{n}=0, \lim _{n} \lambda_{n}=0$ and $n_{f}=n_{f}\left(\left\{\varepsilon_{n}\right\}\right), n_{g}=n_{g}\left(\left\{\lambda_{n}\right\}\right) \in \mathbb{N}$ such that

$$
\left|\left\{n \in M_{f}:\left|f_{n}(x)-f(x)\right| \geq \varepsilon_{n}\right\}\right| \leq n_{f}
$$

and

$$
\left|\left\{n \in M_{g}:\left|g_{n}(x)-g(x)\right| \geq \lambda_{n}\right\}\right| \leq n_{g} .
$$

Let us assume that $\theta_{n}=\max \left\{2|\alpha| \varepsilon_{n}, 2|\beta| \lambda_{n}\right\}$ and $k=n_{f}+n_{g}$. Hence we have

$$
\left|\left\{n \in M_{f} \cap M_{g}:\left|\alpha\left(f_{n}-f\right)(x)+\beta\left(g_{n}-g\right)(x)\right| \geq \theta_{n}\right\}\right| \leq k
$$

where $M_{f} \cap M_{g} \in F(\mathcal{I})$ and $\lim _{n} \theta_{n}=0$. Hence $\alpha f_{n}+\beta g_{n} \xrightarrow{I^{*}-u e} \alpha f+\beta g$.
Next observe that if $f, g \in \Phi^{I^{*}-u e}, f_{n} \xrightarrow{I^{*}-u e} f$ and $g_{n} \xrightarrow{I^{*}-u e} g$, then, in view of above,

$$
\frac{f_{n}+g_{n}}{2}+\frac{\left|f_{n}-g_{n}\right|}{2} \xrightarrow{I^{*}-u e} \frac{f+g}{2}+\frac{|f-g|}{2}=\max (f, g)
$$

which implies that $\max (f, g) \in \Phi^{I^{*}-u e}$. Similarly we can show that $\min (f, g) \in \Phi^{I^{*}-u e}$. Thus $\Phi^{I^{*}-u e}$ is a lattice. The proofs of the remaining assertions are straightforward. The last assertion follows from Lemma 3.6.

Theorem 3.10. Let Φ be an ordinary class offunctions on X. Let $f \in \Phi^{I^{*}-u e}$ be bounded and $f(x) \neq 0$ for each $x \in X$. If $\frac{1}{f}$ is bounded on X, then $\frac{1}{f} \in \Phi^{T^{*}-u e}$.

Proof. Assume that $\frac{1}{f}$ is bounded on X. Then there exists a $\lambda>0$ be such that $f^{2}(x)>\lambda$ for each $x \in X$. Since $f \in \Phi^{I^{*}-u e}$ and f is bounded then $f^{2} \in \Phi^{I^{*}-u e}$. Hence there exist a sequence $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ of Φ, a set $M \in F(\mathcal{I})$ and $k \in \mathbb{N}$ such that $\left|\left\{n \in M:\left|f_{n}(x)-f^{2}(x)\right| \geq \frac{1}{n^{3}}\right\}\right| \leq k$ for all $x \in X$. Let $g_{n}(x)=\max \left\{f_{n}(x), \frac{1}{n}\right\}$ for $x \in X$. Then $g_{n} \in \Phi$ for each $n \in \mathbb{N}$. Therefore

$$
\left|\left\{n \in M: g_{n}(x)=f_{n}(x),\left|g_{n}(x)-f^{2}(x)\right| \geq \frac{1}{n^{3}}\right\}\right| \leq k
$$

and
$\left\{n \in M: g_{n}(x)=\frac{1}{n},\left|g_{n}(x)-f^{2}(x)\right| \geq \frac{1}{n^{3}}\right\}$

$$
\begin{aligned}
= & \left\{n \in M: g_{n}(x)=\frac{1}{n^{\prime}}, g_{n}(x)-f^{2}(x) \geq \frac{1}{n^{3}}\right\} \\
& \cup\left\{n \in M: g_{n}(x)=\frac{1}{n},-g_{n}(x)+f^{2}(x) \geq \frac{1}{n^{3}}\right\} \\
\subseteq & \left\{n \in M: f^{2}(x) \leq \frac{1}{n}-\frac{1}{n^{3}}\right\} \cup\left\{n \in M: f^{2}(x) \geq f_{n}(x)+\frac{1}{n^{3}}\right\} \\
\subseteq & \left\{n \in M: f^{2}(x)<\frac{1}{n}\right\} \cup\left\{n \in M: f^{2}(x) \geq f_{n}(x)+\frac{1}{n^{3}}\right\}
\end{aligned}
$$

Therefore $\left|\left\{n \in M: g_{n}(x)=\frac{1}{n},\left|g_{n}(x)-f^{2}(x)\right| \geq \frac{1}{n^{3}}\right\}\right| \leq k^{\prime}+k=k_{1}$ (say) where $k^{\prime}=\left[\frac{1}{\lambda}\right]+1$. Hence

$$
\begin{aligned}
\left\{n \in M:\left|g_{n}(x)-f^{2}(x)\right| \geq \frac{1}{n^{3}}\right\}= & \left\{n \in M: g_{n}(x)=f_{n}(x),\left|g_{n}(x)-f^{2}(x)\right| \geq \frac{1}{n^{3}}\right\} \\
& \cup\left\{n \in M: g_{n}(x)=\frac{1}{n^{\prime}},\left|g_{n}(x)-f^{2}(x)\right| \geq \frac{1}{n^{3}}\right\}
\end{aligned}
$$

This implies that $\left|\left\{n \in M:\left|g_{n}(x)-f^{2}(x)\right| \geq \frac{1}{n^{3}}\right\}\right| \leq k_{1}+k=k_{2}$ (say). Therefore

$$
\begin{aligned}
\left|\left\{n \in M:\left|\frac{1}{g_{n}(x)}-\frac{1}{f^{2}(x)}\right| \geq \frac{1}{n^{3}} \cdot n \cdot \frac{1}{\lambda}\right\}\right| & =\left|\left\{n \in M: \frac{\left|f^{2}(x)-g_{n}(x)\right|}{\left|g_{n}(x)\right|\left|f^{2}(x)\right|} \geq \frac{1}{n^{3}} \cdot n \cdot \frac{1}{\lambda}\right\}\right| \\
& \leq\left|\left\{n \in M:\left|g_{n}(x)-f^{2}(x)\right| \geq \frac{1}{n^{3}}\right\}\right| \\
& \leq k_{2} .
\end{aligned}
$$

Hence $f^{-2} \in \Phi^{I^{*}-u e}$ and so $f . f^{-2}=f^{-1} \in \Phi^{I^{*}-u e}$.
We now introduce the following notion.
Definition 3.11. $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ is said to be \mathcal{I}^{*}-uniformly discretely convergent to f if there exist a set $M \in F(\mathcal{I})$ and a natural number $k \in \mathbb{N}$ such that $\left|\left\{n \in M:\left|f_{n}(x)-f(x)\right|>0\right\}\right|$ is at most k for all $x \in X$. In this case we write $f_{n} \xrightarrow{I^{*}-u d} f$.

We denote by $\Phi^{I^{*}-u d}$, the class of all functions defined on X, which are I^{*}-uniform discrete limits of sequences of functions belonging to Φ.

Now, we study some properties of the class $\Phi^{I^{*}-u d}$.
Theorem 3.12. Let Φ be a class offunctions on X. If Φ is a lattice, a translation lattice, a congruence lattice, a weakly affine lattice, an affine lattice or a subtractive lattice, then so is $\Phi^{I^{*}-u d}$.
Proof. This theorem readily follows from Definition 3.11.
Theorem 3.13. Let Φ be an ordinary class of functions on X. Then $f, g \in \Phi^{I^{*}-u d}$ implies $f . g \in \Phi^{I^{*}-u d}$. Also if $f \in \Phi^{I^{*}-u d}$ is such that $f(x) \neq 0$ for each $x \in X$ and $\frac{1}{f}$ is bounded on X, then $\frac{1}{f} \in \Phi^{I^{*}-u d}$.

Proof. Let $f, g \in \Phi^{I^{*}-u d}$. Then there exist sequences $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{g_{n}\right\}_{n \in \mathbb{N}}$ in Φ such that $f_{n} \xrightarrow{I^{*}-u d} f$ and $g_{n} \xrightarrow{I^{*}-u d} g$. Then from definition, we can prove that $f_{n} \cdot g_{n} \xrightarrow{I^{*}-u d} f . g$.

Let $f \in \Phi^{T^{*}-u d}$ be such that $f(x) \neq 0$ for each $x \in X$ and $\frac{1}{f}$ is bounded on X. Choose $\mu>0$ such that $f^{2}(x)>\mu>0$ for each $x \in X$. Let $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ be a sequence in Φ such that $f_{n} \xrightarrow{I^{*}-u d} f$. Since Φ is an ordinary class, $f_{n}^{2} \in \Phi$ for each $n \in \mathbb{N}$. Let $\left\{\lambda_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of positive reals converging to zero and $g_{n}=\max \left\{f_{n}^{2}, \lambda_{n}\right\}$. Then $g_{n} \in \Phi$. Since $f_{n} \xrightarrow{I^{*} \text {-ud }} f$, then by definition

$$
\left|\left\{n \in M: f_{n}(x) \neq f(x)\right\}\right| \leq k \text { for all } x \in X
$$

which implies that

$$
\left|\left\{n \in M: g_{n}(x) \neq \max \left\{f^{2}(x), \lambda_{n}\right\}\right\}\right| \leq k \text { for all } x \in X
$$

i.e.,

$$
\begin{equation*}
\left|\left\{n \in M: \frac{1}{g_{n}(x)} \neq \frac{1}{\max \left\{f^{2}(x), \lambda_{n}\right\}}\right\}\right| \leq k \text { for all } x \in X \tag{2}
\end{equation*}
$$

Now since $\lim _{n} \lambda_{n}=0$, there exists a $k^{\prime} \in \mathbb{N}$ such that $\lambda_{n}<\mu$ for all $n \in M$ such that $n \geq k^{\prime}$. Therefore (2) becomes

$$
\left|\left\{n \in M: \frac{1}{g_{n}(x)} \neq \frac{1}{f^{2}(x)}\right\}\right| \leq k+k^{\prime} \text { for each } x \in X
$$

Hence $f^{-2} \in \Phi^{I^{*}-u d}$ and consequently $f . f^{-2}=f^{-1} \in \Phi^{I^{*}-u d}$.
Finally we introduce the following notion of convergence for a sequence of real valued functions.

Definition 3.14. $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ is said to be \mathcal{I}^{*}-strongly uniformly equally convergent to f if there exist a sequence $\left\{\varepsilon_{n}\right\}_{n \in \mathbb{N}}$ of positive reals with $\sum_{n=1}^{\infty} \varepsilon_{n}<\infty$, a set $M=M\left(\left\{\varepsilon_{n}\right\}\right) \in F(\mathcal{I})$ and $k=k\left(\left\{\varepsilon_{n}\right\}\right) \in \mathbb{N}$ such that $\mid\{n \in M$: $\left.\left|f_{n}(x)-f(x)\right| \geq \varepsilon_{n}\right\} \mid$ is at most $k=k\left(\left\{\varepsilon_{n}\right\}\right)$ for all $x \in X$. In this case we write $f_{n} \xrightarrow{I^{*} \text {-sue }} f$.

We denote by $\Phi^{\bar{I}^{*} \text { sue }}$, the class of all I^{*}-strong uniform equal limits of a class of functions Φ defined on X.

Example 3.15. Let I be a non-trivial proper admissible ideal. So there exists an infinite set $M \in F(\mathcal{I})$. Let $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ be the sequence of functions on \mathbb{R} defined by

$$
\begin{aligned}
f_{n}(x) & =\frac{1}{n}, n \in M \\
& =0, n \notin M
\end{aligned}
$$

for all $x \in X$. Then $f_{n} \xrightarrow{I^{*}-u e} 0$ but $f_{n} \xrightarrow{I^{*}-\text { sue }} 0$.
From the definition and the above example it follows that I^{*}-strong uniform equal convergence is stronger than I^{*}-uniform equal convergence. As in the case of I^{*}-uniform equal convergence we can easily prove the following results.

Lemma 3.16. Let $f_{n}: X \rightarrow \mathbb{R}, n \in \mathbb{N}$. If $f_{n} \xrightarrow{I^{*} \text {-sue }} 0$, then $f_{n}^{2} \xrightarrow{I^{*} \text {-sue }} 0$.
Lemma 3.17. Let $f_{n}, f: X \rightarrow \mathbb{R}, n \in \mathbb{N}$. If f is bounded and $f_{n} \xrightarrow{T^{*} \text {-sue }} f$, then $f_{n} . f \xrightarrow{I^{*} \text { sue }} f^{2}$.
Theorem 3.18. If $f_{n} \xrightarrow{I^{*} \text {-sue }} f$ and $g_{n} \xrightarrow{I^{*} \text {-sue }} g$ then $f_{n} \cdot g_{n} \xrightarrow{I^{*} \text {-sue }} f . g$, where f and g are bounded.
Theorem 3.19. Let Φ be a class of functions on X. If Φ is a lattice, a translation lattice, a congruence lattice, a weakly affine lattice, an affine lattice or a subtractive lattice, then so is $\Phi^{I^{*}-\text { sue }}$.

Proof. Let Φ be a lattice. Since Φ contains the constant functions, $\Phi^{I^{*}-u e}$ also contains the constant functions. Let $f_{n} \xrightarrow{I^{*} \text {-sue }} f$. Then there exist a sequence $\left\{\varepsilon_{n}\right\}_{n \in \mathbb{N}}$ of positive reals with $\sum_{n=1}^{\infty} \varepsilon_{n}<\infty$, a set $M=M\left(\left\{\varepsilon_{n}\right\}\right) \in F(\mathcal{I})$ and $k=k\left(\left\{\varepsilon_{n}\right\}\right) \in \mathbb{N}$ such that $\left|\left\{n \in M:\left|f_{n}(x)-f(x)\right| \geq \varepsilon_{n}\right\}\right| \leq k$ for all $x \in X$. Now $\left|\left|f_{n}\right|(x)-|f|(x)\right| \leq\left|f_{n}(x)-f(x)\right|$. Therefore $\mid\left\{n \in M:\left|\left|f_{n}\right|(x)-|f|(x)\right| \geq \varepsilon_{n} \mid \leq k\right.$ for each $x \in X$ i.e. $\left|f_{n}\right| \xrightarrow{T^{*}-\text { sue }}|f|$.

Now we show that if $f_{n} \xrightarrow{I^{*} \text {-sue }} f, g_{n} \xrightarrow{I^{*} \text {-sue }} g$ and $\alpha, \beta \in \mathbb{R}$, then $\alpha f_{n}+\beta g_{n} \xrightarrow{I^{*} \text {-sue }} \alpha f+\beta g$. To see this, by definition there exist $M_{f}, M_{g} \in F(\mathcal{I}), \sum_{n=1}^{\infty} \varepsilon_{n}<\infty, \sum_{n=1}^{\infty} \lambda_{n}<\infty$ and $n_{f}=n_{f}\left(\left\{\varepsilon_{n}\right\}\right), n_{g}=n_{g}\left(\left\{\lambda_{n}\right\}\right) \in \mathbb{N}$ such that

$$
\left|\left\{n \in M_{f}:\left|f_{n}(x)-f(x)\right| \geq \varepsilon_{n}\right\}\right| \leq n_{f}
$$

and

$$
\left|\left\{n \in M_{g}:\left|g_{n}(x)-g(x)\right| \geq \lambda_{n}\right\}\right| \leq n_{g} .
$$

Let us choose $\theta_{n}=\max \left\{2|\alpha| \varepsilon_{n}, 2|\beta| \lambda_{n}\right\}$ and $k=n_{f}+n_{g}$. Then we have

$$
\left|\left\{n \in M_{f} \cap M_{g}:\left|\alpha\left(f_{n}-f\right)(x)+\beta\left(g_{n}-g\right)(x)\right| \geq \theta_{n}\right\}\right| \leq k
$$

where

$$
\begin{aligned}
\sum_{n=1}^{\infty} \theta_{n} & =\sum_{n=1}^{\infty} \max \left\{2|\alpha| \varepsilon_{n}, 2|\beta| \lambda_{n}\right\} \\
& \leq \sum_{n=1}^{\infty}\left(2|\alpha| \varepsilon_{n}+2|\beta| \lambda_{n}\right) \\
& <\infty
\end{aligned}
$$

and $M_{f} \cap M_{g} \in F(\mathcal{I})$. Hence $\alpha f_{n}+\beta g_{n} \xrightarrow{I^{*}-\text { sue }} \alpha f+\beta g$.
Therefore $f, g \in \Phi^{I^{*} \text {-sue }}, f_{n} \xrightarrow{I^{*} \text {-sue }} f$ and $g_{n} \xrightarrow{I^{*} \text {-sue }} g$ implies that

$$
\frac{f_{n}+g_{n}}{2}+\frac{\left|f_{n}-g_{n}\right|}{2} \xrightarrow{I^{*}-\text { sue }} \frac{f+g}{2}+\frac{|f-g|}{2}=\max (f, g)
$$

i.e. $\max (f, g) \in \Phi^{I^{*} \text {-sue }}$. Similarly, $\min (f, g) \in \Phi^{I^{*} \text {-sue }}$. Thus $\Phi^{I^{*} \text {-sue }}$ is a lattice. It is easy to check the remaining assertions.

Acknowledgement. The authors are thankful to the referees for their several valuable suggestions which improved the presentation of the paper.

References

[1] G. Aumann, Reelle Funktionen, Berlin-Gottingen-Heidelberg, 1954.
[2] M. Balcerzak, K. Dems, A. Komisarski, Statistical convergence and ideal convergence for sequence of functions, J. Math. Anal. Appl. 328 (2007) 715-729.
[3] Z. Bukovská, Quasinormal convergence, Math. Slovaca 41 (1991) 137-146.
[4] Z. Bukovská, L. Bukovský, J. Ewert, Quasi-uniform convergence and \mathcal{L}-spaces, Real Anal. Exchange 18 (1992/1993) 321-329.
[5] A. Caserta, G. Di Maio, Lj.D.R. Kočinac, Statistical convergence in function spaces, Abstr. Appl. Anal. 2011, Art. ID 420419,11 pp, doi:10.1155/2011/420419.
[6] A. Caserta, Lj.D.R. Kočinac, On statistical exhaustiveness, Appl. Math. Lett. 25 1447-1451.
[7] Á. Császár, Function classes, compactifications, real compactifications, Ann. Univ. Budapest Eötvös Sect. Math. 17 (1974) $139-156$.
[8] Á. Császár, M. Laczkovich, Discrete and equal convergence, Studia Sci. Math. Hungar. 10 (1975) 463-472.
[9] Á. Császár, M. Laczkovich, Some remarks on discrete Baire Classes, Acta. Math. Acad. Sci. Hungar. 33 (1979) 51-70.
[10] P. Das, S.Kr. Ghosal, Some further results on I - Cauchy sequences and condition(AP), Comput. Math. Appl. 59 (2010) $2597-2600$.
[11] P. Das, P. Kostyrko, W. Wilczyński, P. Malik, I and I^{*}-convergence of double sequences, Math. Slovaca 58 (2008) 605-620.
[12] P. Das, S.K. Pal, S.Kr. Ghosal, Some further remarks on ideal summability in 2-normed spaces, Appl. Math. Lett. 24 (2011) 39-43.
[13] P. Das, S.Kr. Ghosal, S.K. Pal, Extending asymmetric convergence and Cauchy condition using ideals, Math. Slovacxa, to appear.
[14] P. Das, S.Kr. Ghosal, On I-Cauchy nets and completeness, Topology Appl. 157 (2010) 1152-1156.
[15] P. Das, S. Dutta, S.K. Pal, On \mathcal{I} and I^{*}-equal convergence and an Egoroff like theorem, to appear in Mat. Vesnik.
[16] R. Das, N. Papanastassiou, Some types of convergence of sequences of real valued functions, Real Anal. Exchange 29 (2003/04) 43-58.
[17] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951) 241-244.
[18] J.A. Fridy, On statistical convergence, Analysis 5 (1985) 301-313.
[19] F. Hausdorff, Set theory (Translation from original German to English of the third (1937) edition of Mengenlehre by F. Hausdorff), Chelsea Publishing Company, New York, N.Y.
[20] P. Kostyrko, T. Šalát, W. Wilczyński, I-convergence, Real Anal. Exchange 26 (2000/2001) 669-685.
[21] A. Komisarski, Pointwise I-convergence and I-convergence in measure of sequences of functions, J. Math. Anal. Appl. 340 (2008) 770-779.
[22] B.K. Lahiri, P. Das, \mathcal{I} and I^{*}-convergence in topological spaces, Math. Bohemica 130 (2005) 153-160.
[23] B.K. Lahiri, P. Das, I and I^{*}-convergence of nets, Real Anal. Exchange 33 (2008) 431-442.
[24] B.K. Lahiri, P. Das, Further results on \mathcal{I}-limit superior and limit inferior, Math. Comm. 8 (2003) 151-156.
[25] N. Mrȯzek, Ideal version of Egoroff's theorem for analytic P-ideals, J. Math. Anal. Appl. 349 (2009) 452-458.
[26] N. Papanastassiou, On a new type of convergence of sequences of functions, Atti Sem. Mat. Fis. Univ. Modena 50 (2002) $493-506$.
[27] N. Papanastassiou, P. Kiriakouli, Convergence for sequences of functions and an Egoroff type theorem, Positivity 7 (2003) 149-159.
[28] T. Šalát, On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980) 139-150.
[29] I.J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly 66 (1959) $361-375$.
[30] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2 (1951) 73-74.

[^0]: 2010 Mathematics Subject Classification. Primary 40G15; Secondary 40A99, 46A99
 Keywords. Ideal, filter, lattice, I^{*}-uniform discrete convergence, I^{*}-uniform equal convergence, I^{*}-strong uniform equal convergence

 Received: 10 May 2012; Revised: 15 September 2012; Accepted: 17 September 2012
 Communicated by Ljubiša D.R. Kočinac
 The first author is thankful to CSIR for granting the project No. 25(0186)/10/EMR-II during the tenure of which this work was done. The research of the second author was done when the author was a junior research fellow of the Council of Scientific and Industrial Research, HRDG, India.

 Email addresses: pratulananda@yahoo.co.in (Pratulananda Das), dutta.sudipta@ymail.com (Sudipta Dutta)

