Filomat 27:1 (2013), 157–164 DOI 10.2298/FIL1301157D

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

On some types of convergence of sequences of functions in ideal context

Pratulananda Das^a, Sudipta Dutta^b

^aDepartment of Mathematics, Jadavpur University, Jadavpur, Kolkata - 32, West Bengal, India ^bDepartment of Mathematics, Jadavpur University, Jadavpur, Kolkata - 32, West Bengal, India

Abstract. In this paper we consider the notion of I^* -uniform equal convergence introduced by Das, Dutta and Pal [15] and two related notions of convergence, namely, \bar{I}^* -uniform discrete and I^* -strong uniform equal convergence. We then investigate some lattice properties of Φ^{I^*-ue} , Φ^{I^*-ud} and Φ^{I^*-sue} , the classes of all functions defined on a non-empty set X, which are \hat{I}^* -uniform equal limits, I^* -uniform discrete limits and I^* -strong uniform equal limits of sequences of functions belonging to a class of functions Φ respectively.

1. Introduction

The concept of convergence of a sequence of real numbers had been extended to statistical convergence independently by Fast [17], Steinhaus [30] and Schoenberg [29]. A lot of developments have been made on this interesting notion of convergence and related areas after the pioneering works of Šalát [28] and Fridy [18]. The concept of I-convergence of real sequences was introduced by Kostyrko et. al.[20] as a generalization of statistical convergence using the notion of ideals. In [20], the concept of I^* -convergence was also introduced and a detailed study was carried out to explore its relation with *I*-convergence. For the last ten years several works have been done on *I*-convergence (see for example [10–13, 22–24]). Recently some significant investigations have been done on sequences of real functions by using the idea of statistical and *I*-convergence (see [2, 5, 6, 15, 21, 25]).

On the other hand in [8], Császár and Laczkovich introduced two new types of convergence of sequences of real valued functions under the name of Equal convergence and Discrete convergence(see also [7, 9]) and studied the lattice properties of these classes of functions. Later Bukovská [3] also studied equal convergence under the name of Quasi-normal convergence. In [26], Papanastassiou defined and studied the notions of uniform equal convergence, uniform discrete convergence and strong uniform equal convergence for sequences of real valued functions. Later Das and Papanastassiou [16] studied several properties of these classes of functions, in particular lattice properties following the line of investigation of [8]. Very recently the above notion of equal convergence was generalized using ideals and the notion of I^* -uniform equal convergence of sequences of real valued functions was introduced by Das, Dutta and Pal [15].

²⁰¹⁰ Mathematics Subject Classification. Primary 40G15; Secondary 40A99, 46A99

Keywords. Ideal, filter, lattice, I*-uniform discrete convergence, I*-uniform equal convergence, I*-strong uniform equal convergence

Received: 10 May 2012; Revised: 15 September 2012; Accepted: 17 September 2012 Communicated by Ljubiša D.R. Kočinac

The first author is thankful to CSIR for granting the project No. 25(0186)/10/EMR-II during the tenure of which this work was done. The research of the second author was done when the author was a junior research fellow of the Council of Scientific and Industrial Research, HRDG, India.

Email addresses: pratulananda@yahoo.co.in (Pratulananda Das), dutta.sudipta@ymail.com (Sudipta Dutta)

In the present paper we consider the notion of I^* -uniform equal convergence and introduce two related notions of convergence, namely, I^* -uniform discrete convergence and I^* -strong uniform equal convergence which is stronger than I^* -uniform equal convergence for sequence of real valued functions. We then investigate some lattice properties of these classes of functions mainly following the line of investigation of [8] and [16].

2. Preliminaries

Throughout the paper \mathbb{N} will denote the set of all positive integers. A family $I \subset 2^Y$ of subsets of a non-empty set *Y* is said to be an ideal in *Y* if $(i)A, B \in I$ implies $A \cup B \in I$; $(ii)A \in I, B \subset A$ implies $B \in I$, while an admissible ideal *I* of *Y* further satisfies $\{x\} \in I$ for each $x \in Y$. If *I* is a non-trivial proper ideal in *Y* (i.e. $Y \notin I, I \neq \{\emptyset\}$), then the family of sets $F(I) = \{M \subset Y : \text{there exists } A \in I : M = Y \setminus A\}$ is a filter in *Y*. It is called the filter associated with the ideal *I*.

Recall that a sequence $\{x_n\}_{n \in \mathbb{N}}$ of real numbers is said to be *I*-convergent to $x \in \mathbb{R}$ if for each $\varepsilon > 0$ the set $A(\varepsilon) = \{n \in \mathbb{N} : |x_n - x| \ge \varepsilon\} \in I$ [20]. The sequence $\{x_n\}_{n \in \mathbb{N}}$ is said to be *I**-convergent to $x \in \mathbb{R}$ if there is a set $M \in F(I)$, $M = \{m_1 < m_2 < ... < m_k < ...\}$ such that $\lim_{k \to \infty} x_{m_k} = x$ [20]. A sequence $\{x_n\}_{n \in \mathbb{N}}$ of real numbers is said to be *I*-divergent to ∞ or $-\infty$ if for any positive real number G, $\{n \in \mathbb{N} : x_n \le G\} \in I$ or $\{n \in \mathbb{N} : x_n \ge -G\} \in I$ [24] (though in [24] the terms *I*-convergent to $+\infty$ and *I*-convergent to $-\infty$ were used).

We now recall the following types of convergence introduced in [8] which we generalized using the notion of ideals in [15]. Let *X* be a non-empty set and let *f*, *f*_n, *n* = 1, 2, 3, ... be real valued functions defined on *X*. *f* is called the discrete limit of the sequence $\{f_n\}_{n \in \mathbb{N}}$ if for every $x \in X$, there exists $n_0 = n_0(x)$ such that $f(x) = f_n(x)$ for $n \ge n_0$. The terminology is motivated by the fact that this condition means precisely the convergence of the sequence $\{f_n\}_{n \in \mathbb{N}}$ to f(x) with respect to the discrete topology of the real line. *f* is said to be the equal limit of the sequence $\{f_n\}_{n \in \mathbb{N}}$ if there exists a sequence of positive numbers $\{\varepsilon_n\}_{n \in \mathbb{N}}$ tending to zero such that for every $x \in X$, there exists $n_0 = n_0(x)$ with $|f_n(x) - f(x)| < \varepsilon_n$ for $n \ge n_0$.

We say that *f* is the *I*-equal limit of the sequence $\{f_n\}_{n \in \mathbb{N}}$ if there exists a sequence $\{\varepsilon_n\}_{n \in \mathbb{N}}$ of positive reals with $I-\lim_{n\to\infty} \varepsilon_n = 0$ such that for any $x \in X$, the set $\{n \in \mathbb{N} : |f_n(x) - f(x)| \ge \varepsilon_n\} \in I$. *f* is said to be the I^* -equal limit of $\{f_n\}_{n \in \mathbb{N}}$ if there exists a set $M = \{m_1 < m_2 < ... < m_k < ...\} \in F(I)$ such that for all $x \in X$, f(x) is the equal limit of the subsequence $\{f_{m_k}(x)\}_{k \in \mathbb{N}}$.

We also recall the following ideas of convergence of a sequence of functions from [2]. A sequence $\{f_n\}_{n \in \mathbb{N}}$ of functions is said to be I-pointwise convergent to f if for all $x \in X$ the sequence $\{f_n(x)\}_{n \in \mathbb{N}}$ is I-convergent to f(x) and in this case we write $f_n \xrightarrow{I} f$. The sequence $\{f_n\}_{n \in \mathbb{N}}$ is said to be I-uniformly convergent to f if for any $\varepsilon > 0$ there exists $A \in I$ such that for all $n \in A^c$ and for all $x \in X$, $|f_n(x) - f(x)| < \varepsilon$. f is said to be the I^* -uniform limit of $\{f_n\}_{n \in \mathbb{N}}$ if there exists a set $M = \{m_1 < m_2 < ... < m_k < ...\} \in F(I)$ such that for all $x \in X$, $|f_n(x)| < \varepsilon$.

3. Main results

We first recall the following definition from the recent work of Das, Dutta and Pal [15].

Definition 3.1. $\{f_n\}_{n\in\mathbb{N}}$ is said to be \mathcal{I}^* -uniformly equally convergent to f if there exists a sequence $\{\varepsilon_n\}_{n\in\mathbb{N}}$ of positive reals with $\lim_{n} \varepsilon_n = 0$, a set $M = M(\{\varepsilon_n\}) \in F(\mathcal{I})$ and $k = k(\{\varepsilon_n\}) \in \mathbb{N}$ such that $|\{n \in M : |f_n(x) - f(x)| \ge \varepsilon_n\}|$ is at most $k = k(\{\varepsilon_n\})$ for all $x \in X$. In this case we write $f_n \xrightarrow{\mathcal{I}^* - ue} f$.

Clearly I^* -equal convergence is weaker than I^* -uniform equal convergence which is again weaker than I^* -uniform convergence.

Example 3.2. Let I be an admissible ideal of \mathbb{N} and $I \neq I_{fin}$, the ideal of all finite subsets of \mathbb{N} . Then I must contain an infinite set A. Take a pairwise disjoint family $\{A_n\}_{n \in \mathbb{N} \setminus A}$ of non-empty subsets of \mathbb{R} . Let $\{f_n\}_{n \in \mathbb{N}}$ be the sequence of functions on \mathbb{R} defined by

$$f_n = \chi_{A_n} \text{ for all } n \in \mathbb{N} \setminus A$$
$$= 1 \text{ for all } n \in A.$$

Now clearly $\sup_{x \in \mathbb{R}} |f_n(x)| = 1$ for all *n* and so $\{f_n\}_{n \in \mathbb{N}}$ cannot converge \mathcal{I}^* -uniformly to the constant function

 $f \equiv 0$. But since for any sequence $\{\varepsilon_n\}_{n \in \mathbb{N}}$ of positive reals with $\lim_n \varepsilon_n = 0$, the set $\{n \in \mathbb{N} \setminus A : f_n(x) \ge \varepsilon_n\}$ has cardinality at most 1 for all $x \in \mathbb{R}$, so $\{f_n\}_{n \in \mathbb{N}}$ converges I^* -uniformly equally to $f \equiv 0$. Clearly $\{f_n\}_{n \in \mathbb{N}}$ does not converge uniformly equally to $f \equiv 0$.

Example 3.3. Consider the intervals of the form $[m, m + \frac{1}{m}]$, j = 1, 2, ..., m - 1 for each $m \in \mathbb{N}$ and $\{f_i\}_{i \in \mathbb{N}}$ be the enumeration of the characteristic functions of these intervals. Let $A \in I$. Then $M = \mathbb{N} \setminus A \in F(I)$ and so M must be infinite (since I is an admissible ideal). Let $M = \{n_1 < n_2 < n_3 < ...\}$. Now consider the sequence $\{g_k\}_{k \in \mathbb{N}}$ of functions on \mathbb{R}

$$g_k = 1 \text{ for all } k \in A$$

 $g_{n_i} = f_i \text{ for all } i \in \mathbb{N}.$

It is now easy to see that $\{g_k\}_{k \in \mathbb{N}}$ converges \mathcal{I}^* -equally to zero function. But if $\lim_n \varepsilon_n = 0$ for a given sequence $\{\varepsilon_n\}_{n \in \mathbb{N}}$, then $|\{n \in \mathbb{N} \setminus A : |g_n(x)| \ge \varepsilon_n|\}| = x - 1$ for each $x \in \mathbb{N}$ which increases with x and also these n's overlap the whole set $\mathbb{N} \setminus A$ as x runs over \mathbb{N} . Hence $\{g_k\}_{k \in M}$ cannot converge \mathcal{I}^* -uniformly equally to $f \equiv 0$.

We first observe the following equivalent condition for I^* -uniform equal convergence.

Theorem 3.4. Let $f_n, f: X \to \mathbb{R}$, $n \in \mathbb{N}$. Then $f_n \xrightarrow{I^* - ue} f$ if and only if there exists a sequence $\{\rho_n\}_{n \in \mathbb{N}}$ of positive integers *I*-divergent to ∞ such that

$$\rho_n | f_n - f | \xrightarrow{I^* - ue} 0.$$

Proof. Suppose that $f_n \xrightarrow{I^*-ue} f$. Then there exists a sequence $\{\varepsilon_n\}_{n \in \mathbb{N}}$ of positive reals with $\lim_n \varepsilon_n = 0$, a set $M = M(\{\varepsilon_n\}) \in F(I)$ and $k = k(\{\varepsilon_n\}) \in \mathbb{N}$ such that

$$\{n \in M : |f_n(x) - f(x)| \ge \varepsilon_n\} \le k \text{ for all } x \in X.$$
(1)

Now, define a sequence $\{\rho_n\}_{n \in \mathbb{N}}$ as

$$\rho_n = \left[\frac{1}{\sqrt{\varepsilon_n}}\right] , n \in M$$
$$= 1 , n \notin M.$$

Obviously $\{\rho_n\}_{n \in \mathbb{N}}$ is an *I*-divergent to ∞ . Hence from (1)

$$|\{n \in M : \rho_n | f_n(x) - f(x)| \ge \sqrt{\varepsilon_n}\}| \le k \text{ for all } x \in X$$

which implies $\rho_n | f_n - f | \xrightarrow{I^* - ue} 0$.

Conversely, if $\rho_n | f_n - f | \xrightarrow{I^* - ue} 0$ where $\{\rho_n\}_{n \in \mathbb{N}}$ is a sequence of positive integers *I*-divergent to ∞ , then there exists a sequence $\{\lambda_n\}_{n \in \mathbb{N}}$ of positive reals with $\lim_n \lambda_n = 0$ and $M = M(\{\lambda_n\}) \in F(I)$ and $k = k(\{\lambda_n\}) \in \mathbb{N}$ such that $|\{n \in M : \rho_n | f_n(x) - f(x)| \ge \lambda_n\}| \le k$ for all $x \in X$. Define a sequence $\{\theta_n\}_{n \in \mathbb{N}}$ by

$$\theta_n = \frac{\lambda_n}{\rho_n} , n \in M$$
$$= \frac{1}{n} , n \notin M.$$

Then $\lim_{n \to \infty} \theta_n = 0$ and $|\{n \in M : |f_n(x) - f(x)| \ge \theta_n\}| \le k$ for all $x \in X$. This completes the proof. \Box

Lemma 3.5. Let $f_n: X \to \mathbb{R}$, $n \in \mathbb{N}$. If $f_n \xrightarrow{I^* - ue} 0$, then $f_n^2 \xrightarrow{I^* - ue} 0$.

Proof. By definition, there exist a sequence $\{\varepsilon_n\}_{n \in \mathbb{N}}$ of positive reals with $\lim_n \varepsilon_n = 0$, a set $M = M(\{\varepsilon_n\}) \in F(I)$ and $k = k(\{\varepsilon_n\}) \in \mathbb{N}$ such that

$$|\{n \in M : |f_n(x)| \ge \varepsilon_n\}| \le k \text{ for all } x \in X.$$

Then we have

 $|\{n \in M : |f_n(x)|^2 \ge \varepsilon_n^2\}| \le k \text{ for all } x \in X.$

and so

 $|\{n \in M : |f_n^2(x)| \ge \varepsilon_n^2\}| \le k \text{ for all } x \in X.$

Therefore $f_n^2 \xrightarrow{I^* - ue} 0.$

Lemma 3.6. Let $f_n, f: X \to \mathbb{R}$, $n \in \mathbb{N}$. If f is bounded and $f_n \xrightarrow{I^* - ue} f$, then $f_n.f \xrightarrow{I^* - ue} f^2$.

Proof. Let *B* be a positive real number such that $|f(x)| \leq B$ for all $x \in X$. Since $f_n \xrightarrow{T^* - ue} f$, there exist a sequence $\{\varepsilon_n\}_{n \in \mathbb{N}}$ of positive reals with $\lim_{n \to \infty} \varepsilon_n = 0$, a set $M = M(\{\varepsilon_n\}) \in F(I)$ and $k = k(\{\varepsilon_n\}) \in \mathbb{N}$ such that

$$|\{n \in M : |f_n(x) - f(x)| \ge \varepsilon_n\}| \le k \text{ for all } x \in X.$$

Since $|f(x)||f_n(x) - f(x)| \ge |(f_n \cdot f)(x) - f^2(x)|$, we have

 $\{n \in M : |(f_n \cdot f)(x) - f^2(x)| \ge \varepsilon_n \cdot B\} \subseteq \{n \in M : |f(x)||f_n(x) - f(x)| \ge \varepsilon_n \cdot B\}$ $\subseteq \{n \in M : |f_n(x) - f(x)| \ge \varepsilon_n\}$

for each $x \in X$. Therefore $|\{n \in M : |(f_n \cdot f)(x) - f^2(x)| \ge \varepsilon_n \cdot B\}| \le k$ for all $x \in X$. This proves the result. \Box

Theorem 3.7. If $f_n \xrightarrow{I^* - ue} f$ and $g_n \xrightarrow{I^* - ue} g$ then $f_n \cdot g_n \xrightarrow{I^* - ue} f \cdot g$, where f and g are bounded.

Proof. Using Lemma 3.5, Lemma 3.6 and writing $f_n g_n = \frac{(f_n + g_n)^2 - (f_n - g_n)^2}{4}$ we can deduce that $f_n g_n \xrightarrow{I^* - ue} f.g.$

Let Φ be an arbitrary class of functions defined on a non-empty set *X*. We denote by Φ^{I^*-ue} , the class of all functions defined on *X*, which are I^* -uniform equal limits of sequences of functions belonging to Φ . For any class of functions Φ on *X* we first recall the following definitions from [9].

Definition 3.8. (*a*) Φ is called a *lattice* if Φ contains all constants and $f, g \in \Phi$ implies $\max(f, g) \in \Phi$ and $\min(f, g) \in \Phi$.

(*b*) Φ is called a *translation lattice* if it is a lattice and $f \in \Phi, c \in \mathbb{R}$ implies $f + c \in \Phi$.

(c) Φ is called a *congruence lattice* if it is a translation lattice and $f \in \Phi$ implies $-f \in \Phi$.

(*d*) Φ is called a *weakly affine lattice* if it is a congruence lattice and there is a set $C \subset (0, \infty)$ such that C is not bounded and $f \in \Phi$, $c \in C$ implies $cf \in \Phi$.

(*e*) Φ is called an *affine lattice* if it is a congruence lattice and $f \in \Phi$, $c \in \mathbb{R}$ implies $cf \in \Phi$.

(*f*) Φ is called a *subtractive lattice* if it is a lattice and $f, g \in \Phi$ implies $f - g \in \Phi$.

(*g*) Φ is called an *ordinary class* if it is a subtractive lattice, $f, g \in \Phi$ implies $f.g \in \Phi$ and $f \in \Phi$, $f(x) \neq 0$, for all $x \in X$ implies $1/f \in \Phi$.

Theorem 3.9. Let Φ be a class of functions on X. If Φ is a lattice, a translation lattice, a congruence lattice, a weakly affine lattice, an affine lattice or a subtractive lattice, then so is Φ^{I^*-ue} . Further if $f \in \Phi^{I^*-ue}$ is bounded, then $f^2 \in \Phi^{I^*-ue}$.

Proof. Let Φ be a lattice. Since Φ contains the constant functions, Φ^{I^*-ue} contains the constant functions. Let $f_n \xrightarrow{I^*-ue} f$. Then there exist a sequence $\{\varepsilon_n\}_{n \in \mathbb{N}}$ of positive reals with $\lim_n \varepsilon_n = 0$, a set $M = M(\{\varepsilon_n\}) \in F(I)$ and $k = k(\{\varepsilon_n\}) \in \mathbb{N}$ such that $|\{n \in M : |f_n(x) - f(x)| \ge \varepsilon_n\}| \le k$ for all $x \in X$. Now $||f_n|(x) - |f|(x)| \le |f_n(x) - f(x)|$. Therefore $|\{n \in M : ||f_n|(x) - |f|(x)| \ge \varepsilon_n\}| \le k$ for each $x \in X$ i.e. $|f_n| \xrightarrow{I^*-ue} |f|$.

Next we show that if $f_n \xrightarrow{I^*-ue} f$, $g_n \xrightarrow{I^*-ue} g$ and $\alpha, \beta \in \mathbb{R}$, then $\alpha f_n + \beta g_n \xrightarrow{I^*-ue} \alpha f + \beta g$. Indeed, by definition there exist $M_f, M_g \in F(I)$, $\lim_n \varepsilon_n = 0$, $\lim_n \lambda_n = 0$ and $n_f = n_f(\{\varepsilon_n\})$, $n_g = n_g(\{\lambda_n\}) \in \mathbb{N}$ such that

$$|\{n \in M_f : |f_n(x) - f(x)| \ge \varepsilon_n\}| \le n_j$$

and

$$|\{n \in M_q : |g_n(x) - g(x)| \ge \lambda_n\}| \le n_q.$$

Let us assume that $\theta_n = \max\{2|\alpha|\varepsilon_n, 2|\beta|\lambda_n\}$ and $k = n_f + n_g$. Hence we have

$$|\{n \in M_f \cap M_g : |\alpha(f_n - f)(x) + \beta(g_n - g)(x)| \ge \theta_n\}| \le k$$

where $M_f \cap M_g \in F(\mathcal{I})$ and $\lim_n \theta_n = 0$. Hence $\alpha f_n + \beta g_n \xrightarrow{\mathcal{I}^* - ue} \alpha f + \beta g$.

Next observe that if $f, g \in \Phi^{I^*-ue}$, $f_n \xrightarrow{I^*-ue} f$ and $g_n \xrightarrow{I^*-ue} g$, then, in view of above,

$$\frac{f_n+g_n}{2}+\frac{|f_n-g_n|}{2}\xrightarrow{I^*-ue}\frac{f+g}{2}+\frac{|f-g|}{2}=\max(f,g)$$

which implies that $\max(f, g) \in \Phi^{I^*-ue}$. Similarly we can show that $\min(f, g) \in \Phi^{I^*-ue}$. Thus Φ^{I^*-ue} is a lattice. The proofs of the remaining assertions are straightforward. The last assertion follows from Lemma 3.6. \Box

Theorem 3.10. Let Φ be an ordinary class of functions on X. Let $f \in \Phi^{I^*-ue}$ be bounded and $f(x) \neq 0$ for each $x \in X$. If $\frac{1}{f}$ is bounded on X, then $\frac{1}{f} \in \Phi^{I^*-ue}$.

Proof. Assume that $\frac{1}{f}$ is bounded on *X*. Then there exists a $\lambda > 0$ be such that $f^2(x) > \lambda$ for each $x \in X$. Since $f \in \Phi^{I^*-ue}$ and *f* is bounded then $f^2 \in \Phi^{I^*-ue}$. Hence there exist a sequence $\{f_n\}_{n\in\mathbb{N}}$ of Φ , a set $M \in F(I)$ and $k \in \mathbb{N}$ such that $|\{n \in M : |f_n(x) - f^2(x)| \ge \frac{1}{n^3}\}| \le k$ for all $x \in X$. Let $g_n(x) = \max\{f_n(x), \frac{1}{n}\}$ for $x \in X$. Then $g_n \in \Phi$ for each $n \in \mathbb{N}$. Therefore

$$|\{n \in M : g_n(x) = f_n(x), |g_n(x) - f^2(x)| \ge \frac{1}{n^3}\}| \le k$$

and

$$\{n \in M : g_n(x) = \frac{1}{n}, |g_n(x) - f^2(x)| \ge \frac{1}{n^3}\}$$

$$= \{n \in M : g_n(x) = \frac{1}{n}, g_n(x) - f^2(x) \ge \frac{1}{n^3}\}$$

$$\cup \{n \in M : g_n(x) = \frac{1}{n}, -g_n(x) + f^2(x) \ge \frac{1}{n^3}\}$$

$$\subseteq \{n \in M : f^2(x) \le \frac{1}{n} - \frac{1}{n^3}\} \cup \{n \in M : f^2(x) \ge f_n(x) + \frac{1}{n^3}\}$$

$$\subseteq \{n \in M : f^2(x) < \frac{1}{n}\} \cup \{n \in M : f^2(x) \ge f_n(x) + \frac{1}{n^3}\}$$

Therefore $|\{n \in M : g_n(x) = \frac{1}{n}, |g_n(x) - f^2(x)| \ge \frac{1}{n^3}\}| \le k' + k = k_1(\text{say}) \text{ where } k' = [\frac{1}{\lambda}] + 1.$ Hence

$$\{n \in M : |g_n(x) - f^2(x)| \ge \frac{1}{n^3}\} = \{n \in M : g_n(x) = f_n(x), |g_n(x) - f^2(x)| \ge \frac{1}{n^3}\}$$
$$\cup \{n \in M : g_n(x) = \frac{1}{n}, |g_n(x) - f^2(x)| \ge \frac{1}{n^3}\}.$$

This implies that $|\{n \in M : |g_n(x) - f^2(x)| \ge \frac{1}{n^3}\}| \le k_1 + k = k_2$ (say). Therefore

$$\begin{aligned} |\{n \in M : |\frac{1}{g_n(x)} - \frac{1}{f^2(x)}| \ge \frac{1}{n^3} \cdot n \cdot \frac{1}{\lambda}\}| &= |\{n \in M : \frac{|f^2(x) - g_n(x)|}{|g_n(x)||f^2(x)|} \ge \frac{1}{n^3} \cdot n \cdot \frac{1}{\lambda}\}| \\ &\le |\{n \in M : |g_n(x) - f^2(x)| \ge \frac{1}{n^3}\}| \\ &\le k_2. \end{aligned}$$

Hence $f^{-2} \in \Phi^{I^*-ue}$ and so $f.f^{-2} = f^{-1} \in \Phi^{I^*-ue}$. \Box

We now introduce the following notion.

Definition 3.11. $\{f_n\}_{n \in \mathbb{N}}$ is said to be \mathcal{I}^* -uniformly discretely convergent to f if there exist a set $M \in F(\mathcal{I})$ and a natural number $k \in \mathbb{N}$ such that $|\{n \in M : |f_n(x) - f(x)| > 0\}|$ is at most k for all $x \in X$. In this case we write $f_n \xrightarrow{I^*-ud} f$.

We denote by Φ^{I^*-ud} , the class of all functions defined on *X*, which are I^* -uniform discrete limits of sequences of functions belonging to Φ .

Now, we study some properties of the class Φ^{I^*-ud} .

Theorem 3.12. Let Φ be a class of functions on X. If Φ is a lattice, a translation lattice, a congruence lattice, a weakly affine lattice, an affine lattice or a subtractive lattice, then so is Φ^{I^*-ud} .

Proof. This theorem readily follows from Definition 3.11. \Box

Theorem 3.13. Let Φ be an ordinary class of functions on X. Then $f, g \in \Phi^{I^*-ud}$ implies $f.g \in \Phi^{I^*-ud}$. Also if $f \in \Phi^{I^*-ud}$ is such that $f(x) \neq 0$ for each $x \in X$ and $\frac{1}{f}$ is bounded on X, then $\frac{1}{f} \in \Phi^{I^*-ud}$.

Proof. Let $f, g \in \Phi^{I^*-ud}$. Then there exist sequences $\{f_n\}_{n \in \mathbb{N}}$ and $\{g_n\}_{n \in \mathbb{N}}$ in Φ such that $f_n \xrightarrow{I^*-ud} f$ and $g_n \xrightarrow{I^*-ud} g$. Then from definition, we can prove that $f_n.g_n \xrightarrow{I^*-ud} f.g$. Let $f \in \Phi^{I^*-ud}$ be such that $f(x) \neq 0$ for each $x \in X$ and $\frac{1}{f}$ is bounded on X. Choose $\mu > 0$ such that

Let $f \in \Phi$ be such that $f(x) \neq 0$ for each $x \in X$ and \overline{f} is bounded on X. Choose $\mu > 0$ such that $f^2(x) > \mu > 0$ for each $x \in X$. Let $\{f_n\}_{n \in \mathbb{N}}$ be a sequence in Φ such that $f_n \xrightarrow{I^* - ud} f$. Since Φ is an ordinary class, $f_n^2 \in \Phi$ for each $n \in \mathbb{N}$. Let $\{\lambda_n\}_{n \in \mathbb{N}}$ be a sequence of positive reals converging to zero and $g_n = \max\{f_n^2, \lambda_n\}$. Then $g_n \in \Phi$. Since $f_n \xrightarrow{I^* - ud} f$, then by definition

$$|\{n \in M : f_n(x) \neq f(x)\}| \le k \text{ for all } x \in X$$

which implies that

$$|\{n \in M : g_n(x) \neq \max\{f^2(x), \lambda_n\}\}| \le k \text{ for all } x \in X$$

i.e.,

$$\{n \in M : \frac{1}{g_n(x)} \neq \frac{1}{\max\{f^2(x), \lambda_n\}}\} \le k \text{ for all } x \in X.$$

$$(2)$$

Now since $\lim_{n} \lambda_n = 0$, there exists a $k' \in \mathbb{N}$ such that $\lambda_n < \mu$ for all $n \in M$ such that $n \ge k'$. Therefore (2) becomes

$$|\{n \in M : \frac{1}{q_n(x)} \neq \frac{1}{f^2(x)}\}| \le k + k' \text{ for each } x \in X.$$

Hence $f^{-2} \in \Phi^{I^*-ud}$ and consequently $f.f^{-2} = f^{-1} \in \Phi^{I^*-ud}$. \Box

Finally we introduce the following notion of convergence for a sequence of real valued functions.

Definition 3.14. $\{f_n\}_{n\in\mathbb{N}}$ is said to be \mathcal{I}^* -strongly uniformly equally convergent to f if there exist a sequence $\{\varepsilon_n\}_{n\in\mathbb{N}}$ of positive reals with $\sum_{n=1}^{\infty} \varepsilon_n < \infty$, a set $M = M(\{\varepsilon_n\}) \in F(\mathcal{I})$ and $k = k(\{\varepsilon_n\}) \in \mathbb{N}$ such that $|\{n \in M : |f_n(x) - f(x)| \ge \varepsilon_n\}|$ is at most $k = k(\{\varepsilon_n\})$ for all $x \in X$. In this case we write $f_n \xrightarrow{\mathcal{I}^* - sue} f$.

We denote by Φ^{I^*-sue} , the class of all I^* -strong uniform equal limits of a class of functions Φ defined on X.

Example 3.15. Let \mathcal{I} be a non-trivial proper admissible ideal. So there exists an infinite set $M \in F(\mathcal{I})$. Let $\{f_n\}_{n \in \mathbb{N}}$ be the sequence of functions on \mathbb{R} defined by

$$f_n(x) = \frac{1}{n}, n \in M$$
$$= 0, n \notin M$$

for all $x \in X$. Then $f_n \xrightarrow{I^* - ue} 0$ but $f_n \xrightarrow{I^* - sue} 0$.

From the definition and the above example it follows that I^* -strong uniform equal convergence is stronger than I^* -uniform equal convergence. As in the case of I^* -uniform equal convergence we can easily prove the following results.

Lemma 3.16. Let $f_n : X \to \mathbb{R}$, $n \in \mathbb{N}$. If $f_n \xrightarrow{I^* - sue} 0$, then $f_n^2 \xrightarrow{I^* - sue} 0$.

Lemma 3.17. Let $f_n, f: X \to \mathbb{R}$, $n \in \mathbb{N}$. If f is bounded and $f_n \xrightarrow{I^* - sue} f$, then $f_n.f \xrightarrow{I^* - sue} f^2$.

Theorem 3.18. If $f_n \xrightarrow{I^* - sue} f$ and $g_n \xrightarrow{I^* - sue} g$ then $f_n \cdot g_n \xrightarrow{I^* - sue} f \cdot g$, where f and g are bounded.

Theorem 3.19. Let Φ be a class of functions on X. If Φ is a lattice, a translation lattice, a congruence lattice, a weakly affine lattice, an affine lattice or a subtractive lattice, then so is Φ^{I^*-sue} .

Proof. Let Φ be a lattice. Since Φ contains the constant functions, Φ^{I^*-ue} also contains the constant functions. Let $f_n \xrightarrow{I^*-sue} f$. Then there exist a sequence $\{\varepsilon_n\}_{n\in\mathbb{N}}$ of positive reals with $\sum_{n=1}^{\infty} \varepsilon_n < \infty$, a set $M = M(\{\varepsilon_n\}) \in F(I)$ and $k = k(\{\varepsilon_n\}) \in \mathbb{N}$ such that $|\{n \in M : |f_n(x) - f(x)| \ge \varepsilon_n\}| \le k$ for all $x \in X$. Now $||f_n|(x) - |f|(x)| \le |f_n(x) - f(x)|$. Therefore $|\{n \in M : ||f_n|(x) - |f|(x)| \ge \varepsilon_n| \le k$ for each $x \in X$ i.e. $|f_n| \xrightarrow{I^*-sue} |f|$.

Now we show that if $f_n \xrightarrow{I^*-sue} f$, $g_n \xrightarrow{I^*-sue} g$ and $\alpha, \beta \in \mathbb{R}$, then $\alpha f_n + \beta g_n \xrightarrow{I^*-sue} \alpha f + \beta g$. To see this, by definition there exist $M_f, M_g \in F(I)$, $\sum_{n=1}^{\infty} \varepsilon_n < \infty$, $\sum_{n=1}^{\infty} \lambda_n < \infty$ and $n_f = n_f(\{\varepsilon_n\})$, $n_g = n_g(\{\lambda_n\}) \in \mathbb{N}$ such that

$$|\{n \in M_f : |f_n(x) - f(x)| \ge \varepsilon_n\}| \le n_f$$

and

$$|\{n \in M_g : |g_n(x) - g(x)| \ge \lambda_n\}| \le n_g.$$

Let us choose $\theta_n = \max\{2|\alpha|\varepsilon_n, 2|\beta|\lambda_n\}$ and $k = n_f + n_g$. Then we have

$$|\{n \in M_f \cap M_q : |\alpha(f_n - f)(x) + \beta(g_n - g)(x)| \ge \theta_n\}| \le k$$

where

$$\sum_{n=1}^{\infty} \theta_n = \sum_{n=1}^{\infty} \max\{2|\alpha|\varepsilon_n, 2|\beta|\lambda_n\}$$
$$\leq \sum_{n=1}^{\infty} (2|\alpha|\varepsilon_n + 2|\beta|\lambda_n)$$
$$< \infty$$

and $M_f \cap M_g \in F(\mathcal{I})$. Hence $\alpha f_n + \beta g_n \xrightarrow{I^* - sue} \alpha f + \beta g$. Therefore $f, g \in \Phi^{I^* - sue}$, $f_n \xrightarrow{I^* - sue} f$ and $g_n \xrightarrow{I^* - sue} g$ implies that

$$\frac{f_n+g_n}{2}+\frac{|f_n-g_n|}{2}\xrightarrow{I^*-sue} \frac{f+g}{2}+\frac{|f-g|}{2}=\max(f,g)$$

i.e. $\max(f,g) \in \Phi^{I^*-sue}$. Similarly, $\min(f,g) \in \Phi^{I^*-sue}$. Thus Φ^{I^*-sue} is a lattice. It is easy to check the remaining assertions. \Box

Acknowledgement. The authors are thankful to the referees for their several valuable suggestions which improved the presentation of the paper.

References

- [1] G. Aumann, Reelle Funktionen, Berlin-Gottingen-Heidelberg, 1954.
- [2] M. Balcerzak, K. Dems, A. Komisarski, Statistical convergence and ideal convergence for sequence of functions, J. Math. Anal. Appl. 328 (2007) 715–729.
- [3] Z. Bukovská, Quasinormal convergence, Math. Slovaca 41 (1991) 137–146.
- [4] Z. Bukovská, L. Bukovský, J. Ewert, Quasi-uniform convergence and *L*-spaces, Real Anal. Exchange 18 (1992/1993) 321–329.
- [5] A. Caserta, G. Di Maio, Lj.D.R. Kočinac, Statistical convergence in function spaces, Abstr. Appl. Anal. 2011, Art. ID 420419, 11 pp, doi:10.1155/2011/420419.
- [6] A. Caserta, Lj.D.R. Kočinac, On statistical exhaustiveness, Appl. Math. Lett. 25 1447–1451.
- [7] Á. Császár, Function classes, compactifications, real compactifications, Ann. Univ. Budapest Eötvös Sect. Math. 17 (1974) 139–156.
- [8] Á. Császár, M. Laczkovich, Discrete and equal convergence, Studia Sci. Math. Hungar. 10 (1975) 463–472.
- [9] Á. Császár, M. Laczkovich, Some remarks on discrete Baire Classes, Acta. Math. Acad. Sci. Hungar. 33 (1979) 51-70.
- [10] P. Das, S.Kr. Ghosal, Some further results on *I* Cauchy sequences and condition(AP), Comput. Math. Appl. 59 (2010) 2597–2600.
- [11] P. Das, P. Kostyrko, W. Wilczyński, P. Malik, I and I*-convergence of double sequences, Math. Slovaca 58 (2008) 605–620.
- [12] P. Das, S.K. Pal, S.Kr. Ghosal, Some further remarks on ideal summability in 2-normed spaces, Appl. Math. Lett. 24 (2011) 39–43.
- [13] P. Das, S.Kr. Ghosal, S.K. Pal, Extending asymmetric convergence and Cauchy condition using ideals, Math. Slovacxa, to appear.
- [14] P. Das, S.Kr. Ghosal, On *I*-Cauchy nets and completeness, Topology Appl. 157 (2010) 1152–1156.
- [15] P. Das, S. Dutta, S.K. Pal, On *I* and *I**-equal convergence and an Egoroff like theorem, to appear in Mat. Vesnik.
- [16] R. Das, N. Papanastassiou, Some types of convergence of sequences of real valued functions, Real Anal. Exchange 29 (2003/04) 43–58.
- [17] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951) 241-244.
- [18] J.A. Fridy, On statistical convergence, Analysis 5 (1985) 301-313.
- [19] F. Hausdorff, Set theory (Translation from original German to English of the third (1937) edition of Mengenlehre by F. Hausdorff), Chelsea Publishing Company, New York, N.Y.
- [20] P. Kostyrko, T. Šalát, W. Wilczyński, I-convergence, Real Anal. Exchange 26 (2000/2001) 669-685.
- [21] A. Komisarski, Pointwise *I*-convergence and *I*-convergence in measure of sequences of functions, J. Math. Anal. Appl. 340 (2008) 770–779.
- [22] B.K. Lahiri, P. Das, I and I*-convergence in topological spaces, Math. Bohemica 130 (2005) 153–160.
- [23] B.K. Lahiri, P. Das, *I* and *I**-convergence of nets, Real Anal. Exchange 33 (2008) 431–442.
- [24] B.K. Lahiri, P. Das, Further results on *I*-limit superior and limit inferior, Math. Comm. 8 (2003) 151–156.
- [25] N. Mrözek, Ideal version of Egoroff's theorem for analytic P-ideals, J. Math. Anal. Appl. 349 (2009) 452-458.
- [26] N. Papanastassiou, On a new type of convergence of sequences of functions, Atti Sem. Mat. Fis. Univ. Modena 50 (2002) 493–506.
- [27] N. Papanastassiou, P. Kiriakouli, Convergence for sequences of functions and an Egoroff type theorem, Positivity 7 (2003) 149–159.
- [28] T. Šalát, On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980) 139–150.
- [29] I.J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly 66 (1959) 361–375.
- [30] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2 (1951) 73–74.