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Abstract. Let π be a projective representation of a countable discrete group G on a Hilbert space H. If the
set Bπ of Bessel vectors for π is dense in H, then for any vector x ∈ H, the analysis operator θx makes sense
as a densely defined operator from Bπ to l2(G)-space. If a projection e ∈ M is equivalent to a projection
f1 ∈ M with f1 ≤ f ∈ M, then we write e - f . Let Px (resp. Py) be the orthogonal projection from ℓ2(G)
onto [θx(Bπ)] (resp. [θy(Bπ)]). Han and Larson have proved the duality properties of projective unitary
representations, i.e. Px ≤ Py is equivalent to Qx ≤ Qy. In this paper we prove that a similar result is true
in the sense of von Neumann equivalence of projections, i.e. Px - Py in λ(G)′ is equivalent to Qx - Qy in
π(G)′′.

1. Introduction

Frame theory for special systems, including wavelet systems and Gabor systems, has close connections
with group representations. The aim of this article is to give a general framework for exploring certain
of these connections. The well-known (Ron-Shen) duality theorem (see Section 2) reveals the connection
between the frame property of a Gabor family (built on a time-frequency lattice) and the Riesz sequence
property of the associated Gabor family (built on the adjoint lattice). Han and Larson have presented
some results on a duality property for orthogonal (that is, strongly disjoint) and weakly equivalent frame-
generator vectors for group representations and, more generally, projective unitary representations in [1].
This duality theorem also indicates some duality connections between the so-called orthogonality or strong
disjointness of Gabor families and the commutant of the Gabor operator system.

It is now very natural to ask whether we can extend the main duality property in [1] to von Neumann
algebras. This is a motivation of this paper. Our main results is Theorem 2.6. Here we use the method that
from special to general.

A projective unitary representation [2] π for a countable discrete group G is a mapping 1 → π(1) from
G into the group U(H) of all the unitary operators on a separable Hilbert space H such that π(1)π(h) =
µ(1, h)π(1h) for all 1, h ∈ G, where µ(1, h) is a scalar-valued function on G × G taking values in the circle
groupT. This function µ(1, h) is then called a multiplier of π. In this case we also say that π is a µ-projective
unitary representation. It is clear from the definition that we have
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(i) µ(11, 1213)µ(12, 13) = µ(1112, 13)µ(11, 12) for all 11, 12, 13 ∈ G,
(ii) µ(1, e) = µ(e, 1) = 1 for all 1 ∈ G, where e denotes the group unit of G.
Any function µ : G × G→ T satisfying (i)-(ii) above will be called a multiplier for G. It follows from (i)

and (ii) that we also have
(iii) µ(1, 1−1) = µ(1−1, 1) holds for all 1 ∈ G.
Typical examples of projective unitary representations are unitary group representation.
Similar to the group unitary representation case, the left and right regular projective representations

with a prescribed multiplier µ for G play important roles here. Let µ be a multiplier for G. For each 1 ∈ G,
we define

λ1xh = µ(1, h)x1h, h ∈ G,

and
r1xh = µ(h, 1−1)xh1−1 , h ∈ G,

where {x1 : 1 ∈ G} is the standard orthonormal basis for ℓ2(G). Clearly, λ1 and r1 are unitary operators on
ℓ2(G). Moreover, λ is a µ-projective unitary representation of G with multiplier µ(1, h) and r is a projective
unitary representation of G with multiplier µ(1, h). The representation λ and r are called the left regular
µ-projective representation and right regular µ-projective representation, respectively, of G. LetL and R be
the von Neumann algebras generated by λ and r, respectively. We summarize a few basic properties in the
following proposition:

Proposition [3] (i) The von Neumann algebra R is the commutant of L.
(ii) Both L and R are finite von Neumann algebras.
(iii) If for each e , u ∈ G, either {vuv−1 : v ∈ G} is a infinite set or {µ(vuv−1, v)µ(v,u) : v ∈ G} is a infinite

set, then both L and R are factor von Neumann algebras.
Since the basic techniques used in this paper involve von Neumann algebra theory, we first introduce

some notation in [4].
A von Neumann algebra M is a ∗-subalgebra of B(H) such that I ∈ M and M is closed in the weak

topology, where B(H) is the algebra of all bounded operators acting on a separable Hilbert space H. By the
double commutant theorem, a ∗-subalgebra M of B(H) is a von Neumann algebra if and only if M = M′′,
where M′ is the commutant of M. A von Neumann algebra is said to be finite if every isometry in the
algebra is unitary.

Two projections e and f in a von Neumann algebra M are said to be equivalent if there exists an element
u ∈ M with u∗u = e and uu∗ = f . we write this fact as e ∼ f . The projections e and f are called, respectively,
the initial projection and the final projection of u. If a projection e ∈ M is equivalent to a projection f1 ∈ M
with f1 ≤ f ∈ M, then we write e - f . Clearly, the relation e ∼ f is an equivalence relation. We shall also
use these notations for subspaces of the underlying Hilbert space H of M when M is represented on it. In
other words, ifM and N are ranges of projections e and f in M, respectively,M - Nmeans that e - f in M.

Recall that a frame for a Hilbert space H is a sequence {xn} in H with the property that there exist two
positive constants A,B > 0 such that

A∥x∥2 ≤
∑
n∈N

| < x, xn > |2 ≤ B∥x∥2, (1)

holds for every x ∈ H. The optimal constants (maximal for A and minimal for B) are called frame bounds.
The frame {xn} is called tight frame if A = B. When A = B = 1, {xn} is called a normalized tight frame. In the
case that (1) hold only for all the x ∈ span{xn}, then we say that {xn} is a frame sequence. If we only require
the right-hand side of the inequality (1), then {xn} is called a Bessel sequence.

Given a projective unitary representation π of a countable discrete group G on a Hilbert space H. A
vector ξ ∈ H is called a complete frame vector (resp. tight frame vector, normalized tight frame vector) for
π if {π(1)ξ : 1 ∈ G} (here we view this as a sequence indexed by G) is a frame (resp. tight frame,normalized
tight frame) for H, and is just called a frame vector for π if {π(1)ξ : 1 ∈ G} is a frame sequence. A Bessel
vector for π is a vector ξ ∈ H such that {π(1)ξ : 1 ∈ G} is Bessel. We will use Bπ to denote the set of all the
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Bessel vector of π and π(G) is the von Neumann algebra generated by {π(1) : 1 ∈ G}. Then Bπ is a linear
subspace invariant under π(G) and π(G)′.

For any projective representation π of a countable discrete group on a Hilbert space H and x ∈ H, the
analysis operator θx for x fromD(θx)(⊆ H) to ℓ2(G) is defined by

θx(y) =
∑
1∈G

< y, π(1)x > x1,

whereD(θx) = {y ∈ H :
∑
1∈G
| < y, π(1)x > |2 < ∞}.

Clearly Bπ ⊆ D(θx) holds for every x ∈ H. In fact:
For all ξ ∈ Bπ, we have

∑
1∈G
| < y, π(1)ξ > |2 ≤ B∥y∥2 for every y ∈ H, where B is a positive constant. So

∑
1∈G
| < ξ, π(1)x > |2 = ∑

1∈G
| < x, π(1)∗ξ > |2

=
∑
1∈G
| < x, π(1)−1ξ > |2 = ∑

1∈G
| < x, µ(1, 1−1)π(1−1)ξ > |2

=
∑
1∈G
| < µ(1, 1−1)x, π(1−1)ξ > |2 = ∑

1∈G
| < x, π(1−1)ξ > |2

≤ B∥x∥2 < +∞.
In the case thatBπ is dense in H, we have that θx is a densely defined and closable linear operator in [5].

Moreover, x ∈ Bπ if and only if θx is a bounded linear operator on H, which is equivalence to the condition
that D(θx) = H. Also, we have θ∗xx1 = π(1)x for all 1 ∈ G, and x is a normalized tight frame vector if and
only if θ∗xθx is a projection. Moreover, x is a complete frame vector (respectively, complete normalized tight
frame vector) if and only if θx is injective with closed range (respectively, isometry).

2. Main Results

Lemma 2.1[3],[5] Let π be a projective representation of a countable discrete group G on a Hilbert space
H such that Bπ is dense in H. Then for any x ∈ H, there exists ξ ∈ Bπ such that

(i) {π(1)ξ : 1 ∈ G} is a normalized tight frame for [π(G)x];
(ii) θξ(H) = [θx(Bπ)].
Lemma 2.2[1] Let π be a projective representation of a countable discrete group G on a Hilbert space H

such that Bπ is dense in H, and let x, y ∈ H. Then the following are equivalent:
(i) [θx(Bπ)] = [θy(Bπ)]
(ii) [π(G)′x] = [π(G)′y]
Lemma 2.3[1] Let π be a projective representation of a countable discrete group G on a Hilbert space H

such that Bπ is dense in H, and let x, y ∈ H. Then the following are equivalent:
(i) [θx(Bπ)] ⊆ [θy(Bπ)]
(ii) [π(G)′x] ⊆ [π(G)′y]
Let Px (resp. Py) be the orthogonal projection from ℓ2(G) onto [θx(Bπ)] (resp. [θy(Bπ)]), and let λ be the

left regular µ-projection representation of G, where µ is the multiplier of π. It is routine to check that both
[θx(Bπ)] and [θy(Bπ)]) are invariant under λ. In fact:

For all ξ ∈ Bπ, for every 1 ∈ G, we have

λ1(θx(ξ)) = λ1(
∑

h∈G
< ξ, π(h)x > xh)

=
∑

h∈G
< ξ, π(h)x > µ(1, h)x1h

=
∑

h∈G
< π(1)ξ, π(1)π(h)x > µ(1, h)x1h

=
∑

h∈G
< π(1)ξ, µ(1, h)π(1h)x > µ(1, h)x1h

=
∑

h∈G
< π(1)ξ, π(1h)x > x1h

= θx(π(1)ξ) ⊆ θx(Bπ).
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So Px,Py ∈ λ(G)′. Let Qx (resp. Qy) be the orthogonal projection from H onto [π(G)′x] (resp. [π(G)′x]),
so Qx,Qy ∈ π(G)′′ = π(G).

From Lemma 2.2 and Lemma 2.3 (i.e. Han’s results), we know that Px ≤ Py is equivalent to Qx ≤ Qy.
Then we begin to prove the main result.

Lemma 2.4[4] Suppose R is a von Neumann algebra acting on the Hilbert space H and x, y are in H.
Then [R′(x)] - [R′(y)] (resp. [R′(x)] % [R′(y)]) if and only if [R(x)] - [R(y)] (resp. [R(x)] % [R(y)]).

The following lemma is the main ingredient in proving the main result.
Lemma 2.5 Let π be a projective representation of a countable discrete group G on a Hilbert space H

such that Bπ is dense in H, and let x, y ∈ H. Then the following are equivalent:
(i) Px ∼ Py in λ(G)′,
(ii) Qx ∼ Qy in π(G)′′.
Proof. In π(G), by Lemma 2.4, we have [π(G)′x] ∼ [π(G)′y] is equivalent to [π(G)′′x] ∼ [π(G)′′y], i.e.

[π(G)′x] ∼ [π(G)′y] is equivalent to [π(G)x] ∼ [π(G)y]. So we let Q′x (resp. Q′y) be the orthogonal projection
from H onto [π(G)x] (resp. [π(G)y]). It suffices to prove Px ∼ Py is equivalent to Q′x ∼ Q′y.

Assume that Px ∼ Py, let u ∈ λ(G)′ be the partial isometry such that u∗u = Px, uu∗ = Py. For x ∈ H,
by Lemma 2.1, there exists ξ ∈ Bπ such that {π(1)ξ : 1 ∈ G} is a normalized tight frame for [π(G)x] and
θξ(H) = [θx(Bπ)]; For y ∈ H, there exists η ∈ Bπ such that {π(1)η : 1 ∈ G} is a normalized tight frame for
[π(G)y] and θη(H) = [θy(Bπ)]. So we have θξθ∗ξ = Px and θηθ∗η = Py. By the definition of projection, we also
have θ∗ξθξ = Q′x and θ∗ηθη = Q′y.

Let v = θ∗ηuθξ, then v∗ = θ∗ξu
∗θη. So

v∗v = θ∗ξu
∗θηθ

∗
ηuθξ = θ

∗
ξu
∗Pyuθξ = θ∗ξu

∗uu∗uθξ = θ∗ξPxθξ = θ
∗
ξθξ = Q′x.

In the fifth equality, we use the fact that Pxθξ(H) = θξ(H). The proof of vv∗ = Q′y is similar. So we have the
expected result Q′x ∼ Q′y.

By symmetry, the other hand is obvious.
Theorem 2.6 Let π be a projective representation of a countable discrete group G on a Hilbert space H

such that Bπ is dense in H, and let x, y ∈ H. Then the following are equivalent:
(i) Px - Py in λ(G)′,
(ii) Qx - Qy in π(G)′′.
Proof. (ii) ⇒ (i): Assume that Qx - Qy i.e. [π(G)′x] - [π(G)′y], then [π(G)′x] ∼ [π(G)′z] < [π(G)′y],

where z = Qy and Q is the projection (in π(G)) with range [π(G)′z]. By Lemma 2.2 and Lemma 2.3, we have
[θx(Bπ)] ∼ [θz(Bπ)] < [θy(Bπ)], so that Px - Py in λ(G)′.

(i) ⇒ (ii): If we are given that Px - Py in λ(G)′, so Px is equivalent to a subprojection P of Py where
P ∈ λ(G)′. Suppose the range of P is K1 which is contained in [θy(Bπ)]. Clearly [θx(Bπ)], [θy(Bπ)] are
invariant under λ. Thus we have Pxλ1 = λ1Px and Pyλ1 = λ1Py for all 1 ∈ G. Obviously PyP , 0, we say
that PyPxe , 0. In fact, since otherwise we would have PyPx1 = λ1PyPxe = 0 and so PyP = 0, where e is the
group unit of G.

For y ∈ H, by Lemma 2.1 there exists η ∈ Bπ such that {π(1)η : 1 ∈ G} is a normalized tight frame for
[π(G)y] and θη(H) = [θy(Bπ)]. Let z = θ∗ηPyPxe, then we have z ∈ Bπ and π(1)θ∗ηPyPxe = θ∗ηλ1PyPxe for all
1 ∈ G. In fact:

Since PyPxe ∈ [θy(Bπ)] = θη(H), so there exists x′ ∈ H such that PyPxe =
∑
1∈G
< x′, π(h)η > xh. Then

π(1)θ∗ηPyPxe = π(1)(
∑

h∈G
< x′, π(h)η > π(h)η)

=
∑

h∈G
< x′, π(h)η > π(1)π(h)η

=
∑

h∈G
µ(1, h) < x′, π(h)η > π(1h)η

= θ∗η(
∑

h∈G
µ(1, h) < x′, π(h)η > x1h)

= θ∗η(
∑

h∈G
< x′, π(h)η > λ1xh)

= θ∗ηλ1PyPxe.
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About z ∈ Bπ: for any y ∈ H,∑
1∈G
| < y, π(1)z > |2 = ∑

1∈G
| < y, π(1)θ∗ηPyPxe > |2

=
∑
1∈G
| < y, θ∗ηλ1PyPxe > |2 =

∑
1∈G
| < PPyθη(y), x1 > |2

= ∥PPyθη(y)∥2 ≤ ∥θη(y)∥2 ≤ ∥y∥2.

The last inequality is from the fact that θη is partial isometry.
Then for any ω ∈ H, we have

θz(ω) =
∑
1∈G
< ω,π(1)θ∗ηPyPxe > x1

=
∑
1∈G
< ω, θ∗ηλ1PyPxe > x1

=
∑
1∈G
< PPyθηω, x1 > x1

= PPyθη(ω) = Pθη(ω).

So K1 = θz(H) = [θz(Bπ)] (since z ∈ Bπ), so that P is the orthogonal projection from ℓ2(G) onto [θz(Bπ)].
Then [θx(Bπ)] ∼ [θz(Bπ)] < [θy(Bπ)]. So we have [π(G)′x] ∼ [π(G)′z] < [π(G)′y]. Therefore we get (ii).
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