ω-continuous multifunctions

İdris Zorlutuna ${ }^{\text {a }}$
${ }^{a}$ Cumhuriyet University, Faculty of Sciences, Department of Mathematics, 58140, Sivas, Turkey

Abstract

The purpose of this paper is to study ω-continuous multifunctions. Basic characterizations, preservation theorems and several properties concerning upper and lower ω-continuous multifunctions are investigated. Furthermore, some characterizations of ω-connectedness and its relations with ω-continuous multifunctions are given.

1. Introduction

The concepts of upper and lower continuity for multifunctions were firstly introduced by Berge [3]. After this work several authors have given the several weak and strong forms of continuity of multifunctions ($[1,4,5,8,10,11,16])$. On the other hand, a generalization of the notion of the classical open sets which has received much attention lately is the so-called ω-open sets. In this direction, we will introduce the concept of ω-continuous multifunctions and studied some propeties of ω-continuous multifunctions. Also we have obtained some results on ω-connectedness and its relations with ω-continuous multifunctions.

All through this paper, (X, τ) and (Y, σ) stand for topological spaces with no separation axioms assumed, unless otherwise stated. Let $A \subseteq X$, the closure of A and the interior of A will be denoted by $C l(A)$ and $\operatorname{Int}(A)$, respectively. Let (X, τ) be a space and let A be a subset of X. A point $x \in X$ is called a condensation point of A [12] if for each $U \in \tau$ with $x \in U$, the set $U \cap A$ is uncountable. A is called ω-closed [6] if it contains all its condensation points. The complement of an ω-closed set is called ω-open. These sets are characterized as follows [6]: a subset W of a topological space (X, τ) is an ω-open set if and only if for each $x \in W$, there exists $U \in \tau$ such that $x \in U$ and $U-W$ is countable. The ω-closure and ω-interior, that can be defined in a manner to $C l(A)$ and $\operatorname{Int}(A)$, respectively, will be denoted by $\omega C l(A)$ and $\omega \operatorname{Int}(A)$, respectively. Several characterizations and properties of ω-closed subsets were provided in [6, 7, 17]. We set $\omega O(X, x)=\left\{U: x \in U\right.$ and $\left.U \in \tau_{\omega}\right\}$

A multifunction $F: X \rightarrow Y$ is a point to set correspondence, and we always assume that $F(x) \neq \emptyset$ for every point $x \in X$. For each subset A of X and each subset B of Y, let $F(A)=\cup\{F(x): x \in A\}, F^{+}(B)=$ $\{x \in X: F(x) \subset B\}$ and $F^{-}(B)=\{x \in X: F(x) \cap B \neq \emptyset\}$. Then $F^{-}: Y \rightarrow P(X)$ and if $y \in Y$, then $F^{-}(y)=\{x \in X:$ $y \in F(x)\}$ where $P(X)$ be the collection of the subsets of X. Thus for $B \subseteq Y, F^{-}(B)=\cup\left\{F^{-}(y): y \in B\right\}$. F is said to be a surjection if $F(X)=Y$, or equivalently, if for each $y \in Y$, there exists an $x \in X$ such that $y \in F(x)$. A multifunction $F: X \rightarrow Y$ is called upper semi continuous [3], abbreviated as u.s.c., (resp. lower semi continuous [3], or l.s.c.) at $x \in X$ if for each open $V \subseteq Y$ with $F(x) \subset V($ resp. $F(x) \cap V \neq \emptyset)$, there is an open

[^0]neighbourhood U of x such that $F(U) \subseteq V$ (resp. $F(z) \cap V \neq \emptyset$ for all $z \in U)$. F is u.s.c. (resp. l.s.c.) if and only if it is u.s.c. (resp. l.s.c.) at each point of X. Then F is called semi continuous if and only if it is both u.s.c.and l.s.c. A multifunction $F: X \rightarrow Y$ is image-P if $F(x)$ has property P for every $x \in X$.

2. Characterizations

Definition 2.1. A multifunction $F: X \rightarrow Y$ is called
(a) upper ω-continuous (briefly, u. ω-c.) at a point $x \in X$ if for each open subset V of Y with $F(x) \subseteq V$, there is an ω-open set U containing x such that $F(U) \subseteq V$.
(b) lower ω-continuous (briefly, l. ω-c.) at a point $x \in X$ if for each open subset V of Y with $F(x) \cap V \neq \emptyset$, there is an ω-open set U containing x such that $F(z) \cap V \neq \emptyset$ for every point $z \in U$.
(c) ω-continuous at $x \in X$ if it is both $u . \omega$-c. and l. ω-c. at $x \in X$.
(d) ω-continuous if it is ω-continuous at each point $x \in X$.

The following examples show that u. ω-c. and $1 . \omega-\mathrm{c}$. are independent.
Example 2.2. Let $X=\mathbb{R}$ with the usual topology τ and let $Y=\{a, b, c\}$ with the topology $\sigma=\{\varnothing, Y,\{a\}\}$.
(a) Define a multifunction $F:(\mathbb{R}, \tau) \rightarrow(Y, \sigma)$ by $F(x)=\left\{\begin{array}{ll}\{a\} & ; x<0 \\ \{a, b\} & ; x=0 \\ \{c\} & ; x>0\end{array}\right.$. Then F is u. ω-c., but it is not 1. ω-c.
(b) Define a multifunction $F:(\mathbb{R}, \tau) \rightarrow(Y, \sigma)$ by $F(x)=\left\{\begin{array}{ll}\{a\} & ; x \leq 0 \\ \{a, c\} & ; x>0\end{array}\right.$. Then F is $1 . \omega$-c., but it is not u. ω-c.

Theorem 2.3. For a multifunction $F:(X, \tau) \rightarrow(Y, \sigma)$, the following statements are equivalent;
(1) F is l. $\omega-c$.;
(2) For each open subset V of $Y, F^{-}(V)$ is ω-open;
(3) For each closed subset K of $Y, F^{+}(K)$ is ω-closed;
(4) For any subset B of $Y, \omega C l\left(F^{+}(B)\right) \subseteq F^{+}(C l(B))$;
(5) For any subset B of $Y, F^{-}(\operatorname{Int}(B)) \subseteq \omega \operatorname{Int}\left(F^{-}(B)\right)$;
(6) For any subset A of $X, F(\omega C l(A)) \subseteq C l(F(A))$;
(7) $F:\left(X, \tau_{\omega}\right) \rightarrow(Y, \sigma)$ is l.s.c.

Proof. (1) \Leftrightarrow (2) It is obvious.
$(2) \Leftrightarrow(3)$ These follow from equality $F^{-}(Y \backslash K)=X \backslash F^{+}(K)$ for each subset K of Y.
$(3) \Rightarrow(4)$ Let B be any subset of Y. Then by (3) $F^{+}(C l(B))$ is ω-closed subset of X. Since $F^{+}(B) \subseteq F^{+}(C l(B))$, then $\omega C l\left(F^{+}(B)\right) \subseteq \omega C l\left(F^{+}(C l(B))\right)=F^{+}(C l(B))$.
$(4) \Leftrightarrow(5)$ These follow from the facts that $F^{-}(Y \backslash K)=X \backslash F^{+}(K), Y \backslash(C l(B))=\operatorname{Int}(Y \backslash B)$ for $B \subseteq Y$ and $X \backslash(\omega C l(A))=\omega \operatorname{Int}(X \backslash A)$ for each subset A of X.
$(5) \Rightarrow(6)$ Under the assumption (5), suppose (6) is not true i.e. for some $A \subseteq X, F(\omega C l(A)) \nsubseteq C l(F(A))$. Then there exists a $y_{0} \in Y$ such that $y_{0} \in F(\omega C l(A))$ but $y_{0} \notin C l(F(A))$. So $Y \backslash C l(F(A))$ is an open set containing y_{0}. By (5), we have $F^{-}(Y \backslash C l(F(A)))=F^{-}(\operatorname{Int}(Y \backslash C l(F(A)))) \subseteq \omega \operatorname{Int}\left(F^{-}(Y \backslash C l(F(A)))\right)$ and $F^{-}\left(y_{0}\right) \subseteq F^{-}(Y \backslash C l(F(A)))$. Since $F^{-}(Y \backslash C l(F(A))) \cap F^{+}(F(A))=\emptyset$ and $A \subset F^{+}(F(A))$, we have $F^{-}(Y \backslash C l(F(A))) \cap A=\emptyset$. Since $F^{-}(Y \backslash C l(F(A)))$ is ω-open set, clearly we have that $F^{-}(Y \backslash C l(F(A))) \cap \omega C l(A)=\emptyset$. On the other hand, because of $y_{0} \in F(\omega C l(A))$, we have $F^{-}\left(y_{0}\right) \cap \omega C l(A) \neq \emptyset$. But this is a contradiction with $F^{-}(Y \backslash C l(F(A))) \cap \omega C l(A)=\emptyset$. Thus $y \in F(\omega C l(A))$ implies $y \in C l(F(A))$. Consequently $\omega C l(F(A)) \subseteq C l(F(A))$.
$(6) \Rightarrow(3)$ Let $K \subseteq Y$ be a closed set. Since we always have $F\left(F^{+}(K)\right) \subset K, C l\left(F\left(F^{+}(K)\right)\right) \subseteq C l(K)$ and by (6), $F\left(\omega C l\left(F^{+}(K)\right)\right) \subseteq C l\left(F\left(F^{+}(K)\right)\right) \subseteq C l(K)=K$. Therefore, $\omega C l\left(F^{+}(K)\right) \subseteq F^{+}\left(F\left(\omega C l\left(F^{+}(K)\right)\right)\right) \subset F^{+}(K)$ and so $F^{+}(K)$ is ω-closed in X.
$(1) \Leftrightarrow(7)$ It is clear.

Theorem 2.4. For a multifunction $F:(X, \tau) \rightarrow(Y, \sigma)$, the following statements are equivalent;
(1) F is $u . \omega-c$.;
(2) For each open subset V of $Y, F^{+}(V)$ is ω-open;
(3) For each closed subset K of $Y, F^{-}(K)$ is ω-closed;
(4) $F:\left(X, \tau_{\omega}\right) \rightarrow(Y, \sigma)$ is u.s.c.;

The proof is similar to that of Theorem 2.3, and is omitted.
Definition 2.5. The net $\left(x_{\alpha}\right)_{\alpha \in I}$ is ω-convergent to x if for each ω-open set U containing x, there exists an $\alpha_{0} \in I$ such that $\alpha \geq \alpha_{0}$ implies $x_{\alpha} \in U$.

Theorem 2.6. The multifunction $F: X \rightarrow Y$ is l. ω-c. at $x \in X$ if and only if for each $y \in F(x)$ and for every net $\left(x_{\alpha}\right)_{\alpha \in I} \omega$-converging to x, there exists a subnet $\left(z_{\beta}\right)_{\beta \in \xi}$ of the net $\left(x_{\alpha}\right)_{\alpha \in I}$ and a net $\left(y_{\beta}\right)_{(\beta, V) \in \xi}$ in Y with $y_{\beta} \in F\left(z_{\beta}\right)$ is convergent to y.

Proof. (\Rightarrow) Suppose F is l. ω-c. at x_{0}. Let $\left(x_{\alpha}\right)_{\alpha \in I}$ be a net ω-converging to x_{0}. Let $y \in F\left(x_{0}\right)$ and V be any open set containing y. So we have $F\left(x_{0}\right) \cap V \neq \emptyset$. Since F is l. ω-c. at x_{0}, there exists an ω-open set U such that $x_{0} \in U \subseteq F^{-}(V)$. Since the net $\left(x_{\alpha}\right)_{\alpha \in I}$ is ω-convergent to x_{0}, for this U, there exists $\alpha_{0} \in I$ such that $\alpha \geq \alpha_{0}$ implies $x_{\alpha} \in U$. Therefore, we have the implication $\alpha \geq \alpha_{0} \Rightarrow x_{\alpha} \in F^{-}(V)$. For each open set $V \subseteq Y$ containing y, define the sets $I_{V}=\left\{\alpha_{0} \in I: \alpha \geq \alpha_{0} \Rightarrow x_{\alpha} \in F^{-}(V)\right\}$ and $\xi=\left\{(\alpha, V): \alpha \in I_{V}, y \in V\right.$ and V is open $\}$ and order " \geq " on ξ as follows: " $(\dot{\alpha}, \hat{V}) \geq(\alpha, V) \Leftrightarrow \dot{V} \subseteq V$ and $\alpha \geq \alpha$ ". Define $\varphi: \xi \longrightarrow I$, by $\varphi((\beta, V))=\beta$. Then φ is increasing and cofinal in I, so φ defines a subnet of $\left(x_{\alpha}\right)_{\alpha \in I}$. We denote the subnet $\left(z_{\beta}\right)_{(\beta, V) \in \xi}$. On the other hand, for any $(\beta, V) \in \xi$, if $\beta \geq \beta_{0} \Rightarrow x_{\beta} \in F^{-}(V)$ and we have $F\left(z_{\beta}\right) \cap V=F\left(x_{\beta}\right) \cap V \neq \phi$. Pick $y_{\beta} \in F\left(z_{\beta}\right) \cap V \neq \phi$. Then the net $\left(y_{\beta}\right)_{(\beta, V) \in \zeta}$ is convergent to y. To see this, let V_{0} be an open set containing y. Then there exists $\beta_{0} \in I$ such that $\varphi\left(\left(\beta_{0}, V_{0}\right)\right)=\beta_{0}$ and $y_{\beta_{0}} \in V$. If $(\beta, V) \geq\left(\beta_{0}, V_{0}\right)$ this means that $\beta \geq \beta_{0}$ and $V \subseteq V_{0}$. Therefore, $y_{\beta} \in F\left(z_{\beta}\right) \cap V=F\left(x_{\beta}\right) \cap V \subseteq F\left(x_{\beta}\right) \cap V_{0}$, so $y_{\beta} \in V_{0}$. Thus $\left(y_{\beta}\right)_{(\beta, V) \in \xi}$ is convergent to y.
(\Leftarrow) Suppose F is not l. ω-c. at x_{0}. Then there exists an open set $V \subseteq Y$ so that $x_{0} \in F^{-}(V)$ and for each ω-open set $U \subseteq X$ containing x_{0}, there is a point $x_{U} \in U$ for which $x_{U} \notin F^{-}(V)$. Let us consider the net $\left(x_{U}\right)_{U \in \omega O\left(X, x_{0}\right)}$. Obviously $\left(x_{U}\right)_{U \in \omega O\left(X, x_{0}\right)}$ is ω-convergent to x_{0}. Let $y_{0} \in F\left(x_{0}\right) \cap V$. By hypothesis, there is a subnet $\left(z_{w}\right)_{w \in W}$ of $\left(x_{U}\right)_{U \in \omega O\left(X, x_{0}\right)}$ and $y_{w} \in F\left(z_{w}\right)$ such that $\left(y_{w}\right)_{w \in W}$ is convergent to y_{0}. As $y_{0} \in V$ and $V \subseteq Y$ is an open set, there is $w_{0}^{\prime} \in W$ so that $w \geq w_{0}^{\prime}$ implies $y_{w} \in V$. On the other hand, $\left(z_{w}\right)_{w \in W}$ is a subnet of the net $\left(x_{U}\right)_{U \in \omega O\left(X, x_{0}\right)}$ and so there is a function $h: W \longrightarrow \omega O\left(X, x_{0}\right)$ such that $z_{w}=x_{h(w)}$. By the definition of the net $\left(x_{U}\right)_{U \in \omega O\left(X, x_{0}\right)}$, we have $F\left(z_{w}\right) \cap V=F\left(x_{h(w)}\right) \cap V=\emptyset$ and this means that $y_{w} \notin V$. This is a contradiction and so F is $1 . \omega-\mathrm{c}$. at x_{0}.

Theorem 2.7. The multifunction $F: X \rightarrow Y$ is l. ω-c. (resp. u. ω-c.) at $x \in X$ if and only if for each net $\left(x_{\alpha}\right)_{\alpha \in I}$ ω-convergent to x and for each open subset V of Y with $F(x) \cap V \neq \emptyset$ (resp. $F(x) \subseteq V)$, there is an $\alpha_{0} \in I$ such that $F\left(x_{\alpha}\right) \cap V \neq \emptyset\left(\right.$ resp. $\left.F\left(x_{\alpha}\right) \subseteq V\right)$ for all $\alpha \geq \alpha_{0}$.

Proof. We prove only for lower ω-continuity. The other is entirely analogous.
(\Rightarrow) Let $\left(x_{\alpha}\right)_{\alpha \in I}$ be a net which ω-converges to x in X and let V be any open set in Y such that $x \in F^{-}(V)$. Since F is l. ω-c. multifunction, it follows that there exists an ω-open set U in X containing x such that $U \subseteq F^{-}(V)$. Since $\left(x_{\alpha}\right) \omega$-converges to x, it follows that there exists an index $\alpha_{0} \in I$ such that $x_{\alpha} \in U$ for all $\alpha \geq \alpha_{0}$. So we obtain that $x_{\alpha} \in F^{-}(V)$ for all $\alpha \geq \alpha_{0}$. Thus, the net $\left(x_{\alpha}\right)$ is eventually in $F^{-}(V)$.
(\Leftarrow) Suppose that F is not l. ω-c. Then there is an open set V in Y with $x \in F^{-}(V)$ such that for each ω-open set U of X containing $x, x \in U \nsubseteq F^{-}(V)$ i.e. there is a $x_{U} \in U$ such that $x_{U} \notin F^{-}(V)$. Define $D=\left\{\left(x_{U}, U\right): U \in \omega O(X), x_{U} \in U, x_{U} \notin F^{-}(V)\right\}$. Now the order " \leq " defined by $\left(x_{U_{1}}, U_{1}\right) \leq\left(x_{U}, U\right) \Leftrightarrow U \subseteq U_{1}$ is a direction on D and g defined by $g: D \longrightarrow X, g\left(\left(x_{U}, U\right)\right)=x_{U}$ is a net on X. The net $\left(x_{U}\right)_{\left(x_{u}, U\right) \in D}$ is ω convergent to x. But $F\left(x_{U}\right) \cap V=\emptyset$ for all $\left(x_{U}, U\right) \in D$. This is a contradiction.

From the definitions, it is obvious that upper (lower) semi-continuity implies upper (lower) ω-continuity. But the converse is not true in general.

Example 2.8. Let $X=\mathbb{R}$ with the topology $\tau=\{\varnothing, \mathbb{R}, \mathbb{Q}\}$. Define a multifunction $F:(\mathbb{R}, \tau) \rightarrow(\mathbb{R}, \tau)$ by $F(x)=\left\{\begin{array}{ll}\mathbb{Q} & ; x \in \mathbb{R}-\mathbb{Q} \\ \mathbb{R}-\mathbb{Q} & ; x \in \mathbb{Q}\end{array}\right.$. Then F is u. ω-c. and l. ω-c. But it is neither u.s.c nor l.s.c.

Definition 2.9. ([17]) A space X is anti-locally countable if each non-empty open set is uncountable.
Corollary 2.10. Let X be an anti-locally countable space. Then the multifunction $F: X \rightarrow Y$ is $u(l) . \omega$-c iff $F u(l) . s . c$.
Recall that A multifunction $F: X \rightarrow Y$ is called open if for each open subset U of $X, F(U)$ is open in Y.
Definition 2.11. A multifunction $F: X \rightarrow Y$ is called
(a) ω-open if for each open subset U of $X, F(U)$ is ω-open in Y.
(b) pre- ω-open if for each ω-open subset U of $X, F(U)$ is ω-open in Y.

The proofs of the following two lemmas follow from the fact that $\tau \subseteq \tau_{\omega}$ and definitions.
Lemma 2.12. Let $F: X \rightarrow Y$ be a multifunction.
(1) If F is image-open, then F is open, ω-open;
(2) If F is image- ω-open, then F is both ω-open and pre- ω-open.

Lemma 2.13. Let $F: X \rightarrow Y$ be a multifunction.
(1) If F^{-}is image-open, then F l.co-c.;
(2) If F^{-}is image- ω-open, then F is l. ω-c.

Lemma 2.14. If $F: X \rightarrow Y$ is image-open and $u . \omega-c$., then $F^{-}(B)$ is ω-closed in X for any $B \subseteq Y$. In particular; F^{-} is image- ω-closed.

Proof. Let $x \in X-F^{-}(B)=F^{+}(Y-B)$. Then $F(x) \subseteq Y-B$. Since $F(x)$ is open and F is u. ω-c., $F^{+}(F(x))$ is an ω-open set in X and $x \in F^{+}(F(x)) \subseteq F^{+}(Y-B)=X-F^{-}(B)$. This shows that $X-F^{-}(B)$ is an ω-open and hence $F^{+}(B)$ is an ω-closed in X.

A multifunction $F: X \rightarrow Y$ is said to be have nonmingled point images [14] provided that for $x_{1}, x_{2} \in X$ with $x_{1} \neq x_{2}$, the image sets $F\left(x_{1}\right)$ and $F\left(x_{2}\right)$ are either disjoint or identical.

Note that for a multifunction F, F is image-nonmingled if and only if $F \circ F^{-} \circ F=F$ [14].
Theorem 2.15. Let $F: X \rightarrow Y$ be image-nonmingled such that F is either image-open and l. ω-c. or F^{-}image- ω-open. Then F is u. ω-c.

Proof. Let $x \in X$ and V be an open set with $F(x) \subseteq V$. Firstly, suppose that F is image-open and l. ω-c. Then $F^{-}(F(x))$ is ω-open in X and $x \in F^{-}(F(x))$. Put $U=F^{-}(F(x))$. Thus we have an ω-open set U containing x such that $F(U)=F\left(F^{-}(F(x))\right)=F(x) \subseteq V$ by above note. This shows that F is u. ω-c.

Now suppose that F^{-}is image- ω-open. Then $F^{-}(F(x))$ is an ω-open set in X containing x. On the other hand, by Lemma 2.13(2), F is $1 . \omega-c$. and proceed as above.
Theorem 2.16. Let $F: X \rightarrow Y$ be image-open, image-nonmingled and $u . \omega-c$. Then F is $l . \omega-c$.
Proof. Let $x \in X$ and V be an open set with $F(x) \cap V \neq \varnothing$. Then $F^{+}(F(x))$ is ω-open in X and $x \in F^{+}(F(x))$. Put $U=F^{+}(F(x))$. Thus we have an ω-open set U containing x such that if $z \in U$ then $F(z)=F(x)$ and $F(z) \cap V \neq \varnothing$. This shows that F is $1 . \omega$-c.

For a multifunction $F: X \rightarrow Y$, the graph multifunction $G_{F}: X \rightarrow X \times Y$ is defined as follows: $G_{F}(x)=\{x\} \times F(x)$ for every $x \in X$.

Lemma 2.17. ([10]) For a multifunction $F: X \rightarrow Y$, the following hold:
(1) $G_{F}^{+}(A \times B)=A \cap F^{+}(B)$,
(2) $G_{F}^{-}(A \times B)=A \cap F^{-}(B)$
for any subsets $A \subseteq X$ and $B \subseteq Y$.

Theorem 2.18. Let $F: X \rightarrow Y$ be an image-compact multifunction. Then the graph multifunction of F is $u . \omega-c$. if and only if F is $u . \omega-c$.

Proof. (\Rightarrow) Suppose that $G_{F}: X \rightarrow X \times Y$ is u. ω-c. Let $x \in X$ and V be any open set of Y containing $F(x)$. Since $X \times V$ is open in $X \times Y$ and $G_{F}(x) \subseteq X \times V$, there exists $U \in \omega O(X, x)$ such that $G_{F}(U) \subseteq X \times V$. By the previous lemma, we have $U \subseteq G_{F}^{+}(X \times V)=F^{+}(V)$ and $F(U) \subseteq V$. This shows that F is u. ω-c.
(\Leftarrow) Suppose that F is u. ω-c. Let $x \in X$ and W be any open set of $X \times Y$ containing $G_{F}(x)$. For each $y \in F(x)$, there exist open sets $U(y) \subseteq X$ and $V(y) \subseteq Y$ such that $(x, y) \in U(y) \times V(y) \subseteq W$. The family of $\{V(y): y \in F(x)\}$ is an open cover of $F(x)$. Since $F(x)$ is compact, it follows that there exists a finite number of points, says $y_{1}, y_{2}, \ldots, y_{n}$ in $F(x)$ such that $F(x) \subseteq\left\{V\left(y_{i}\right): i=1,2, \ldots, n\right\}$. Take $U=\cap\left\{U\left(y_{i}\right): i=1,2, \ldots, n\right\}$ and $V=\cup\left\{V\left(y_{i}\right): i=1,2, \ldots, n\right\}$. Then U and V are open sets in X and Y, respectively, and $\{x\} \times F(x) \subseteq U \times V \subseteq W$. Since F is u. ω-c., there exists $U_{0} \in \omega O(X, x)$ such that $F\left(U_{0}\right) \subseteq V$. By the previous lemma, we have $U \cap U_{0} \subseteq U \cap F^{+}(V)=G_{F}^{+}(U \times V) \subseteq G_{F}^{+}(W)$. Therefore, we obtain $U \cap U_{0} \in \omega O(X, x)$ and $G_{F}\left(U \cap U_{0}\right) \subseteq W$. This shows that G_{F} is u. ω-c.

Theorem 2.19. A multifunction $F: X \rightarrow Y$ is l. ω-c. if and only if the graph multifunction G_{F} is $l . \omega-c$.
Proof. (\Rightarrow) Suppose that F is l. ω-c. Let $x \in X$ and W be any open set of $X \times Y$ such that $x \in G_{F}^{-}(W)$. Since $W \cap(\{x\} \times F(x)) \neq \varnothing$, there exists $y \in F(x)$ such that $(x, y) \in W$ and hence $(x, y) \in U \times V \subseteq W$ for some open sets U and V of X and Y, respectively. Since $F(x) \cap V \neq \varnothing$, there exists $G \in \omega O(X, x)$ such that $G \subseteq F^{-}(V)$. By Lemma 2.17, $U \cap G \subseteq U \cap F^{-}(V)=G_{F}^{-}(U \times V) \subseteq G_{F}^{-}(W)$. Therefore, we obtain $x \in U \cap G \in \omega O(X, x)$ and hence G_{F} is $1 . \omega$-c.
(\Leftarrow) Suppose that G_{F} is $1 . \omega$-c. Let $x \in X$ and V be any open set of Y such that $x \in F^{-}(V)$. Then $X \times V$ is open in $X \times Y$ and $G_{F}(x) \cap(X \times V)=(\{x\} \times F(x)) \cap(X \times V)=\{x\} \times(F(x) \cap V) \neq \varnothing$. Since G_{F} is $1 . \omega$-c., there exists an ω-open set U containing x such that $U \subseteq G_{F}^{-}(X \times V)$. By Lemma 2.17, we have $U \subseteq F^{-}(V)$. This shows that F is $1 . \omega-\mathrm{c}$.

Lemma 2.20. ([17]) Let A be a subset of a space (X, τ). Then $\left(\tau_{\omega}\right)_{A}=\left(\tau_{A}\right)_{\omega}$.
Theorem 2.21. For a multifunction $F: X \rightarrow Y$, the following statements are true.
a) If F is $u(l) . \omega-c$. and $A \subseteq X$, then $\left.F\right|_{A}: A \rightarrow Y$ is $u(l) . \omega-c$.;
b) Let $\left\{A_{\alpha}: \alpha \in I\right\}$ be open cover of X. Then a multifunction $F: X \rightarrow Y$ is $u(l) . \omega-c$. iff the restrictions $\left.F\right|_{A_{\alpha}}: A_{\alpha} \rightarrow Y$ are $u(l) . \omega-c$. for every $\alpha \in I$.

The proof is obvious from the above lemma and we omit it.

3. Some applications

Theorem 3.1. Let F and G be u.w-c. and image-closed multifunctions from a topological space X to a normal topological space Y. Then the set $A=\{x: F(x) \cap G(x) \neq \varnothing\}$ is closed in X.

Proof. Let $x \in X-A$. Then $F(x) \cap G(x)=\varnothing$. Since F and G are image-closed multifunctions and Y is a normal space, then there exist disjoint open sets U and V containing $F(x)$ and $G(x)$, respectively. Since F and G are u. ω-c., then the sets $F^{+}(U)$ and $G^{+}(V)$ are ω-open and contain x. Put $W=F^{+}(U) \cap G^{+}(V)$. Then W is an ω-open set containing x and $W \cap A=\varnothing$. Hence, A is closed in X.

Definition 3.2. ([2]) A space X is said to be $\omega-T_{2}$ if for each pair of distinct points x and y in X, there exist $U \in \omega O(X, x)$ and $V \in \omega O(X, y)$ such that $U \cap V=\varnothing$.

Theorem 3.3. Let $F: X \rightarrow Y$ be an u. ω-c. multifunction and image-closed from a topological space X to a normal topological space Y and let $F(x) \cap F(y)=\varnothing$ for each distinct pair $x, y \in X$. Then X is an $\omega-T_{2}$ space.

Proof. Let x and y be any two distinct points in X. Then we have $F(x) \cap F(y)=\varnothing$. Since Y is a normal space, then there exists disjoint open sets U and V containing $F(x)$ and $F(y)$, respectively. Thus, $F^{+}(U)$ and $F^{+}(V)$ are disjoint ω-open sets containing x and y, respectively. Thus, X is $\omega-T_{2}$.

Definition 3.4. The graph $G(F)$ of the multifunction $F: X \rightarrow Y$ is ω-closed with respect to X if for each $(x, y) \notin$ $G(F)$, there exist an ω-open set U containing x and an open set V containing y such that $(U \times V) \cap G(F)=\emptyset$.

Definition 3.5. A subset A of a topological space X is called α-paracompact [15] if every open cover of A in X has a locally finite open refinement in X which covers A.

Theorem 3.6. If $F: X \rightarrow Y$ is u. ω-c. and image- α-paracompact multifunction into a Hausdorff space Y, then the graph $G(F)$ is ω-closed with respect to X.

Proof. Let $\left(x_{0}, y_{0}\right) \notin G(F)$. Then $y_{0} \notin F\left(x_{0}\right)$. Therefore, for every $y \in F\left(x_{0}\right)$, there exists an open set $V(y)$ and an open set $W(y)$ in Y containing y and y_{0} respectively, such that $V(y) \cap W(y)=\emptyset$. Then $\left\{V(y) \mid y \in F\left(x_{0}\right)\right\}$ is a open cover of $F\left(x_{0}\right)$, thus there is a locally finite open cover $\Psi=\left\{U_{\beta} \mid \beta \in \Delta\right\}$ of $F\left(x_{0}\right)$ which refines $\left\{V(y) \mid y \in F\left(x_{0}\right)\right\}$. So there exists an open neighborhood W_{0} of y_{0} such that W_{0} intersect only finitely many members $U_{\beta_{1}}, U_{\beta_{2}}, \ldots, U_{\beta_{n}}$ of Ψ. Chose finitely many points $y_{1}, y_{2}, \ldots, y_{n}$ of $F\left(x_{0}\right)$ such that $U_{\beta_{k}} \subset V\left(y_{k}\right)$ of each $1 \leq k \leq n$ and set $W=W_{0} \cap\left[\bigcap_{k=1}^{n} W\left(y_{k}\right)\right]$. Then W is an open neighborhood of y_{0} such that $W \cap(\cup \Psi)=\emptyset$. Since F is u. ω-c., then there exists an ω-open set U containing x_{0} such that $F(U) \subset \cup \Psi$. Therefore, we have that $(U \times W) \cap G(F)=\emptyset$. Thus, $G(F)$ is ω-closed set with respect to X.

In the above theorem, for upper ω-continuous multifunction F, if F is taken as a image-closed multifunction and Y is taken as a regular space, then we get also same result.

Definition 3.7. A space X is called ω-compact [2] if every ω-open cover of X has a finite subcover.
Theorem 3.8. Let $F: X \rightarrow Y$ be a image-compact and $u . \omega$-c. multifunction. If X is ω-compact and F is surjective, then Y is compact.

Proof. Let Φ be an open cover of Y. If $x \in X$, then we have $F(x) \subseteq \cup \Phi$. Thus Φ is an open cover of $F(x)$. Since $F(x)$ is compact, there exists a finite subfamily $\Phi_{n(x)}$ of Φ such that $F(x) \subseteq \cup \Phi_{n(x)}=V_{x}$. Then V_{x} is an open set in Y. Since F is u. ω-c., $F^{+}\left(V_{x}\right)$ is an ω-open set in X. Therefore, $\Omega=\left\{F^{+}\left(V_{x}\right): x \in X\right\}$ is an ω-open cover of X. Since X is ω-compact, there exists points $x_{1}, x_{2}, \ldots, x_{n} \in X$ such that $X \subset \cup\left\{F^{+}\left(V_{x_{i}}\right): x_{i} \in X, i=1,2, \ldots, n\right\}$. So we obtain $Y=F(X) \subseteq F\left(\cup\left\{F^{+}\left(V_{x_{i}}\right): i=1,2, \ldots, n\right\}\right) \subset \cup\left\{V_{x_{i}}: i=1,2, \ldots, n\right\} \subset \cup\left\{\Phi_{n\left(x_{i}\right)}: i=1,2, \ldots, n\right\}$. Thus Y is compact.

In [[6], Theorem 4.1], Hdeib showed that a space (X, τ) is Lindelöf if and only if $\left(X, \tau_{\omega}\right)$ is Lindelöf.
Theorem 3.9. Let $F:(X, \tau) \rightarrow(Y, \sigma)$ be an image-Lindelöf or image-compact and u. ω-c. multifunction. If X is Lindelöf and F is surjective, then Y is Lindelöf.

Proof. Let Φ be an open cover of Y. If $x \in X$, then we have $F(x) \subseteq \cup \Phi$. Thus Φ is an open cover of $F(x)$.
When $F(x)$ is Lindelöf, there exists a countable subfamily Φ_{x} of Φ such that $F(x) \subseteq \cup \Phi_{x}=V_{x}$. Then V_{x} is an open set in Y. Since F is u. ω-c., $F^{+}\left(V_{x}\right)$ is an ω-open set in X. Therefore, $\Omega=\left\{F^{+}\left(V_{x}\right): x \in X\right\}$ is an ω-open cover of X. By Theorem 4.1 of [6], there exists points $x_{1}, x_{2}, \ldots, x_{n}, \ldots \in X$ such that $X \subseteq \cup\left\{F^{+}\left(V_{x_{i}}\right): x_{i} \in X\right.$, $i=1,2, \ldots, n, \ldots\}$. So we obtain $Y=F(X) \subseteq F\left(\cup\left\{F^{+}\left(V_{x_{i}}\right): i=1,2, \ldots, n, \ldots\right\}\right) \subseteq \cup\left\{V_{x_{i}}: i=1,2, \ldots, n, \ldots\right\} \subseteq \cup\left\{\Phi_{x_{i}}\right.$: $i=1,2, \ldots, n, \ldots\}$. Thus Y is Lindelöf.

When $F(x)$ is compact, there exists a finite subfamily Φ_{x} of Φ such that $F(x) \subseteq \cup \Phi_{x}=V_{x}$. Then V_{x} is an open set in Y. Since F is u. ω-c., $F^{+}\left(V_{x}\right)$ is an ω-open set in X. Therefore, $\Omega=\left\{F^{+}\left(V_{x}\right): x \in X\right\}$ is an ω-open cover of X. By Theorem 4.1 of [6], there exists points $x_{1}, x_{2}, \ldots, x_{n}, \ldots \in X$ such that $X \subseteq \cup\left\{F^{+}\left(V_{x_{i}}\right): x_{i} \in X\right.$, $i=1,2, \ldots, n, \ldots\}$. So we obtain $Y=F(X) \subseteq F\left(\cup\left\{F^{+}\left(V_{x_{i}}\right): i=1,2, \ldots, n, \ldots\right\}\right) \subseteq \cup\left\{V_{x_{i}}: i=1,2, \ldots, n, \ldots\right\} \subseteq \cup\left\{\Phi_{x_{i}}\right.$: $i=1,2, \ldots, n, \ldots\}$. Thus Y is Lindelöf.

4. ω-connectedness

Definition 4.1. ([2]) If a space X can not be written as the union of two nonempty disjoint ω-open sets, then X is said to be ω-connected.

Definition 4.2. Two non-empty subsets A and B of X are said to be ω-separated if $\omega C l(A) \cap B=\varnothing=A \cap \omega C l(B)$.
The proof of the following theorem is obtained by ordinary arguments.
Theorem 4.3. For every topological space X, the following conditions are equivalent:
(1) X is ω-connected;
(2) \varnothing and X are the only ω-open and ω-closed subsets of X;
(3) If $X=A \cup B$ and the sets A and B are ω-separated, then one of them is empty.

Theorem 4.4. Let X be ω-connected, $F: X \rightarrow Y$ be ω-continuous multifunction on X and V be a subset of Y such that at least one of the following conditions is fulfilled:
(1) V is clopen;
(2) F is image-open and V is closed;
(3) F^{-}is image- ω-open and V is open;
(4) F is image-open and F^{-}is image- ω-open.

Then either $F^{+}(V)=X$ or $F^{-}(Y-V)=X$.
Proof. (1) Let V be clopen set in Y. Since F is l. ω-c. and u. ω-c., $F^{+}(V)$ is ω-open and ω-closed in X by Theorems 2.3 and 2.4. Then by Theorem 4.3, $F^{+}(V)=X$ or $X-F^{+}(V)=X$. Hence, $F^{+}(V)=X$ or $F^{-}(Y-V)=X$.
(2) Let F be image-open and V be closed. Since F is $l . \omega$-c., $F^{-}(Y-V)$ is ω-open in X. By Lemma 2.14, $F^{-}(Y-V)$ is ω-closed. Since $F^{-}(Y-V)=X-F^{+}(V)$, the result follows.
(3) Let F^{-}be image- ω-open and V be open. Since F is u. ω-c., $F^{-}(Y-V)$ is ω-closed in X. On the other hand, since F^{-}is image- ω-open, $F^{-}(Y-V)=\cup\left\{F^{-}(y): y \in Y-V\right\}$ is ω-open in X. Hence, the result follows.
(4) Let F be image-open and F^{-}be image- ω-open. By Lemma 2.14, $F^{-}(Y-V)$ is ω-closed for any open set $V \subseteq Y$. On the other hand, since F^{-}image- ω-open, $F^{-}(Y-V)=\cup\left\{F^{-}(y): y \in Y-V\right\}$ is ω-open in X. Hence, the result follows.

Corollary 4.5. Let X be ω-connected and $F: X \rightarrow Y$ be an ω-continuous multifunction onto Y such that $F(x)$ is connected in Y for some $x \in X$. Then Y is connected.

Proof. Let V be a clopen set in Y. Then V and $Y-V$ are separated. Since $F(x)$ is connected, either $F(x) \subseteq V$ or $F(x) \subseteq Y-V$. By Theorem 4.4(1), either $F(X) \subseteq V$ or $F(X) \subseteq Y-V$. Since F is onto, it follows that $V=Y$ or $V=\varnothing$. This implies that Y is connected.

Corollary 4.6. Let X be ω-connected and $F: X \rightarrow Y$ be an ω-continuous image-open multifunction such that either F is image-closed or F^{-}is image- ω-open. Then F is constant.

Proof. Let $x \in X$ and $F(x)=V$. Suppose that F is image-closed. By Theorem $4.4(1), F(X) \subseteq V$, thus $F(x)=F(X)$. Now suppose that F^{-}is image- ω-open. By Theorem 4.4(3), $F(X) \subseteq V$, thus $F(x)=F(X)$. This completes the proof.

References

[1] M.E. Abd El-Monsef, A.A. Nasef. On multifunctions. Chaos, Solitons \& Fractals 12 (2001) 2387-2394.
[2] A. Al-Omari, M.S.M. Noorani, Contra- ω-continuous and almost contra- ω-continuous, Int. J. Math. Math. Sci. (2007), ID 40469.
[3] C. Berge, Topological Spaces, Oliver and Boyed, Edinburg-London, 1st English edition, 1963.
[4] E. Ekici, J.H. Park, A weak form of some types of continuous multifunctions, Filomat 20:2 (2006) 13-32.
[5] D.K. Ganguly, P. Mallick, On generalized continuous multifunctions and their selections, Real Anal. Exchange 33 (2007) 449-456.
[6] H.Z. Hdeib, ω-closed mappings, Revista Colombiana Mat. 16 (1982) 65-78.
[7] H.Z. Hdeib, ω-continuous functions, Dirasat J. 16 (1989) 136-153.
[8] A. Kanıbir, I.L. Reilly, On almost l-continuous multifunctions, Hacettepe J. Math. Stat. 35 (2006) 181-188.
[9] Y. Küçük, On some characterizations of δ-continuous multifunctions, Demonstratio Math. 28 (1995) 587-595.
[10] T. Noiri, V. Popa, Almost weakly continuous multifunctions, Demonstratio Math. 26 (1993) 363-380.
[11] T. Noiri, V. Popa, Slightly m-continuous mulitifunctions, Bull. Inst. Math. Acad. Sinica(New series) 1(4) (2006) 485-505.
[12] W.J. Perwin, Foundations of General Topology, Academic Press Inc., New York, 1965.
[13] V. Popa. Almost continuous multifunctions, Mat. Vesnik 6 (19)(34) (1982) 75-84.
[14] G.T. Whyburn, Continuity of multifunctions, Proc. Nat. Acad. Sci. U.S.A 54 (1964) 1494-1501.
[15] J.D. Wine, Locally paracompact spaces, Glasnik Mat. 10 (30) (1975) 351-357.
[16] I. Zorlutuna, On almost γ-continuous multifunctions, Math. Balkanica 22 (2008) 223-233.
[17] K. Al-Zoubi, B. Al-Nashef, The topology of ω-open subsets, Al-Manarah 9 (2003) 169-179.

[^0]: 2010 Mathematics Subject Classification. Primary 54C08; Secondary 54C60
 Keywords. Multifunctions, ω-continuity, ω-connectedness
 Received: 22 July 2011; Revised: 15 August 2012; Accepted: 02 September 2012
 Communicated by Ljubiša D.R. Kočinac
 Email address: izorlu@cumhuriyet.edu.tr (İdris Zorlutuna)

