Filomat 27:1 (2013), 165–172 DOI 10.2298/FIL1301165Z Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

ω -continuous multifunctions

İdris Zorlutuna^a

^aCumhuriyet University, Faculty of Sciences, Department of Mathematics, 58140, Sivas, Turkey

Abstract. The purpose of this paper is to study ω -continuous multifunctions. Basic characterizations, preservation theorems and several properties concerning upper and lower ω -continuous multifunctions are investigated. Furthermore, some characterizations of ω -connectedness and its relations with ω -continuous multifunctions are given.

1. Introduction

The concepts of upper and lower continuity for multifunctions were firstly introduced by Berge [3]. After this work several authors have given the several weak and strong forms of continuity of multifunctions ([1, 4, 5, 8, 10, 11, 16]). On the other hand, a generalization of the notion of the classical open sets which has received much attention lately is the so-called ω -open sets. In this direction, we will introduce the concept of ω -continuous multifunctions and studied some propeties of ω -continuous multifunctions. Also we have obtained some results on ω -connectedness and its relations with ω -continuous multifunctions.

All through this paper, (X, τ) and (Y, σ) stand for topological spaces with no separation axioms assumed, unless otherwise stated. Let $A \subseteq X$, the closure of A and the interior of A will be denoted by Cl(A) and Int(A), respectively. Let (X, τ) be a space and let A be a subset of X. A point $x \in X$ is called a condensation point of A [12] if for each $U \in \tau$ with $x \in U$, the set $U \cap A$ is uncountable. A is called ω -closed [6] if it contains all its condensation points. The complement of an ω -closed set is called ω -open. These sets are characterized as follows [6]: a subset W of a topological space (X, τ) is an ω -open set if and only if for each $x \in W$, there exists $U \in \tau$ such that $x \in U$ and U - W is countable. The ω -closure and ω -interior, that can be defined in a manner to Cl(A) and Int(A), respectively, will be denoted by $\omega Cl(A)$ and $\omega Int(A)$, respectively. Several characterizations and properties of ω -closed subsets were provided in [6, 7, 17]. We set $\omega O(X, x) = \{U : x \in U \text{ and } U \in \tau_{\omega}\}$

A multifunction $F : X \to Y$ is a point to set correspondence, and we always assume that $F(x) \neq \emptyset$ for every point $x \in X$. For each subset A of X and each subset B of Y, let $F(A) = \bigcup \{F(x) : x \in A\}$, $F^+(B) =$ $\{x \in X : F(x) \subset B\}$ and $F^-(B) = \{x \in X : F(x) \cap B \neq \emptyset\}$. Then $F^- : Y \to P(X)$ and if $y \in Y$, then $F^-(y) = \{x \in X :$ $y \in F(x)\}$ where P(X) be the collection of the subsets of X. Thus for $B \subseteq Y$, $F^-(B) = \bigcup \{F^-(y) : y \in B\}$. F is said to be a surjection if F(X) = Y, or equivalently, if for each $y \in Y$, there exists an $x \in X$ such that $y \in F(x)$. A multifunction $F : X \to Y$ is called upper semi continuous [3], abbreviated as u.s.c., (resp. lower semi continuous [3], or l.s.c.) at $x \in X$ if for each $O \subseteq Y$ with $F(x) \subset V$ (resp. $F(x) \cap V \neq \emptyset$), there is an open

²⁰¹⁰ Mathematics Subject Classification. Primary 54C08; Secondary 54C60

Keywords. Multifunctions, ω -continuity, ω -connectedness

Received: 22 July 2011; Revised: 15 August 2012; Accepted: 02 September 2012

Communicated by Ljubiša D.R. Kočinac

Email address: izorlu@cumhuriyet.edu.tr (İdris Zorlutuna)

neighbourhood *U* of *x* such that $F(U) \subseteq V$ (resp. $F(z) \cap V \neq \emptyset$ for all $z \in U$). *F* is u.s.c. (resp. l.s.c.) if and only if it is u.s.c. (resp. l.s.c.) at each point of *X*. Then *F* is called semi continuous if and only if it is both u.s.c. and l.s.c. A multifunction $F : X \to Y$ is image-P if F(x) has property P for every $x \in X$.

2. Characterizations

Definition 2.1. A multifunction $F : X \rightarrow Y$ is called

(a) *upper* ω -*continuous* (briefly, u. ω -c.) at a point $x \in X$ if for each open subset V of Y with $F(x) \subseteq V$, there is an ω -open set U containing x such that $F(U) \subseteq V$.

(b) *lower* ω -*continuous* (briefly, l. ω -c.) at a point $x \in X$ if for each open subset V of Y with $F(x) \cap V \neq \emptyset$, there is an ω -open set U containing x such that $F(z) \cap V \neq \emptyset$ for every point $z \in U$.

(c) ω -continuous at $x \in X$ if it is both u. ω -c. and l. ω -c. at $x \in X$.

(d) ω -continuous if it is ω -continuous at each point $x \in X$.

The following examples show that u. ω -c. and l. ω -c. are independent.

Example 2.2. Let $X = \mathbb{R}$ with the usual topology τ and let $Y = \{a, b, c\}$ with the topology $\sigma = \{\emptyset, Y, \{a\}\}$.

(a) Define a multifunction $F : (\mathbb{R}, \tau) \to (Y, \sigma)$ by $F(x) = \begin{cases} \{a\} & ;x < 0 \\ \{a, b\} & ;x = 0 \\ \{c\} & ;x > 0 \end{cases}$. Then *F* is u. ω -c., but it is not

l.ω-c.

(b) Define a multifunction $F : (\mathbb{R}, \tau) \to (Y, \sigma)$ by $F(x) = \begin{cases} \{a\} & ; x \le 0 \\ \{a, c\} & ; x > 0 \end{cases}$. Then *F* is l. ω -c., but it is not u. ω -c.

Theorem 2.3. For a multifunction $F : (X, \tau) \rightarrow (Y, \sigma)$, the following statements are equivalent;

(1) *F* is *l.ω-c.;*

(2) For each open subset V of Y, $F^{-}(V)$ is ω -open;

(3) For each closed subset K of Y, $F^+(K)$ is ω -closed;

(4) For any subset B of Y, $\omega Cl(F^+(B)) \subseteq F^+(Cl(B))$;

(5) For any subset B of Y, $F^{-}(Int(B)) \subseteq \omega Int(F^{-}(B))$;

(6) For any subset A of X, $F(\omega Cl(A)) \subseteq Cl(F(A))$;

(7) $F: (X, \tau_{\omega}) \rightarrow (Y, \sigma)$ is l.s.c.

Proof. $(1) \Leftrightarrow (2)$ It is obvious.

(2)⇔(3) These follow from equality $F^{-}(Y \setminus K) = X \setminus F^{+}(K)$ for each subset *K* of *Y*.

(3)⇒(4) Let *B* be any subset of *Y*. Then by (3) $F^+(Cl(B))$ is ω -closed subset of *X*. Since $F^+(B) \subseteq F^+(Cl(B))$, then $\omega Cl(F^+(B)) \subseteq \omega Cl(F^+(Cl(B))) = F^+(Cl(B))$.

(4) \Leftrightarrow (5) These follow from the facts that $F^{-}(Y \setminus K) = X \setminus F^{+}(K)$, $Y \setminus (Cl(B)) = Int(Y \setminus B)$ for $B \subseteq Y$ and $X \setminus (\omega Cl(A)) = \omega Int(X \setminus A)$ for each subset *A* of *X*.

 $(5) \Rightarrow (6)$ Under the assumption (5), suppose (6) is not true i.e. for some $A \subseteq X$, $F(\omega Cl(A)) \notin Cl(F(A))$. Then there exists a $y_0 \in Y$ such that $y_0 \in F(\omega Cl(A))$ but $y_0 \notin Cl(F(A))$. So $Y \setminus Cl(F(A))$ is an open set containing y_0 . By (5), we have $F^-(Y \setminus Cl(F(A))) = F^-(Int(Y \setminus Cl(F(A)))) \subseteq \omega Int(F^-(Y \setminus Cl(F(A))))$ and $F^-(y_0) \subseteq F^-(Y \setminus Cl(F(A)))$. Since $F^-(Y \setminus Cl(F(A))) \cap F^+(F(A)) = \emptyset$ and $A \subset F^+(F(A))$, we have $F^-(Y \setminus Cl(F(A))) \cap A = \emptyset$. Since $F^-(Y \setminus Cl(F(A)))$ is ω -open set, clearly we have that $F^-(Y \setminus Cl(F(A))) \cap \omega Cl(A) = \emptyset$. On the other hand, because of $y_0 \in F(\omega Cl(A))$, we have $F^-(y_0) \cap \omega Cl(A) \neq \emptyset$. But this is a contradiction with $F^-(Y \setminus Cl(F(A))) \cap \omega Cl(A) = \emptyset$. Thus $y \in F(\omega Cl(A))$ implies $y \in Cl(F(A))$. Consequently $\omega Cl(F(A)) \subseteq Cl(F(A))$.

(6)⇒(3) Let $K \subseteq Y$ be a closed set. Since we always have $F(F^+(K)) \subset K$, $Cl(F(F^+(K))) \subseteq Cl(K)$ and by (6), $F(\omega Cl(F^+(K))) \subseteq Cl(F(F^+(K))) \subseteq Cl(K) = K$. Therefore, $\omega Cl(F^+(K)) \subseteq F^+(F(\omega Cl(F^+(K)))) \subset F^+(K)$ and so $F^+(K)$ is ω -closed in X.

(1) \Leftrightarrow (7) It is clear. \Box

- (1) F is $u.\omega$ -c.;
- (2) For each open subset V of Y, $F^+(V)$ is ω -open;
- (3) For each closed subset K of Y, $F^{-}(K)$ is ω -closed;
- (4) $F: (X, \tau_{\omega}) \rightarrow (Y, \sigma)$ is u.s.c.;

The proof is similar to that of Theorem 2.3, and is omitted.

Definition 2.5. The net $(x_{\alpha})_{\alpha \in I}$ is ω -convergent to x if for each ω -open set U containing x, there exists an $\alpha_0 \in I$ such that $\alpha \ge \alpha_0$ implies $x_{\alpha} \in U$.

Theorem 2.6. The multifunction $F : X \to Y$ is $l.\omega$ -c. at $x \in X$ if and only if for each $y \in F(x)$ and for every net $(x_{\alpha})_{\alpha \in I}$ ω -converging to x, there exists a subnet $(z_{\beta})_{\beta \in \xi}$ of the net $(x_{\alpha})_{\alpha \in I}$ and a net $(y_{\beta})_{(\beta,V)\in\xi}$ in Y with $y_{\beta} \in F(z_{\beta})$ is convergent to y.

Proof. (\Rightarrow) Suppose *F* is l. ω -c. at x_0 . Let $(x_\alpha)_{\alpha \in I}$ be a net ω -converging to x_0 . Let $y \in F(x_0)$ and *V* be any open set containing *y*. So we have $F(x_0) \cap V \neq \emptyset$. Since *F* is l. ω -c. at x_0 , there exists an ω -open set *U* such that $x_0 \in U \subseteq F^-(V)$. Since the net $(x_\alpha)_{\alpha \in I}$ is ω -convergent to x_0 , for this *U*, there exists $\alpha_0 \in I$ such that $\alpha \geq \alpha_0$ implies $x_\alpha \in U$. Therefore, we have the implication $\alpha \geq \alpha_0 \Rightarrow x_\alpha \in F^-(V)$. For each open set $V \subseteq Y$ containing *y*, define the sets $I_V = \{\alpha_0 \in I : \alpha \geq \alpha_0 \Rightarrow x_\alpha \in F^-(V)\}$ and $\xi = \{(\alpha, V) : \alpha \in I_V, y \in V \text{ and } V \text{ is open}\}$ and order " \geq " on ξ as follows: " $(\dot{\alpha}, \dot{V}) \geq (\alpha, V) \Leftrightarrow \dot{V} \subseteq V$ and $\dot{\alpha} \geq \alpha$ ". Define $\varphi : \xi \longrightarrow I$, by $\varphi((\beta, V)) = \beta$. Then φ is increasing and cofinal in *I*, so φ defines a subnet of $(x_\alpha)_{\alpha \in I}$. We denote the subnet $(z_\beta)_{(\beta,V) \in \xi}$. On the other hand, for any $(\beta, V) \in \xi$, if $\beta \geq \beta_0 \Rightarrow x_\beta \in F^-(V)$ and we have $F(z_\beta) \cap V = F(x_\beta) \cap V \neq \phi$. Pick $y_\beta \in F(z_\beta) \cap V \neq \phi$. Then the net $(y_\beta)_{(\beta,V) \in \xi}$ is convergent to *y*. To see this, let V_0 be an open set containing *y*. Then there exists $\beta_0 \in I$ such that $\varphi((\beta_0, V_0)) = \beta_0$ and $y_{\beta_0} \in V$. If $(\beta, V) \geq (\beta_0, V_0)$ this means that $\beta \geq \beta_0$ and $V \subseteq V_0$. Therefore, $y_\beta \in F(z_\beta) \cap V = F(x_\beta) \cap V \subseteq F(x_\beta) \cap V \subseteq F(x_\beta) \cap V_0$, so $y_\beta \in V_0$. Thus $(y_\beta)_{(\beta,V) \in \xi}$ is convergent to *y*.

(\Leftarrow) Suppose *F* is not l. ω -c. at x_0 . Then there exists an open set $V \subseteq Y$ so that $x_0 \in F^-(V)$ and for each ω -open set $U \subseteq X$ containing x_0 , there is a point $x_U \in U$ for which $x_U \notin F^-(V)$. Let us consider the net $(x_U)_{U \in \omega O(X,x_0)}$. Obviously $(x_U)_{U \in \omega O(X,x_0)}$ is ω -convergent to x_0 . Let $y_0 \in F(x_0) \cap V$. By hypothesis, there is a subnet $(z_w)_{w \in W}$ of $(x_U)_{U \in \omega O(X,x_0)}$ and $y_w \in F(z_w)$ such that $(y_w)_{w \in W}$ is convergent to y_0 . As $y_0 \in V$ and $V \subseteq Y$ is an open set, there is $w'_0 \in W$ so that $w \ge w'_0$ implies $y_w \in V$. On the other hand, $(z_w)_{w \in W}$ is a subnet of the net $(x_U)_{U \in \omega O(X,x_0)}$ and so there is a function $h : W \longrightarrow \omega O(X, x_0)$ such that $z_w = x_{h(w)}$. By the definition of the net $(x_U)_{U \in \omega O(X,x_0)}$, we have $F(z_w) \cap V = F(x_{h(w)}) \cap V = \emptyset$ and this means that $y_w \notin V$. This is a contradiction and so *F* is l. ω -c. at x_0 . \Box

Theorem 2.7. The multifunction $F : X \to Y$ is $l.\omega$ -c. (resp. $u.\omega$ -c.) at $x \in X$ if and only if for each net $(x_{\alpha})_{\alpha \in I}$ ω -convergent to x and for each open subset V of Y with $F(x) \cap V \neq \emptyset$ (resp. $F(x) \subseteq V$), there is an $\alpha_0 \in I$ such that $F(x_{\alpha}) \cap V \neq \emptyset$ (resp. $F(x_{\alpha}) \subseteq V$) for all $\alpha \ge \alpha_0$.

Proof. We prove only for lower ω -continuity. The other is entirely analogous.

(⇒) Let $(x_{\alpha})_{\alpha \in I}$ be a net which ω -converges to x in X and let V be any open set in Y such that $x \in F^{-}(V)$. Since F is 1. ω -c. multifunction, it follows that there exists an ω -open set U in X containing x such that $U \subseteq F^{-}(V)$. Since $(x_{\alpha}) \omega$ -converges to x, it follows that there exists an index $\alpha_{0} \in I$ such that $x_{\alpha} \in U$ for all $\alpha \ge \alpha_{0}$. So we obtain that $x_{\alpha} \in F^{-}(V)$ for all $\alpha \ge \alpha_{0}$. Thus, the net (x_{α}) is eventually in $F^{-}(V)$.

(⇐) Suppose that *F* is not 1.*ω*-c. Then there is an open set *V* in *Y* with $x \in F^-(V)$ such that for each *ω*-open set *U* of *X* containing $x, x \in U \nsubseteq F^-(V)$ i.e. there is a $x_U \in U$ such that $x_U \notin F^-(V)$. Define $D = \{(x_U, U) : U \in \omega O(X), x_U \in U, x_U \notin F^-(V)\}$. Now the order " ≤ " defined by $(x_{U_1}, U_1) \le (x_U, U) \Leftrightarrow U \subseteq U_1$ is a direction on *D* and *g* defined by $g : D \longrightarrow X$, $g((x_U, U)) = x_U$ is a net on *X*. The net $(x_U)_{(x_U, U) \in D}$ is *ω*-convergent to *x*. But $F(x_U) \cap V = \emptyset$ for all $(x_U, U) \in D$. This is a contradiction. \Box

From the definitions, it is obvious that upper (lower) semi-continuity implies upper (lower) ω -continuity. But the converse is not true in general. **Example 2.8.** Let $X = \mathbb{R}$ with the topology $\tau = \{\emptyset, \mathbb{R}, \mathbb{Q}\}$. Define a multifunction $F : (\mathbb{R}, \tau) \to (\mathbb{R}, \tau)$ by $F(x) = \begin{cases} \mathbb{Q} & ; x \in \mathbb{R} - \mathbb{Q} \\ \mathbb{R} - \mathbb{Q} & ; x \in \mathbb{Q} \end{cases}$. Then *F* is u. ω -c. and l. ω -c. But it is neither u.s.c nor l.s.c.

Definition 2.9. ([17]) A space X is anti-locally countable if each non-empty open set is uncountable.

Corollary 2.10. Let X be an anti-locally countable space. Then the multifunction $F: X \to Y$ is $u(l).\omega$ -c iff F u(l).s.c.

Recall that A multifunction $F : X \to Y$ is called open if for each open subset U of X, F(U) is open in Y.

Definition 2.11. A multifunction $F : X \rightarrow Y$ is called

(a) ω -open if for each open subset U of X, F(U) is ω -open in Y.

(b) *pre-\omega-open* if for each ω -open subset *U* of *X*, *F*(*U*) is ω -open in *Y*.

The proofs of the following two lemmas follow from the fact that $\tau \subseteq \tau_{\omega}$ and definitions.

Lemma 2.12. Let $F : X \to Y$ be a multifunction. (1) If F is image-open, then F is open, ω -open; (2) If F is image- ω -open, then F is both ω -open and pre- ω -open.

Lemma 2.13. Let $F : X \to Y$ be a multifunction. (1) If F^- is image-open, then $F \ l.\omega$ -c.; (2) If F^- is image- ω -open, then F is $l.\omega$ -c.

Lemma 2.14. If $F : X \to Y$ is image-open and $u.\omega-c.$, then $F^-(B)$ is ω -closed in X for any $B \subseteq Y$. In particular; F^- is image- ω -closed.

Proof. Let $x \in X - F^-(B) = F^+(Y - B)$. Then $F(x) \subseteq Y - B$. Since F(x) is open and F is u. ω -c., $F^+(F(x))$ is an ω -open set in X and $x \in F^+(F(x)) \subseteq F^+(Y - B) = X - F^-(B)$. This shows that $X - F^-(B)$ is an ω -open and hence $F^+(B)$ is an ω -closed in X. \Box

A multifunction $F : X \to Y$ is said to be have *nonmingled point images* [14] provided that for $x_1, x_2 \in X$ with $x_1 \neq x_2$, the image sets $F(x_1)$ and $F(x_2)$ are either disjoint or identical.

Note that for a multifunction *F*, *F* is image-nonmingled if and only if $F \circ F^- \circ F = F$ [14].

Theorem 2.15. Let $F : X \to Y$ be image-nonmingled such that F is either image-open and $l.\omega$ -c. or F^- image- ω -open. Then F is $u.\omega$ -c.

Proof. Let $x \in X$ and V be an open set with $F(x) \subseteq V$. Firstly, suppose that F is image-open and 1. ω -c. Then $F^-(F(x))$ is ω -open in X and $x \in F^-(F(x))$. Put $U = F^-(F(x))$. Thus we have an ω -open set U containing x such that $F(U) = F(F^-(F(x))) = F(x) \subseteq V$ by above note. This shows that F is u. ω -c.

Now suppose that F^- is image- ω -open. Then $F^-(F(x))$ is an ω -open set in X containing x. On the other hand, by Lemma 2.13(2), F is l. ω -c. and proceed as above. \Box

Theorem 2.16. Let $F : X \to Y$ be image-open, image-nonmingled and $u.\omega$ -c. Then F is $l.\omega$ -c.

Proof. Let $x \in X$ and V be an open set with $F(x) \cap V \neq \emptyset$. Then $F^+(F(x))$ is ω -open in X and $x \in F^+(F(x))$. Put $U = F^+(F(x))$. Thus we have an ω -open set U containing x such that if $z \in U$ then F(z) = F(x) and $F(z) \cap V \neq \emptyset$. This shows that F is $1.\omega$ -c. \Box

For a multifunction $F : X \to Y$, the graph multifunction $G_F : X \to X \times Y$ is defined as follows: $G_F(x) = \{x\} \times F(x)$ for every $x \in X$.

Lemma 2.17. ([10]) For a multifunction $F : X \rightarrow Y$, the following hold:

(1) $G_F^+(A \times B) = A \cap F^+(B),$ (2) $G_F^-(A \times B) = A \cap F^-(B)$

for any subsets $A \subseteq X$ and $B \subseteq Y$.

Theorem 2.18. Let $F : X \to Y$ be an image-compact multifunction. Then the graph multifunction of F is $u.\omega$ -c. if and only if F is $u.\omega$ -c.

Proof. (\Rightarrow) Suppose that $G_F : X \to X \times Y$ is u. ω -c. Let $x \in X$ and V be any open set of Y containing F(x). Since $X \times V$ is open in $X \times Y$ and $G_F(x) \subseteq X \times V$, there exists $U \in \omega O(X, x)$ such that $G_F(U) \subseteq X \times V$. By the previous lemma, we have $U \subseteq G_F^+(X \times V) = F^+(V)$ and $F(U) \subseteq V$. This shows that F is u. ω -c.

(⇐) Suppose that *F* is u. ω -c. Let $x \in X$ and *W* be any open set of $X \times Y$ containing $G_F(x)$. For each $y \in F(x)$, there exist open sets $U(y) \subseteq X$ and $V(y) \subseteq Y$ such that $(x, y) \in U(y) \times V(y) \subseteq W$. The family of $\{V(y) : y \in F(x)\}$ is an open cover of F(x). Since F(x) is compact, it follows that there exists a finite number of points, says $y_1, y_2, ..., y_n$ in F(x) such that $F(x) \subseteq \{V(y_i) : i = 1, 2, ..., n\}$. Take $U = \cap \{U(y_i) : i = 1, 2, ..., n\}$ and $V = \cup \{V(y_i) : i = 1, 2, ..., n\}$. Then *U* and *V* are open sets in *X* and *Y*, respectively, and $\{x\} \times F(x) \subseteq U \times V \subseteq W$. Since *F* is u. ω -c., there exists $U_0 \in \omega O(X, x)$ such that $F(U_0) \subseteq V$. By the previous lemma, we have $U \cap U_0 \subseteq U \cap F^+(V) = G_F^+(U \times V) \subseteq G_F^+(W)$. Therefore, we obtain $U \cap U_0 \in \omega O(X, x)$ and $G_F(U \cap U_0) \subseteq W$. This shows that G_F is u. ω -c.

Theorem 2.19. A multifunction $F : X \to Y$ is $l.\omega$ -c. if and only if the graph multifunction G_F is $l.\omega$ -c.

Proof. (⇒) Suppose that *F* is 1.*ω*-c. Let $x \in X$ and *W* be any open set of $X \times Y$ such that $x \in G_F^-(W)$. Since $W \cap (\{x\} \times F(x)) \neq \emptyset$, there exists $y \in F(x)$ such that $(x, y) \in W$ and hence $(x, y) \in U \times V \subseteq W$ for some open sets *U* and *V* of *X* and *Y*, respectively. Since $F(x) \cap V \neq \emptyset$, there exists $G \in \omega O(X, x)$ such that $G \subseteq F^-(V)$. By Lemma 2.17, $U \cap G \subseteq U \cap F^-(V) = G_F^-(U \times V) \subseteq G_F^-(W)$. Therefore, we obtain $x \in U \cap G \in \omega O(X, x)$ and hence G_F is 1.*ω*-c.

(⇐) Suppose that G_F is l. ω -c. Let $x \in X$ and V be any open set of Y such that $x \in F^-(V)$. Then $X \times V$ is open in $X \times Y$ and $G_F(x) \cap (X \times V) = (\{x\} \times F(x)) \cap (X \times V) = \{x\} \times (F(x) \cap V) \neq \emptyset$. Since G_F is l. ω -c., there exists an ω -open set U containing x such that $U \subseteq G_F^-(X \times V)$. By Lemma 2.17, we have $U \subseteq F^-(V)$. This shows that F is l. ω -c. \Box

Lemma 2.20. ([17]) Let A be a subset of a space (X, τ) . Then $(\tau_{\omega})_A = (\tau_A)_{\omega}$.

Theorem 2.21. For a multifunction $F : X \rightarrow Y$, the following statements are true.

a) If F is $u(l).\omega$ -c. and $A \subseteq X$, then $F \mid_A : A \to Y$ is $u(l).\omega$ -c.;

b) Let $\{A_{\alpha} : \alpha \in I\}$ be open cover of X. Then a multifunction $F : X \to Y$ is $u(l).\omega$ -c. iff the restrictions $F|_{A_{\alpha}}: A_{\alpha} \to Y$ are $u(l).\omega$ -c. for every $\alpha \in I$.

The proof is obvious from the above lemma and we omit it.

3. Some applications

Theorem 3.1. Let *F* and *G* be $u.\omega$ -*c*. and image-closed multifunctions from a topological space X to a normal topological space Y. Then the set $A = \{x : F(x) \cap G(x) \neq \emptyset\}$ is closed in X.

Proof. Let $x \in X - A$. Then $F(x) \cap G(x) = \emptyset$. Since F and G are image-closed multifunctions and Y is a normal space, then there exist disjoint open sets U and V containing F(x) and G(x), respectively. Since F and G are u. ω -c., then the sets $F^+(U)$ and $G^+(V)$ are ω -open and contain x. Put $W = F^+(U) \cap G^+(V)$. Then W is an ω -open set containing x and $W \cap A = \emptyset$. Hence, A is closed in X. \Box

Definition 3.2. ([2]) A space *X* is said to be ω - T_2 if for each pair of distinct points *x* and *y* in *X*, there exist $U \in \omega O(X, x)$ and $V \in \omega O(X, y)$ such that $U \cap V = \emptyset$.

Theorem 3.3. Let $F : X \to Y$ be an $u.\omega$ -c. multifunction and image-closed from a topological space X to a normal topological space Y and let $F(x) \cap F(y) = \emptyset$ for each distinct pair $x, y \in X$. Then X is an ω - T_2 space.

Proof. Let *x* and *y* be any two distinct points in *X*. Then we have $F(x) \cap F(y) = \emptyset$. Since *Y* is a normal space, then there exists disjoint open sets *U* and *V* containing F(x) and F(y), respectively. Thus, $F^+(U)$ and $F^+(V)$ are disjoint ω -open sets containing *x* and *y*, respectively. Thus, *X* is ω -*T*₂. \Box

Definition 3.4. The graph G(F) of the multifunction $F : X \to Y$ is ω -closed with respect to X if for each $(x, y) \notin G(F)$, there exist an ω -open set U containing x and an open set V containing y such that $(U \times V) \cap G(F) = \emptyset$.

Definition 3.5. A subset *A* of a topological space *X* is called α -paracompact [15] if every open cover of *A* in *X* has a locally finite open refinement in *X* which covers *A*.

Theorem 3.6. If $F : X \to Y$ is $u.\omega$ -c. and image- α -paracompact multifunction into a Hausdorff space Y, then the graph G(F) is ω -closed with respect to X.

Proof. Let $(x_0, y_0) \notin G(F)$. Then $y_0 \notin F(x_0)$. Therefore, for every $y \in F(x_0)$, there exists an open set V(y) and an open set W(y) in Y containing y and y_0 respectively, such that $V(y) \cap W(y) = \emptyset$. Then $\{V(y)|y \in F(x_0)\}$ is a open cover of $F(x_0)$, thus there is a locally finite open cover $\Psi = \{U_\beta | \beta \in \Delta\}$ of $F(x_0)$ which refines $\{V(y)|y \in F(x_0)\}$. So there exists an open neighborhood W_0 of y_0 such that W_0 intersect only finitely many members $U_{\beta_1}, U_{\beta_2}, ..., U_{\beta_n}$ of Ψ . Chose finitely many points $y_1, y_2, ..., y_n$ of $F(x_0)$ such that $U_{\beta_k} \subset V(y_k)$ of each $1 \le k \le n$ and set $W = W_0 \cap [\bigcap_{k=1}^n W(y_k)]$. Then W is an open neighborhood of y_0 such that $W \cap (\cup \Psi) = \emptyset$. Since F is u. ω -c., then there exists an ω -open set U containing x_0 such that $F(U) \subset \cup \Psi$. Therefore, we have that $(U \times W) \cap G(F) = \emptyset$. Thus, G(F) is ω -closed set with respect to X. \Box

In the above theorem, for upper ω -continuous multifunction F, if F is taken as a image-closed multifunction and Y is taken as a regular space, then we get also same result.

Definition 3.7. A space *X* is called ω -compact [2] if every ω -open cover of *X* has a finite subcover.

Theorem 3.8. Let $F : X \to Y$ be a image-compact and $u.\omega$ -c. multifunction. If X is ω -compact and F is surjective, then Y is compact.

Proof. Let Φ be an open cover of Y. If $x \in X$, then we have $F(x) \subseteq \bigcup \Phi$. Thus Φ is an open cover of F(x). Since F(x) is compact, there exists a finite subfamily $\Phi_{n(x)}$ of Φ such that $F(x) \subseteq \bigcup \Phi_{n(x)} = V_x$. Then V_x is an open set in Y. Since F is u. ω -c., $F^+(V_x)$ is an ω -open set in X. Therefore, $\Omega = \{F^+(V_x) : x \in X\}$ is an ω -open cover of X. Since X is ω -compact, there exists points $x_1, x_2, ..., x_n \in X$ such that $X \subset \bigcup \{F^+(V_{x_i}) : x_i \in X, i = 1, 2, ..., n\}$. So we obtain $Y = F(X) \subseteq F(\bigcup \{F^+(V_{x_i}) : i = 1, 2, ..., n\}) \subset \bigcup \{V_{x_i} : i = 1, 2, ..., n\} \subset \bigcup \{\Phi_{n(x_i)} : i = 1, 2, ..., n\}$. Thus Y is compact. \Box

In [[6], Theorem 4.1], Hdeib showed that a space (X, τ) is Lindelöf if and only if (X, τ_{ω}) is Lindelöf.

Theorem 3.9. Let $F : (X, \tau) \to (Y, \sigma)$ be an image-Lindelöf or image-compact and $u.\omega$ -c. multifunction. If X is Lindelöf and F is surjective, then Y is Lindelöf.

Proof. Let Φ be an open cover of Y. If $x \in X$, then we have $F(x) \subseteq \bigcup \Phi$. Thus Φ is an open cover of F(x).

When F(x) is Lindelöf, there exists a countable subfamily Φ_x of Φ such that $F(x) \subseteq \bigcup \Phi_x = V_x$. Then V_x is an open set in *Y*. Since *F* is u. ω -c., $F^+(V_x)$ is an ω -open set in *X*. Therefore, $\Omega = \{F^+(V_x) : x \in X\}$ is an ω -open cover of *X*. By Theorem 4.1 of [6], there exists points $x_1, x_2, ..., x_n, ... \in X$ such that $X \subseteq \bigcup \{F^+(V_{x_i}) : x_i \in X, i = 1, 2, ..., n, ...\}$ So we obtain $Y = F(X) \subseteq F(\bigcup \{F^+(V_{x_i}) : i = 1, 2, ..., n, ...\}) \subseteq \bigcup \{V_{x_i} : i = 1, 2, ..., n, ...\} \subseteq \bigcup \{\Phi_{x_i} : i = 1, 2, ..., n, ...\}$ Thus *Y* is Lindelöf.

When F(x) is compact, there exists a finite subfamily Φ_x of Φ such that $F(x) \subseteq \bigcup \Phi_x = V_x$. Then V_x is an open set in *Y*. Since *F* is u. ω -c., $F^+(V_x)$ is an ω -open set in *X*. Therefore, $\Omega = \{F^+(V_x) : x \in X\}$ is an ω -open cover of *X*. By Theorem 4.1 of [6], there exists points $x_1, x_2, ..., x_n, ... \in X$ such that $X \subseteq \bigcup \{F^+(V_{x_i}) : x_i \in X, i = 1, 2, ..., n, ...\}$. So we obtain $Y = F(X) \subseteq F(\bigcup \{F^+(V_{x_i}) : i = 1, 2, ..., n, ...\}) \subseteq \bigcup \{V_{x_i} : i = 1, 2, ..., n, ...\} \subseteq \bigcup \{\Phi_{x_i} : i = 1, 2, ..., n, ...\}$. Thus *Y* is Lindelöf. \Box

4. ω -connectedness

Definition 4.1. ([2]) If a space *X* can not be written as the union of two nonempty disjoint ω -open sets, then *X* is said to be ω -connected.

Definition 4.2. Two non-empty subsets *A* and *B* of *X* are said to be ω -separated if $\omega Cl(A) \cap B = \emptyset = A \cap \omega Cl(B)$.

The proof of the following theorem is obtained by ordinary arguments.

Theorem 4.3. For every topological space X, the following conditions are equivalent:

(1) X is ω -connected;

(2) \emptyset and X are the only ω -open and ω -closed subsets of X;

(3) If $X = A \cup B$ and the sets A and B are ω -separated, then one of them is empty.

Theorem 4.4. Let X be ω -connected, $F : X \to Y$ be ω -continuous multifunction on X and V be a subset of Y such that at least one of the following conditions is fulfilled:

(1) V is clopen;

(2) F is image-open and V is closed;

(3) F^- is image- ω -open and V is open;

(4) *F* is image-open and F^- is image- ω -open.

Then either $F^+(V) = X$ or $F^-(Y - V) = X$.

Proof. (1) Let *V* be clopen set in *Y*. Since *F* is l. ω -c. and u. ω -c., *F*⁺(*V*) is ω -open and ω -closed in *X* by Theorems 2.3 and 2.4. Then by Theorem 4.3, *F*⁺(*V*) = *X* or *X* – *F*⁺(*V*) = *X*. Hence, *F*⁺(*V*) = *X* or *F*⁻(*Y* – *V*) = *X*.

(2) Let *F* be image-open and *V* be closed. Since *F* is l. ω -c., $F^-(Y - V)$ is ω -open in *X*. By Lemma 2.14, $F^-(Y - V)$ is ω -closed. Since $F^-(Y - V) = X - F^+(V)$, the result follows.

(3) Let F^- be image- ω -open and V be open. Since F is u. ω -c., $F^-(Y - V)$ is ω -closed in X. On the other hand, since F^- is image- ω -open, $F^-(Y - V) = \bigcup \{F^-(y) : y \in Y - V\}$ is ω -open in X. Hence, the result follows.

(4) Let *F* be image-open and *F*⁻ be image- ω -open. By Lemma 2.14, *F*⁻(*Y* - *V*) is ω -closed for any open set $V \subseteq Y$. On the other hand, since *F*⁻ image- ω -open, *F*⁻(*Y* - *V*) = \cup {*F*⁻(*y*) : *y* \in *Y* - *V*} is ω -open in *X*. Hence, the result follows. \Box

Corollary 4.5. Let X be ω -connected and $F : X \to Y$ be an ω -continuous multifunction onto Y such that F(x) is connected in Y for some $x \in X$. Then Y is connected.

Proof. Let *V* be a clopen set in *Y*. Then *V* and *Y* – *V* are separated. Since *F*(*x*) is connected, either *F*(*x*) \subseteq *V* or *F*(*x*) \subseteq *Y* – *V*. By Theorem 4.4(1), either *F*(*X*) \subseteq *V* or *F*(*X*) \subseteq *Y* – *V*. Since *F* is onto, it follows that *V* = *Y* or *V* = \emptyset . This implies that *Y* is connected. \Box

Corollary 4.6. Let X be ω -connected and $F : X \to Y$ be an ω -continuous image-open multifunction such that either F is image-closed or F^- is image- ω -open. Then F is constant.

Proof. Let $x \in X$ and F(x) = V. Suppose that F is image-closed. By Theorem 4.4(1), $F(X) \subseteq V$, thus F(x) = F(X). Now suppose that F^- is image- ω -open. By Theorem 4.4(3), $F(X) \subseteq V$, thus F(x) = F(X). This completes the proof. \Box

References

- [1] M.E. Abd El-Monsef, A.A. Nasef. On multifunctions. Chaos, Solitons & Fractals 12 (2001) 2387–2394.
- [2] A. Al-Omari, M.S.M. Noorani, Contra- ω -continuous and almost contra- ω -continuous, Int. J. Math. Math. Sci. (2007), ID 40469.
- [3] C. Berge, Topological Spaces, Oliver and Boyed, Edinburg-London, 1st English edition, 1963.
- [4] E. Ekici, J.H. Park, A weak form of some types of continuous multifunctions, Filomat 20:2 (2006) 13–32.
- [5] D.K. Ganguly, P. Mallick, On generalized continuous multifunctions and their selections, Real Anal. Exchange 33 (2007) 449–456.
- [6] H.Z. Hdeib, *w*-closed mappings, Revista Colombiana Mat. 16 (1982) 65–78.
- [7] H.Z. Hdeib, *ω*-continuous functions, Dirasat J. 16 (1989) 136–153.

- [8] A. Kanibir, I.L. Reilly, On almost l-continuous multifunctions, Hacettepe J. Math. Stat. 35 (2006) 181–188.
- [9] Y. Küçük, On some characterizations of δ-continuous multifunctions, Demonstratio Math. 28 (1995) 587–595.
- [10] T. Noiri, V. Popa, Almost weakly continuous multifunctions, Demonstratio Math. 26 (1993) 363–380.
- [11] T. Noiri, V. Popa, Slightly *m*-continuous multifunctions, Bull. Inst. Math. Acad. Sinica(New series) 1(4) (2006) 485–505.
 [12] W.J. Perwin, Foundations of General Topology, Academic Press Inc., New York, 1965.
- [13] V. Popa. Almost continuous multifunctions, Mat. Vesnik 6 (19)(34) (1982) 75-84.
- [14] G.T. Whyburn, Continuity of multifunctions, Proc. Nat. Acad. Sci. U.S.A 54 (1964) 1494–1501.
- [15] J.D. Wine, Locally paracompact spaces, Glasnik Mat. 10 (30) (1975) 351-357.
- [16] I. Zorlutuna, On almost γ -continuous multifunctions, Math. Balkanica 22 (2008) 223–233.
- [17] K. Al-Zoubi, B. Al-Nashef, The topology of ω-open subsets, Al-Manarah 9 (2003) 169–179.