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Abstract. The subject of this paper is the analytic approximation of solution to stochastic differential delay
equations with Poisson jump. We introduce approximate methods for stochastic differential equations
driven by Poisson random measure, as well as for those driven by Poisson process. In both cases, approx-
imate equations are defined on equidistant partitions of the time interval, and their coefficients are Taylor
approximations of the coefficients of the initial equation. It will be shown that the approximate solutions
converge in the Lp-sense and almost surely to the solutions of the corresponding initial equations. The order
of the Lp-convergence of the approximate solutions to the solution of the initial equation is established and
it increases when the number of degrees in Taylor approximations of coefficients increases.

1. Introduction

Recently there is an increasing interest in the study of stochastic differential equations with jumps (see
[1, 2]). Namely, models which incorporate jumps have become popular in finance and some areas of science
and engineering. There is evidence that the dynamics of prices of financial instruments exhibit jumps
which cannot be adequately described solely by diffusion processes (see,for example, [3]). Also, there are
empirical studies, such as [4, 5], which demonstrate the existence of jumps in stock markets, the foreign
exchange market and bond markets. Since only a limited class of stochastic differential delay equations
admit explicit solutions, there is a need for the development of approximate methods. Some of the results in
this area can be found in [6–8] where convergence of explicit numerical methods is considered. On the other
hand, in [9], stability and convergence of the semi-implicit Euler method for linear stochastic differential
delay equations are studied.

The subject of this paper are stochastic differential delay equations with Poisson jump which present a
natural extension of stochastic differential delay equations. The fact that explicit solutions can hardly be
obtained for stochastic differential delay equations, either with Poisson random measure or with Poisson
process, was the main motivation for the approximate methods which will be presented in this paper.
These methods could give explicitly solvable approximate equations or those suitable for the application
of numerical methods. Some of the existing results related to this class of equations can be found in [10–12]
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where the semi-implicit Euler method is developed, in [13] where convergence of the Euler-Maruyama
method is considered, as well as in [14].

The fundamentals of the approximate method considered here go back to papers [15, 16] by M.A. Atalla
and [17, 18] by S. Janković and D. Ilić. In [16], the approximate solution to the solution of an ordinary
stochastic differential equation is constructed on the basis of Taylor approximations of the coefficients of the
initial equation, up to the first derivative. The rate of this approximation in the Lp-sense was O(δp

n) when
n → ∞ and δn → 0. This concept is appropriately extended in [17] in the sense that drift and diffusion
coefficients of the approximate equations are taken to be Taylor approximations of coefficients of the initial
equation up to the m1th and m2th derivatives, respectively. In this case, the closeness between the solutions in
Lp-sense was measured as O(δ(m+1)p/2

n ) when n→∞ and δn → 0, where m = min{m1,m2}. In [18] this idea was
extended to stochastic integrodifferential equations, in [19] to stochastic functional differential equations,
in [20] to stochastic pantograph differential equations with Markovian switching and in [21] to stochastic
differential equations with time-dependent delay. In a similar way, solutions of stochastic differential delay
equations with Markovian switching are approximated in [22]. Moreover, in [23] the authors considered
the application of Taylor expansion in approximation of solution to stochastic differential delay equations
with Poisson process. However, it remains open problem under which assumptions the order of the Lp-
convergence of the approximate solution to the exact solution increases when the number of degrees in
Taylor approximation increases.

Our main goal is the development of the approximate method for stochastic differential delay equations
driven by Poisson random measure which generalizes the results from [23] related to stochastic differential
equations driven by Poisson process. In Section 2 of the present paper the solution of the initial equation
is approximated by a sequence of solutions to stochastic differential equations with drift, diffusion and
jump coefficients which are Taylor approximations of coefficients of the corresponding initial equation, up
to arbitrary derivatives. We will show, under the appropriate conditions, that the rate of the Lp-closeness
between the approximate solution and the solution of the initial equation increases when the number
of degrees in Taylor approximations of coefficients increases. Moreover, we will show the almost sure
convergence of the approximate solution to the exact solution. In Section 3 we will present the results
analogous to those in Section 2 for stochastic differential delay equations with Poisson process. In that way
we improve the results from [23] where the rate of the Lp-convergence of the approximate solution to the
exact solution of this type of equation is γ ∈ (0, 1].

Before stating the main results, we present the essential notations and definitions which are necessary
for further consideration. The initial assumption is that all random variables and processes are defined on a
filtered probability space (Ω,F , {Ft}t≥0,P) with a filtration {Ft}t≥0 satisfying the usual conditions (that is, it is
increasing and right-continuous, and F0 contains all P-null sets). Let w(t) = (w1(t),w2(t), ...,wm(t))T, t ≥ 0 be
an m-dimensional standard Brownian motion, Ft-adapted and independent of F0. Let the Euclidean norm
be denoted by | · | and, for simplicity, trace[BTB] = |B|2 for matrix B, where BT is the transpose of a vector or a
matrix. For a fixed delay τ > 0, let C([−τ, 0]; Rd) be the family of continuous functions φ : [−τ, 0]→ Rd with
the norm ||φ|| = supθ∈[−τ,0] |φ(θ)| and Cb

F0
([−τ, 0]; Rd), the family of all bounded F0-measurable C([−τ, 0]; Rd)-

valued random variables.
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2. Stochastic differential delay equations driven by Poisson random measure

Let us begin with discussion of the following stochastic differential delay equation driven by Poisson
random measure

dx(t) = f (x(t), x(t − τ), t)dt + 1(x(t), x(t − τ), t)dw(t) +
∫

Rd
h(x(t), x(t − τ),u, t)ν̃(du, dt), t ∈ [t0,T], (1)

xt0 = ξ = {ξ(θ) : θ ∈ [−τ, 0]}, (2)

where

f : Rd × Rd × [t0,T]→ Rd, 1 : Rd × Rd × [t0,T]→ Rd×m, h : Rd × Rd × Rd × [t0,T]→ Rd,

x(t) is a d-dimensional state process, ξ ∈ Cb
F0

([−τ, 0]; Rd) and

ν̃(du, dt) = ν(du, dt) −Π(du)dt

is a compensated Poisson random measure on Rd × [t0,T] which is independent of w.
A d-dimensional stochastic process {x(t), t ∈ [t0 − τ,T]} is said to be a solution to Eq. (1) if it is a.s. cádlá1,

{x(t), t ∈ [t0,T]} is Ft-adapted,
∫ T

t0
| f (x(t), x(t − τ), t)|dt < ∞ a.s.,

∫ T

t0
|1(x(t), x(t − τ), t)|2dt < ∞ a.s.,∫ T

t0

∫
Rd |h(x(t), x(t − τ),u, t)|2Π(du)dt < ∞ a.s., xt0 = ξ a.s. and for every t ∈ [t0,T], the integral form of Eq. (1)

holds a.s.
A solution {x(t), t ∈ [t0 − τ,T]} is said to be unique if any other solution {x̃(t) : t ∈ [t0 − τ,T]} is

indistinguishable from it, in the sense that P{x(t) = x̃(t), t ∈ [t0 − τ,T]} = 1.
If one assumes that the global Lipschitz condition and the linear growth condition are satisfied, that is,

there exists a constant K̄ > 0 such that for all x1, x2, y1, y2,u ∈ Rd and t ∈ [t0,T],

| f (x1, y1, t) − f (x2, y2, t)|2 ∨ |1(x1, y1, t) − 1(x2, y2, t)|2 ∨
∫

Rd
|h(x1, y1, u, t) − h(x2, y2, u, t)|2Π(du) (3)

≤ K̄
(
|x1 − x2|2 + |y1 − y2|2

)
,

and also there exists a constant K > 0 such that for all x, y,u ∈ Rd and t ∈ [t0,T],

| f (x, y, t)|2 ∨ |1(x, y, t)|2 ∨
∫

Rd
|h(x, y,u, t)|2Π(du) ≤ K(1 + |x|2 + |y|2), (4)

then there exists a unique solution {x(t), t ∈ [t0 − τ,T]} to Eq. (1). The idea for the proof can be found in [24].
Let us present Eq. (1) in its equivalent integral form, that is, for t∈ [t0,T],

x(t) = ξ(0) +
∫ t

t0

f (x(s), x(s − τ), s)ds +
∫ t

t0

1(x(s), x(s − τ), s)dw(s) +
∫ t

t0

∫
Rd

h(x(s), x(s − τ),u, s)ν̃(du, ds). (5)

We will approximate the solution of the equation (5) on the equidistant partition

t0 < t1 < ... < tn = T (6)

of the interval [t0,T], where n is chosen in a way that δn =
T−t0

n < 1 and also there exists an integer n∗ such
that τ = n∗δn. So, the partitioning points of the interval [t0 − τ,T] are

tk = t0 + kδn, k = −n∗,−n∗ + 1, ...,−1, 0, 1, ..., n.

The solution x = {x(t), t ∈ [t0,T]} to Eq. (5) will be approximated on the partition (6) by the solutions
{xn(t), t ∈ [tk, tk+1]}, k = 0, 1, ..., n − 1 of the equations

xn(t) = xn(tk) +
∫ t

tk

m1∑
i=0

di f (xn(tk), xn(tk−n∗), s)
i!

ds +
∫ t

tk

m2∑
i=0

di1(xn(tk), xn(tk−n∗), s)
i!

dw(s) (7)

+

∫ t

tk

∫
Rd

m3∑
i=0

dih(xn(tk), xn(tk−n∗),u, s)
i!

ν̃(du, dt),
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satisfying the initial condition xn
t0
= ξ a.s. In this equation coefficients are Taylor approximations of f , 1

and h in the first argument in the neighbourhood of the points xn(tk), and also in the second argument in
the neighbourhood of the points xn(tk−n∗), k = 0, 1, ..., n − 1, up to the m1-th, m2-th and m3-th derivatives,
respectively, while

di f (xn(tk), xn(tk−n∗ ), s) =
i∑

j=0

(
i
j

)
∂i f (xn(tk), xn(tk−n∗), s)
∂ jxn(s)∂i− jxn(s − τ) (∆xn

tk
) j(∆xn

tk−n∗
)i− j,

di1(xn(tk), xn(tk−n∗ ), s) =
i∑

j=0

(
i
j

)
∂i1(xn(tk), xn(tk−n∗), s)
∂ jxn(s)∂i− jxn(s − τ) (∆xn

tk
) j(∆xn

tk−n∗
)i− j,

dih(xn(tk), xn(tk−n∗ ),u, s) =
i∑

j=0

(
i
j

)
∂ih(xn(tk), xn(tk−n∗),u, s)
∂ jxn(s)∂i− jxn(s − τ) (∆xn

tk
) j(∆xn

tk−n∗
)i− j,

for ∆xn
tk
= xn(s) − xn(tk) and ∆xn

tk−n∗
= xn(s − τ) − xn(tk−n∗).

The approximate solution xn = {xn(t), t ∈ [t0 −τ,T]} is constructed as an a.s. cádlá1 process by connecting
successively the initial condition {ξ(θ) : θ ∈ [−τ, 0]} and processes {xn(t), t ∈ [tk, tk+1]} at the points tk
whenever k = 0, 1, ..., n − 1.

Obviously, it must be required that f , 1 and h satisfy appropriate conditions. With no particular emphasis
on conditions, we suppose the existence and uniqueness of the solutions explicitly used in our discussion.
In addition to the Lipschitz condition (3) and the linear growth condition (4), we introduce the following
assumptions:
A1 : The functions f , 1 and h have Taylor expansions in the first and second arguments up to the m1-th,

m2-th and m3-th derivatives, respectively.
A2 : Partial derivatives of the order m1 + 1 of f , of the order m2 + 1 of 1 and m3 + 1 of h are uniformly

bounded, i.e. there exists a positive constant L such that

sup
Rd×Rd×[t0,T]

∣∣∣∣∂m1+1 f (x, y, t)
∂x j∂ym1+1− j

∣∣∣∣ ≤ L, j = 0, 1, ...,m1 + 1

sup
Rd×Rd×[t0,T]

∣∣∣∣∂m2+11(x, y, t)
∂x j∂ym2+1− j

∣∣∣∣ ≤ L, j = 0, 1, ...,m2 + 1,

sup
Rd×Rd×[t0,T]

∫
Rd

∣∣∣∣∂m3+1h(x, y,u, t)
∂x j∂ym3+1− j

∣∣∣∣2Π(du) ≤ L2, j = 0, 1, ...,m3 + 1,

A3 : There exist unique, a.s. cádlá1 solutions x and xn to the equations (5) and (7), respectively, such that,
for p ≥ 2,

E sup
t∈[t0−τ,T]

|x(t)|p < ∞, E sup
t∈[t0−τ,T]

|xn(t)|(M+1)2p ≤ Q < ∞,

where M = max{m1,m2,m3} and Q > 0 is a constant independent of n. Moreover, we suppose that all the
Lebesque and Ito integrals, as well as the integrals with respect to Poisson measure, which will be used
further are also well defined.
A4 : For p ≥ 2 there exists a constant Cξ > 0 such that for k = −n∗,−n∗ + 1, ...,−1,

E sup
s,t∈[tk ,tk+1]

|ξ(t) − ξ(s)|p ≤ Cξ · n−p/2.

Remark 2.1. Under the Lipschitz condition (3) and the linear growth condition (4), the solution x of Eq. (1) has
uniformly finite moments of the order p ≥ 2, that is,

E sup
t∈[t0−τ,T]

|x(t)|p < ∞.
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If m1 = m2 = m3 = 0, then the conditions (3) and (4) guarantee that both exact and approximate solutions admit
finite moments.

Further more, we will apply several times, without special emphasis, the elementary inequality
(∑m

i=1 ai

)q
≤

mq−1 ∑m
i=1 aq

i , ai > 0, q ∈ N, the Hölder inequality to Lebesgue integrals and the Burkholder-Davis-Gundy
inequality to the integrals of two other types.

In order to estimate the closeness between the solutions x and xn, we first state the following result
which will be used in the proof of the main result.

Proposition 2.2. Let {xn(t), t ∈ [tk, tk+1]}, k = 0, 1, ..., n − 1, be the solution to Eq. (7) and let the condition (4) and
the assumptionsA1,A2,A3 be satisfied. Then for every 2 ≤ r ≤ (M + 1)p,

E sup
s∈[tk,t]

|xn(s) − xn(tk)|r ≤ C · n−r/2, t ∈ [tk, tk+1], k = 0, 1, ..., n − 1.

Moreover, if the assumptionA4 is satisfied, then

E sup
s∈[tk,t]

|xn(s − τ) − xn(tk−n∗)|r ≤ C̄ · n−r/2, t ∈ [tk, tk+1], k = 0, 1, ..., n − 1,

where C and C̄ are positive constants, independent of n.

Proof. For reasons of notational simplicity, let us denote that

F(xn
t , x

n
t−τ, t; xn

tk
, xn

tk−n∗
)=

m1∑
i=0

di f (xn(tk), xn(tk−n∗), t)
i!

,

G(xn
t , x

n
t−τ, t; xn

tk
, xn

tk−n∗
)=

m2∑
i=0

di1(xn(tk), xn(tk−n∗ ), t)
i!

,

H(xn
t , x

n
t−τ,u, t; xn

tk
, xn

tk−n∗
)=

m3∑
i=0

dih(xn(tk), xn(tk−n∗),u, t)
i!

,

whenever t ∈ [tk, tk+1], k ∈ {0, 1, ..., n − 1}.
Then, in a view of the assumptionA1, we have

f (xn(t), xn(t − τ), t) = F(xn
t , x

n
t−τ, t; xn

tk
, xn

tk−n∗
) + r f

m1
(∆xn

tk
,∆xn

tk−n∗
, t), (8)

1(xn(t), xn(t − τ), t) = G(xn
t , x

n
t−τ, t; xn

tk
, xn

tk−n∗
) + r1m2

(∆xn
tk
,∆xn

tk−n∗
, t),

h(xn(t), xn(t − τ),u, t) = H(xn
t , x

n
t−τ,u, t; xn

tk
, xn

tk−n∗
) + rh

m3
(∆xn

tk
,∆xn

tk−n∗
,u, t),

where

r f
m1

(∆xn
tk
,∆xn

tk−n∗
, t) =

dm1+1 f (xn(tk) + θ f∆xn
tk
, xn(tk−n∗ ) + θ f∆xn

tk−n∗
, t)

(m1 + 1)!
,

r1m2
(∆xn

tk
,∆xn

tk−n∗
, t) =

dm2+11(xn(tk) + θ1∆xn
tk
, xn(tk−n∗) + θ1∆xn

tk−n∗
, t)

(m2 + 1)!
,

rh
m3

(∆xn
tk
,∆xn

tk−n∗
,u, t) =

dm3+1h(xn(tk) + θh∆xn
tk
, xn(tk−n∗) + θh∆xn

tk−n∗
,u, t)

(m3 + 1)!
,

for some θ f , θ1, θh ∈ (0, 1), are the appropriate remainders in Taylor approximations of the functions f , 1
and h, respectively. Using the assumptionA2, that is, the uniform boundedness of the (m1 + 1)th, (m2 + 1)th
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and (m3 + 1)th partial derivatives of the functions f , 1 and h, respectively, as well as the Newton binomial
formula, we find that

|r f
m1

(∆xn
tk
,∆xn

tk−n∗
, t)| ≤ L

(m1 + 1)!

(
|∆xn

tk
| + |∆xn

tk−n∗
|
)m1+1

, (9)

|r1m2
(∆xn

tk
,∆xn

tk−n∗
, t)| ≤ L

(m2 + 1)!

(
|∆xn

tk
| + |∆xn

tk−n∗
|
)m2+1

,∫
Rd
|rh

m3
(∆xn

tk
,∆xn

tk−n∗
,u, t)|2Π(du) ≤ L2

[(m3 + 1)!]2

(
|∆xn

tk
| + |∆xn

tk−n∗
|
)2(m3+1)

,

for t ∈ [tk, tk+1], k = 0, 1, ..., n − 1.
In order to estimate E sups∈[tk,t]

|xn(s) − xn(tk)|r, we will apply the previously mentioned elementary
inequality to Eq. (7), the Hölder inequality to the Lebesgue integral and the Burkholder-Davis-Gundy
inequality to the Ito integral and also to the integral with respect to Poisson measure. Then, we get for all
t ∈ [tk, tk+1], k = 0, 1, ..., n − 1,

E sup
s∈[tk ,t]

|xn(s) − xn(tk)|r ≤ 3r−1(t − tk)r−1
∫ t

tk

E|F(xn
s , x

n
s−τ, s; xn

tk
, xn

tk−n∗
)|rds (10)

+3r−1cr(t − tk)r/2−1
∫ t

tk

E|G(xn
s , x

n
s−τ, s; xn

tk
, xn

tk−n∗
)|rds

+3r−1crE
(∫ t

tk

∫
Rd
|H(xn

s , x
n
s−τ,u, s; xn

tk
, xn

tk−n∗
)|2Π(du)ds

)r/2

≡ 3r−1(t − tk)r/2−1[(t − tk)r/2J1(t) + cr J2(t)] + 3r−1crJ3(t),

where J1(t), J2(t) and J3(t) are the appropriate integrals, while cr is a universal constant from the Burkholder-
Davis-Gundy inequality.

On the basis of Taylor expansion (8), the growth condition (4), the assumptionsA1,A3 and the estimate
(9), we get

J1(t) =
∫ t

tk

E|F(xn
s , x

n
s−τ, s; xn

tk
, xn

tk−n∗
)|rds (11)

≤ 2r−1
∫ t

tk

E|F(xn
s , x

n
s−τ, s; xn

tk
, xn

tk−n∗
) − f (xn(s), xn(s − τ), s)|rds + 2r−1

∫ t

tk

E| f (xn(s), xn(s − τ), s)|rds

≤ 2r−1
∫ t

tk

E

∣∣∣∣∣∣∣d
m1+1 f (xn(tk) + θ f∆xn

tk
, xn(tk−n∗) + θ f∆xn

tk−n∗
, s)

(m1 + 1)!

∣∣∣∣∣∣∣
r

ds

+2r−1Kr/2
∫ t

tk

E
[
1 + |xn(s)|2 + |xn(s − τ)|2

]r/2
ds

≤ 2r−1Lr

[(m1 + 1)!]r

∫ t

tk

E
[
|∆xn

tk
| + |∆xn

tk−n∗
|
](m1+1)r

ds + 2r−13r/2−1Kr/2
∫ t

tk

[1 + E|xn(s)|r + E|xn(s − τ)|r] ds

≤ 2r−14(m1+1)rLr

[(m1 + 1)!]r

∫ t

tk

E sup
u∈[t0−τ,T]

|xn(u)|(m1+1)rds + 2r−13r/2−1Kr/2
∫ t

tk

[
1 + 2E sup

u∈[t0−τ,T]
|xn(u)|r

]
ds

≤ 2(2m1+3)r−1LrR
[(m1 + 1)!]r (t − tk) + 2r−13r/2−1Kr/2(1 + 2R)(t − tk)

≡ C1 · (t − tk),

where C1 ≡ C1(K,L,R, r,m1) is a generic constant and R = 1 +Q.
Similarly, by repeating completely the previous procedure, we see that

J2(t) ≤ C2 · (t − tk), (12)



M. Milošević / Filomat 27:1 (2013), 201–214 7

where C2 ≡ C2(K,L,R, r,m2) is a generic constant. In order to estimate the integral J3(t), observe that∫ t

tk

∫
Rd
|H(xn

s , x
n
s−τ,u, s; xn

tk
, xn

tk−n∗
)|2Π(du)ds (13)

≤ 2
∫ t

tk

∫
Rd
|H(xn

s , x
n
s−τ,u, s; xn

tk
, xn

tk−n∗
) − h(xn(s), xn(s − τ),u, s)|2Π(du)ds

+2
∫ t

tk

∫
Rd
|h(xn(s), xn(s − τ),u, s)|2Π(du)ds.

Using the estimate (9) and the linear growth condition (4), the estimate (13) becomes∫ t

tk

∫
Rd
|H(xn

s , x
n
s−τ, u, s; xn

tk
, xn

tk−n∗
)|2Π(du)ds (14)

≤ 2L2

[(m3 + 1)!]2

∫ t

tk

(
|∆xn

tk
| + |∆xn

tk−n∗
|
)2(m3+1)

ds + 2K
∫ t

tk

[1 + |xn(s)|2 + |xn(s − τ)|2]ds

≤
24(m3+1)+1L2

[(m3 + 1)!]2 sup
u∈[t0−τ,T]

|xn(u)|2(m3+1) + 2K
[
1 + 2 sup

u∈[t0−τ,T]
|xn(u)|2

] (t − tk).

Consequently, in view of the assumptionA3,we obtain

J3(t) = E
(∫ t

tk

∫
Rd
|H(xn

s , x
n
s−τ,u, s; xn

tk
, xn

tk−n∗
)|2Π(du)ds

)r/2

(15)

≤
(

2(2m3+3)r−1Lr

[(m3 + 1)!]r R + 23r/2−2Kr/2[1 + 2r/2R]
)

(t − tk)r/2

≡ C3 · (t − tk)r/2,

where C3 ≡ C3(K,L,R, r,m3) and R = 1 +Q.
Substituting the estimates (11), (12) and (15) into (10) we get

E sup
s∈[tk,t]

|xn(s) − xn(tk)|r ≤ C · n−r/2, t ∈ [tk, tk+1], k = 0, 1, ..., n − 1, (16)

where C is a generic constant independent of n.
Let us now estimate E sups∈[tk ,t]

|xn(s − τ) − xn(tk−n∗ )|r bearing in mind the additional assumptionA4. In
further discussion we distinguish two cases depending on whether the approximate solution xn coincide
with the initial condition or not.

1. If t − τ < t0 for t ∈ [tk, tk+1], then tk−n∗ < t0. So, in these points the solution xn coincide with the initial
condition. On the basis of the assumptionA4 we get

E sup
s∈[tk,t]

|xn(s − τ) − xn(tk−n∗ )|r = E sup
s∈[tk ,t]

|ξ(s − τ − t0) − ξ(tk−n∗ − t0)|r ≤ Cξ · n−r/2. (17)

2. If t − τ ≥ t0 for t ∈ [tk, tk+1], then the way we defined partitioning points guarantees that tk−n∗ ≥ t0.
Thus the first part of the proof yields

E sup
s∈[tk ,t]

|xn(s − τ) − xn(tk−n∗)|r ≤ C · n−r/2. (18)

Using the estimates (17) and (18) we obtain

E sup
s∈[tk,t]

|xn(s − τ) − xn(tk−n∗ )|r ≤ C̄ · n−r/2, t ∈ [tk, tk+1], k = 0, 1, ..., n − 1.

where C̄ = max{Cξ,C}. This completes the proof.
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Now, we are in a position to state the main result related to the closeness between the solutions x and xn

in the Lp-sense.

Theorem 2.3. Let x be the solution to Eq. (5) and xn be its approximate solution determined by Eqs. (7). Let also
the conditions of Proposition 2.2 and the Lipschitz condition (3) be satisfied. Then for p ≥ 2,

E sup
t∈[t0−τ,T]

|x(t) − xn(t)|p ≤ β · n−(m+1)p/2,

where m = min{m1,m2,m3} and β is a generic constant independent of n.

Proof. For an arbitrary t ∈ [t0,T], by substituting Eqs. (5) and (7), it follows that

x(t) − xn(t) =
∫ t

t0

n−1∑
k=0

Jtk ,tk+1∧t(s)ds +
∫ t

t0

n−1∑
k=0

J̃tk ,tk+1∧t(s)dw(s) +
∫ t

t0

∫
Rd

n−1∑
k=0

Ĵtk,tk+1∧t(s)ν̃(du, ds),

where

Jtk,tk+1∧t(s) = [ f (x(s), x(s − τ), s) − F(xn
s , x

n
s−τ, s; xn

tk
, xn

tk−n∗
)]I[tk,tk+1∧t)(s), (19)

J̃tk,tk+1∧t(s) = [1(x(s), x(s − τ), s) − G(xn
s , x

n
s−τ, s; xn

tk
, xn

tk−n∗
)]I[tk ,tk+1∧t)(s),

Ĵtk,tk+1∧t(s) = [h(x(s), x(s − τ),u, s) −H(xn
s , x

n
s−τ, u, s; xn

tk
, xn

tk−n∗
)]I[tk ,tk+1∧t)(s).

Then, since both x and xn satisfy the same initial condition, one obtains

E sup
s∈[t0−τ,t]

|x(s) − xn(s)|p ≤ E sup
s∈[t0,t]

|x(s) − xn(s)|p (20)

≤ 3p−1(t − t0)p−1
∫ t

t0

E
∣∣∣∣ n−1∑

k=0

Jtk ,tk+1∧t(s)
∣∣∣∣pds

+3p−1cp(t − t0)
p
2−1

∫ t

t0

E
∣∣∣∣ n−1∑

k=0

J̃tk ,tk+1∧t(s)
∣∣∣∣pds

+3p−1cpE

∫ t

t0

∫
Rd

∣∣∣∣ n−1∑
k=0

Ĵtk ,tk+1∧t(s)
∣∣∣∣2Π(du)ds


p/2

.

Clearly, for j = max{i ∈ {0, 1, ..., n − 1}, ti ≤ t}, the inequality (20) can be written as

E sup
s∈[t0−τ,t]

|x(s) − xn(s)|p ≤ 3p−1(t − t0)p−1
j∑

i=0

∫ ti+1∧t

ti

E
∣∣∣∣ n−1∑

k=0

Jtk ,tk+1∧t(s)
∣∣∣∣pds (21)

+ 3p−1cp(t − t0)
p
2−1

j∑
i=0

∫ ti+1∧t

ti

E
∣∣∣∣ n−1∑

k=0

J̃tk ,tk+1∧t(s)
∣∣∣∣pds

+ 3p−1cpE

 j∑
i=0

∫ ti+1∧t

ti

∫
Rd

∣∣∣∣ n−1∑
k=0

Ĵtk,tk+1∧t(s)
∣∣∣∣2Π(du)ds


p/2

.

Then, the relation (21) becomes

E sup
s∈[t0−τ,t]

|x(s) − xn(s)|p (22)

≤ 3p−1(T − t0)p−1
j∑

i=0

J1
ti,ti+1∧t + 3p−1cp(T − t0)

p
2−1

j∑
i=0

J2
ti,ti+1∧t + 3p−1cpE

( j∑
i=0

J3
ti,ti+1∧t

)p/2
,



M. Milošević / Filomat 27:1 (2013), 201–214 9

where

J1
ti,ti+1∧t =

∫ ti+1∧t

ti

E| f (x(s), x(s − τ), s) − F(xn
s , x

n
s−τ, s; xn

ti
, xn

ti−n∗
)|pds, (23)

J2
ti,ti+1∧t =

∫ ti+1∧t

ti

E|1(x(s), x(s − τ), s) − G(xn
s , x

n
s−τ, s; xn

ti
, xn

ti−n∗
)|pds,

J3
ti,ti+1∧t =

∫ ti+1∧t

ti

∫
Rd
|h(x(s), x(s−τ),u, s) −H(xn

s , x
n
s−τ,u, s; xn

ti
, xn

ti−n∗
)|2Π(du)ds.

Then, we could estimate the integral J1
ti,ti+1∧t in the following way

J1
ti,ti+1∧t ≤ 2p−1

[∫ ti+1∧t

ti

E| f (x(s), x(s − τ), s) − f (xn(s), xn(s − τ), s)|pds (24)

+

∫ ti+1∧t

ti

E| f (xn(s), xn(s − τ), s) − F(xn
s , x

n
s−τ, s; xn

ti
, xn

ti−n∗
)|pds

]
.

By applying the Lipschitz condition (3) to the first summand of (24), we obtain∫ ti+1∧t

ti

E| f (x(s), x(s − τ), s) − f (xn(s), xn(s − τ), s)|pds (25)

≤ 2p/2−1K̄p/2
[∫ ti+1∧t

ti

E|x(s) − xn(s)|pds +
∫ ti+1∧t

ti

E|x(s − τ) − xn(s − τ)|pds
]
.

For the estimation of the second summand of (24) we will use the assumption A2 and Proposition 2.2.
Therefore,∫ ti+1∧t

ti

E| f (xn(s), xn(s − τ), s) − F(xn
s , x

n
s−τ, s; xn

ti
, xn

ti−n∗
)|pds (26)

≡
∫ ti+1∧t

ti

E

∣∣∣∣∣∣∣d
m1+1 f (xn(ti) + θ f∆xn

ti
, xn(ti−n∗) + θ f∆xn

ti−n∗
, s)

(m1 + 1)!

∣∣∣∣∣∣∣
p

ds

≤ 2(m1+1)p−1Lp

[(m1 + 1)!]p

[∫ ti+1∧t

ti

E|xn(s) − xn(ti)|(m1+1)pds +
∫ ti+1∧t

ti

E|xn(s − τ) − xn(ti−n∗ )|(m1+1)pds
]

≤ K2 · n−(m1+1)p/2(ti+1 ∧ t − ti),

where K2 =
2(m1+1)p−1Lp(C+C̄)

[(m1+1)!]p .

Substituting (25) and (26) into (24), we obtain

J1
ti,ti+1∧t ≤ φ(i, t,m1), (27)

where

φ(i, t,m1) = 23p/2−2K̄p/2
[∫ ti+1∧t

ti

[
E|x(s) − xn(s)|pds + E|x(s − τ) − xn(s − τ)|p

]
ds

]
(28)

+2p−1K2 · n−(m1+1)p/2(ti+1 ∧ t − ti).

Analogously,

J2
ti,ti+1∧t ≤ φ(i, t,m2). (29)
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On the other hand, we have

J3
ti,ti+1∧t ≤ 2

∫ ti+1∧t

ti

∫
Rd
|h(x(s), x(s − τ),u, s) − h(xn(s), xn(s − τ), u, s)|2Π(du)ds

+2
∫ ti+1∧t

ti

∫
Rd
|h(xn(s), xn(s − τ),u, s) −H(xn

s , x
n
s−τ,u, s; xn

ti
, xn

ti−n∗
)|2Π(du)ds

≤ 2K̄
∫ ti+1∧t

ti

[
|x(s) − xn(s)|2 + |x(s − τ) − xn(s − τ)|2

]
ds

+K3

∫ ti+1∧t

ti

[
|xn(s) − xn(ti)|2(m3+1) + |xn(s − τ) − xn(ti−n∗)|2(m3+1)

]
ds,

where K3 =
22(m3+1)L2

[(m3+1)!]2 . Consequently, we have that

j∑
i=0

J3
ti,ti+1∧t ≤ 2K̄

∫ t

t0

[
|x(s) − xn(s)|2 + |x(s − τ) − xn(s − τ)|2

]
ds + K3

∫ t

t0

j∑
i=0

I[ti,ti+1∧t)(s)|xn(s) − xn(ti)|2(m3+1)ds (30)

+K3

∫ t

t0

j∑
i=0

I[ti,ti+1∧t)(s)|xn(s − τ) − xn(ti−n∗ )|2(m3+1)ds.

On the basis of Proposition 2.2 and the estimate (30), we get

E
( j∑

i=0

J3
ti,ti+1∧t

)p/2
≤ 3p/2−12p/2K̄p/2E

(∫ t

t0

[|x(s) − xn(s)|2 + |x(s − τ) − xn(s − τ)|2]ds
)p/2

(31)

+3p/2−1Kp/2
3

E
∫ t

t0

j∑
i=0

I[ti,ti+1∧t)(s)|xn(s) − xn(ti)|2(m3+1)ds


p/2

+E

∫ t

t0

j∑
i=0

I[ti,ti+1∧t)(s)|xn(s − τ) − xn(ti−n∗)|2(m3+1)ds


p/2

≤ 3p/2−12pK̄p/2(T − t0)p/2−1
∫ t

t0

E sup
u∈[t0−τ,s]

|x(u) − xn(u)|pds

+3p/2−1Kp/2
3 (T − t0)p/2−1

∫ t

t0

j∑
i=0

I[ti,ti+1∧t)(s)E|xn(s) − xn(ti)|(m3+1)pds

+

∫ t

t0

j∑
i=0

I[ti,ti+1∧t)(s)E|xn(s − τ) − xn(ti−n∗ )|(m3+1)pds


≤ 3p/2−12pK̄p/2(T − t0)p/2−1

∫ t

t0

E sup
u∈[t0−τ,s]

|x(u) − xn(u)|pds

+3p/2−1Kp/2
3 (T − t0)p/2(C + C̄) · n−(m3+1)p/2.

Now, the estimates (27), (29) and (31) together with (22) yield

E sup
s∈[t0−τ,t]

|x(s) − xn(s)|p ≤ α1

∫ t

t0

E sup
u∈[t0−τ,s]

|x(u) − xn(u)|pds + α2n−(m+1)p/2,

where m = min{m1,m2,m3} and α1, α2 are generic constants independent of n.
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The application of the Gronwall-Bellman lemma gives

E sup
s∈[t0−τ,t]

|x(s) − xn(s)|p ≤ α2n−(m+1)p/2eα1(T−t0) ≡ β · n−(m+1)p/2,

where β is a generic constant. Since the last inequality holds for all t ∈ [t0,T], it follows that

E sup
s∈[t0−τ,T]

|x(s) − xn(s)|p ≤ β · n−(m+1)p/2,

which completes the proof.

On the basis of the previous assertions, we can prove the almost sure convergence of the sequence of
the approximate solutions {xn,n ∈ N} given by Eqs. (7) to the solution x of the initial equation (5) which
states the following theorem.

Theorem 2.4. Let the conditions of Theorem 2.3 be satisfied. Then, the sequence {xn, n ∈ N} of approximate solutions
determined by Eqs. (7) converges with probability one to the solution x of Eq. (5).

Proof. By applying the Chebyshev inequality and Theorem 2.3, we find for an arbitrary η > 0 that

∞∑
n=1

P
(

sup
t∈[t0−τ,T]

|x(t) − xn(t)|
p
2 ≥ n−η

)
≤
∞∑

n=1

E sup
t∈[t0−τ,T]

|x(t) − xn(t)|p · n2η ≤ β
∞∑

n=1

n−[(m+1)p−4η]/2.

The series on the right-hand side converges if we choose, for example, η < 1/2 for p = 2 and η < (p/2− 1)/2
for p > 2. Then, xn a.s.−→ x as n→∞, in view of the Borell-Cantelli lemma.

3. Stochastic differential delay equations driven by Poisson process

In the sequel we will develop the approximate method analogous to the one from the previous section,
for the following stochastic differential delay equations driven by Poisson process

dx(t) = f (x(t), x(t − τ), t)dt + 1(x(t), x(t − τ), t)dw(t) + h∗(x(t), x(t − τ), t)dN(t), t ∈ [t0,T], (32)
xt0 = ξ = {ξ(θ) : θ ∈ [−τ, 0]}, (33)

where h∗ : Rd × Rd × [t0,T] → Rd, x(t) is a d-dimensional state process, ξ ∈ Cb
F0

([−τ, 0]; Rd) and N is a scalar
Poisson process with intensity λ.

A d-dimensional stochastic process {x(t), t ∈ [t0−τ,T]} is said to be a solution to Eq. (32) if it is a.s. cádlá1,
x(t), t ∈ [t0,T] is Ft-adapted,

∫ T

t0
| f (x(t), x(t − τ), t)|dt < ∞ a.s.,

∫ T

t0
|1(x(t), x(t − τ), t)|2dt < ∞, a.s.,∫ T

t0
|h(x(t), x(t − τ), t)|2dt < ∞, a.s., xt0 = ξ a.s. and for every t ∈ [t0,T], the integral form of Eq. (32) holds a.s.
If one assumes that the global Lipschitz condition and the linear growth condition are satisfied, that is,

there exists a constant K̄∗ > 0 such that for all x1, x2, y1, y2 ∈ Rd and t ∈ [t0,T],

| f (x1, y1, t) − f (x2, y2, t)|2 ∨ |1(x1, y1, t) − 1(x2, y2, t)|2 ∨ |h(x1, y1, t) − h(x2, y2, t)|2 (34)

≤ K̄∗
(
|x1 − x2|2 + |y1 − y2|2

)
,

and also there exists a constant K∗>0 such that for all x, y ∈ Rd and t ∈ [t0,T],

| f (x, y, t)|2 ∨ |1(x, y, t)|2 ∨ |h(x, y, t)|2 ≤ K∗(1 + |x|2 + |y|2), (35)

then there exists a unique solution {x(t), t ∈ [t0 − τ,T]} to Eq. (32). We refer the reader to [25].
Using the similar technique as the one used in the previous section as well as that used in [23], one

can prove theorems analogue to Theorems 2.3 and 2.4. In that sense we will present the appropriate
assumptions under which these theorems hold
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The solution x = {x(t), t ∈ [t0,T]} to Eq. (32) will be approximated on the partition (6) by the solutions
{xn(t), t ∈ [tk, tk+1]}, k = 0, 1, ..., n − 1 of the equations

xn(t) = xn(tk) +
∫ t

tk

m1∑
i=0

di f (xn(tk), xn(tk−n∗), s)
i!

ds +
∫ t

tk

m2∑
i=0

di1(xn(tk), xn(tk−n∗), s)
i!

dw(s) (36)

+

∫ t

tk

m3∑
i=0

dih∗(xn(tk), xn(tk−n∗ ), s)
i!

dN(s),

satisfying the initial condition xn
t0
= ξ a.s.

In this case, we will prove the closeness between the solutions of Eqs. (32) and (36) under the Lipschitz
condition (34), the linear growth condition (35) and the assumptionsA1-A4 with modified assumptionA2,
in the sense that

sup
Rd×Rd×[t0,T]

∣∣∣∣∂m3+1h∗(x, y, t)
∂x j∂ym3+1− j

∣∣∣∣ ≤ L, j = 0, 1, ...,m3 + 1. (37)

Before stating the main results we give the following useful proposition.

Proposition 3.1. Let {xn(t), t ∈ [tk, tk+1]}, k = 0, 1, ..., n− 1, be the solution to Eq. (36) and let the condition (35) and
the assumptionsA1,A3 and modifiedA2, be satisfied. Then for every 2 ≤ r ≤ (M + 1)p,

E sup
s∈[tk ,t]

|xn(s) − xn(tk)|r ≤ C∗ · n−r/2, t ∈ [tk, tk+1], k = 0, 1, ..., n − 1.

Moreover, if the assumptionA4 is satisfied, then

E sup
s∈[tk ,t]

|xn(s − τ) − xn(tk−n∗)|r ≤ C̄∗ · n−r/2, t ∈ [tk, tk+1], k = 0, 1, ..., n − 1,

where C∗ and C̄∗ are positive constants, independent of n.

The proof is similar to that of Proposition 2.2 except the integral with respect to the Poisson process is
treated differently then we treated the integral with respect to Poisson measure, as it was done in [23]. In
that sense we omit the proof.

The previous proposition allows for the proving of the Lp-closeness between the solution x of Eq. (32)
and the approximate solution xn determined by Eqs. (36).

Theorem 3.2. Let x be the solution to Eq. (32) and xn be its approximate solution determined by Eqs. (36). Let also
the conditions of Proposition 3.1 and the Lipschitz condition (34) be satisfied. Then, for p ≥ 2,

E sup
t∈[t0−τ,T]

|x(t) − xn(t)|p ≤ β∗n−(m+1)p/2,

where m = min{m1,m2,m3} and β∗ is a generic constants independent of n.

In the same way as in Theorem 2.4, we can prove the almost sure convergence of the sequence of the
approximate solutions {xn,n ∈ N} given by Eqs. (36) to the solution x of the initial equation (32). Because of
that, we also give the following assertion without the proof.

Theorem 3.3. Let the conditions of Theorem 3.2 be satisfied. Then, the sequence {xn, n ∈ N} of approximate solutions
determined by Eqs. (36) converges with probability one to the solution x of Eq. (32).

Remark 3.4. If m1 = m2 = m3 = 0, the approximate solutions (7) and (36) reduce to the well-known Euler-
Maruyama solutions of stochastic differential delay equations with Poisson random measure and those with Poisson
process, respectively. Moreover, by omitting the jump term and the delayed argument in Eqs. (1) and (32), our results
reduce to those from [17].



M. Milošević / Filomat 27:1 (2013), 201–214 13

In order to illustrate the previous theory, we give an example.

Example 3.5. Consider the following scalar stochastic differential delay equation with Poisson jump

dx(t) = sin x(t − 1)dt + x(t)dw(t) + 2x(t)dN(t), t ∈ [0,T], (38)

satisfying the initial condition ξ(θ) = θ + 1, θ ∈ [−1, 0], where N is homogenous Poisson process with intensity
λ = 2 and T = 1.Clearly, the Lipschitz condition (34) and the linear growth condition (35) hold, so there exists unique
solution to Eq. (38). We simulated 2000 trajectories of both Brownian motion and Poisson process on the partition of
the time interval [0, 1] with n = 29 points. Then, we applied the approximation given by (36), for m1 = m2 = m3 = 1,
which yields

dxn(t) = [sin xn(tk − 1) + cos xn(tk − 1)(xn(t − 1) − xn(tk − 1))]dt + x(t)dw(t) + 2x(t)dN(t), (39)

whenever t ∈ [tk, tk+1), k ∈ {0, 1, ..., 29−i}, i ∈ {0, 1, ..., 4}.
On the basis of Theorem 3.2, we have that

E|x(T) − xn(T)|p ≤ β∗ · n−p, p ≥ 2.

Taking logarithms, we obtain that

log E|x(T) − xn(T)| ≈ p−1 log C + log δn, δn = n−1,

where C is a generic constant, independent of n.
Furtheron, we approximated log E|x(T) − xn(T)| by the sample average based on 2000 trajectories, and plotted it

against log δn, n = 29−i, i ∈ {0, 1, ..., 4}, which is represented in Figure 1. As a reference, we added a dashed line with
slope 1. Thus, one can conclude that the closeness in the Lp-sense between the exact solution x of Eq. (38) and the
approximate solution xn given by (39) is of the order p, since m = 1.

-5.5 -5 -4.5 -4 -3.5
Log ∆n

-10

-8

-7

-6

-5

-4

Figure 1: log E|x(T) − xn(T)| and reference line of slope 1 (dashed line)
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[21] M. Milošević, M. Jovanović, An application of Taylor series in the approximation of solutions to stochastic differential equations
with time-dependent delay, J. Comput. Appl. Math. 235 (2011) 4439–4451.

[22] J. Bao, Z. Hou, An analytic approximation of solutions of stochastic differential delay equations with Markovian switching, Math.
Computer Model. 50 (2009) 1379–1384.

[23] F. Jiang, Y. Shen, L. Liu, Taylor approximation of the solutions of stochastic differential delay equations with Poisson jump,
Commun. Nonlinear Sci. Numer. Simulat. 16 (2011) 798–804.

[24] M.L. Tsarkov, M.L. Sverdan, V.K. Yasynsky, Stability in stochastic modelling of the complex dynamical systems, Kyiv, 1996.
[25] K. Sobcyk, Stochastic Differential Equations with Applications to Physics and Engineering, Kluwer Academic, Dordrecht, 1991.


