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Abstract. The number of independent sets is equivalent to the partition function of the hard-core lattice
gas model with nearest-neighbor exclusion and unit activity. We study the number of independent sets
md,b(n) on the generalized Sierpinski gasket SGd,b(n) at stage n with dimension d equal to two, three and
four for b = 2, and layer b equal to three for d = 2. Upper and lower bounds for the asymptotic growth
constant, defined as zSGd,b = limv→∞ ln md,b(n)/v where v is the number of vertices, on these Sierpinski gaskets
are derived in terms of the numbers at a certain stage. The numerical values of these zSGd,b are evaluated
with more than a hundred significant figures accurate. We also conjecture upper and lower bounds for the
asymptotic growth constant zSGd,2 with general d, and an approximation of zSGd,2 when d is large.

1. Introduction

The lattice gas with repulsive pair interaction is an important model in statistical mechanics [1–4]. For
the special case with hard-core nearest-neighbor exclusion such that each site can be occupied by at most
one particle and no pair of adjacent sites can be simultaneously occupied, the partition function of the
lattice gas coincides with the independence polynomial in combinatorics [5, 6]. This model is a problem of
interest in mathematics [7–10]. While an activity (or fugacity) λ can be associated to each occupied site, the
special case with λ = 1 counts the number of independent (vertex) sets NIS(G) on a graph G [11]. Kaplansky
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considered the number of k-element independent sets on the path and circuit graphs almost 70 years ago
[12]. For a graph G with v(G) vertices, the number of independent sets can grow exponentially when v(G) is
large. 1) For the m×n grid graph, i.e. the square lattice (sq), it was shown that the limit limm,n→∞NIS(sq)1/mn

exists and its upper and lower bounds were estimated [13]. Baxter has obtained the numerical value for
the square lattice to 43 decimal places [14]. The number of independent sets and its bounds had been
considered on various graphs [15–17].

It is of interest to consider independent sets on self-similar fractal lattices which have scaling invari-
ance rather than translational invariance [18]. Fractals are geometric structures of (generally noninteger)
Hausdorff dimension realized by repeated construction of an elementary shape on progressively smaller
length scales [19, 20]. A well-known example of a fractal is the Sierpinski gasket which has been extensively
studied in several contexts [21–37].

We shall derive the recursion relations for the numbers of independent sets on the Sierpinski gasket
with dimension equal to two, three and four, and determine the asymptotic growth constants. We shall
also consider the number of independent sets on the generalized two-dimensional Sierpinski gasket with
layer equal to three.

2. Preliminaries

We first recall some relevant definitions for graphs and the Sierpinski gasket in this section. A connected
graph (without loops) G = (V,E) is defined by its vertex (site) and edge (bond) sets V and E [38, 39]. Let
v(G) = |V| be the number of vertices and e(G) = |E| the number of edges in G. The degree or coordination
number ki of a vertex vi ∈ V is the number of edges attached to it. A k-regular graph is a graph with the
property that each of its vertices has the same degree k. An independent set is a subset of the vertices such
that any two of them are not adjacent.

When the number of independent sets NIS(G) grows exponentially with v(G) as v(G)→∞, let us define
a constant zG describing this exponential growth:

zG = lim
v(G)→∞

ln NIS(G)
v(G)

, (1)

where G, when used as a subscript in this manner, implicitly refers to the thermodynamic limit. We will
see that the limit in Eq. (1) exists for the Sierpinski gasket considered in this paper.

The construction of the two-dimensional Sierpinski gasket SG2(n) at stage n is shown in Fig. 1. At
stage n = 0, it is an equilateral triangle; while stage (n + 1) is obtained by the juxtaposition of three n-stage
structures. In general, the Sierpinski gaskets SGd can be built in any Euclidean dimension d with fractal
dimension D = ln(d + 1)/ ln 2 [22]. For the Sierpinski gasket SGd(n), the numbers of edges and vertices are
given by

e(SGd(n)) =
(
d + 1

2

)
(d + 1)n =

d
2

(d + 1)n+1 , (2)

v(SGd(n)) =
d + 1

2
[(d + 1)n + 1] . (3)

Except the (d + 1) outmost vertices which have degree d, all other vertices of SGd(n) have degree 2d. In the
large n limit, SGd is 2d-regular.

The Sierpinski gasket can be generalized, denoted as SGd,b(n), by introducing the side length b which
is an integer larger or equal to two [40]. The generalized Sierpinski gasket at stage n + 1 is constructed
from b layers of stage n hypertetrahedrons (the generalization of a tetrahedron to d dimensions). The
two-dimensional SG2,b(n) with b = 3 at stage n = 1, 2 and b = 4 at stage n = 1 are illustrated in Fig. 2.
The ordinary Sierpinski gasket SGd(n) corresponds to the b = 2 case, where the index b is neglected for
simplicity. The Hausdorff dimension for SGd,b is given by D = ln

(b+d−1
d

)
/ ln b [40]. Notice that SGd,b is not

k-regular even in the thermodynamic limit.

1)For certain graphs, e.g. complete graph, the number of independent sets do not grow exponentially.
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Figure 1: The first four stages n = 0, 1, 2, 3 of the two-dimensional Sierpinski gasket SG2(n).
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Figure 2: The generalized two-dimensional Sierpinski gasket SG2,b(n) with b = 3 at stage n = 1, 2 and b = 4 at stage n = 1.

3. The number of independent sets on SG2(n)

In this section we derive the asymptotic growth constant for the number of independent sets on the
two-dimensional Sierpinski gasket SG2(n) in detail. Let us start with the definitions of the quantities to be
used.

Definition 3.1. Consider the generalized two-dimensional Sierpinski gasket SG2,b(n) at stage n. (i) Define m2,b(n) ≡
NIS(SG2,b(n)) as the number of independent sets. (ii) Define f2,b(n) as the number of independent sets such that all
three outmost vertices are not in the vertex subset. (ii) Define 12,b(n) as the number of independent sets such that only
one specified vertex of the three outmost vertices (illustrated in Fig. 3) is in the vertex subset. (iii) Define h2,b(n) as
the number of independent sets such that exact two specified vertices of the three outmost vertices (illustrated in Fig.
3) are in the vertex subset. (iv) Define p2,b(n) as the number of independent sets such that all three outmost vertices
are in the vertex subset.

Since we only consider the ordinary Sierpinski gasket in this section, we use the notations m2(n), f2(n),
12(n), h2(n) and p2(n) for simplicity. They are illustrated in Fig. 3, where only the outmost vertices are
shown. Because of rotational symmetry, there are three possible 12(n) and three possible h2(n) such that

m2(n) = f2(n) + 312(n) + 3h2(n) + p2(n) . (4)

The initial values at stage zero are f2(0) = 1, 12(0) = 1, h2(0) = 0, p2(0) = 0 and m2(0) = 4. The purpose of
this section is to obtain the asymptotic behavior of m2(n) as follows. The four quantities f2(n), 12(n), h2(n)
and p2(n) satisfy recursion relations.
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Figure 3: Illustration for the configurations f2(n), 12(n), h2(n), and p2(n). Only the three outmost vertices are shown explicitly, where a
solid circle is in the vertex subset and an open circle is not.

Lemma 3.2. For any non-negative integer n,

f2(n + 1) = f 3
2 (n) + 3 f2(n)12

2(n) + 312
2(n)h2(n) + h3

2(n) , (5)

12(n + 1) = f 2
2 (n)12(n) + 2 f2(n)12(n)h2(n) + 13

2(n) + 212(n)h2
2(n) + 12

2(n)p2(n) + h2
2(n)p2(n) , (6)

h2(n + 1) = f2(n)12
2(n) + f2(n)h2

2(n) + 212
2(n)h2(n) + h3

2(n) + 212(n)h2(n)p2(n) + h2(n)p2
2(n) , (7)

p2(n + 1) = 13
2(n) + 312(n)h2

2(n) + 3h2
2(n)p2(n) + p3

2(n) . (8)

Proof The Sierpinski gasket SG2(n + 1) is composed of three SG2(n) with three pairs of vertices
identified. The number f2(n + 1) consists of (i) one configuration where all three SG2(n) belong to the class
that is enumerated by f2(n); (ii) three configurations where one of the SG2(n) belongs to the class enumerated
by f2(n) and the other two belong to the class enumerated by 12(n); (iii) three configurations where two of
the SG2(n) belong to the class enumerated by 12(n) and the other one belongs to the class enumerated by
h2(n); (iv) one configuration where all three SG2(n) belongs to the class enumerated by h2(n) as illustrated
in Fig. 4. Eq. (5) is verified by adding these configurations.
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Figure 4: Illustration for the expression of f2(n+1). The multiplication of three on the right-hand-side corresponds to the three possible
orientations of SG2(n + 1).

Similarly, 12(n+ 1), h2(n+ 1) and p2(n+ 1) for SG2(n+ 1) can be obtained with appropriate configurations
of its three constituting SG2(n) as illustrated in Figs. 5, 6 and 7 to verify Eqs. (6), (7) and (8), respectively.
There are always 8 = 23 terms (counting multiplicity) in Eqs. (5) - (8) because for each of the three pairs of
identified vertices it can be either in the vertex subset or not. �
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Figure 5: Illustration for the expression of 12(n + 1). The multiplication of two on the right-hand-side corresponds to the reflection
symmetry with respect to the central vertical axis.

Alternatively, it is known that the number of dimer-monomers (known as a matching in combinatorics)
on a graph G is the same as the number of independent sets on the associated line graph L(G) [41]. Consider
the sequence of graphs H(n) shown in Fig. 8 that is obtained by adding an extra edge to each of the
outmost vertices of the Hanoi graph. As H(n) has SG2(n) as its line graph, the enumeration of the number
of independent sets on SG2(n) is equivalent to the enumeration of the number of dimer-monomers on these
H(n). One can define corresponding quantities of f2(n), 12(n), h2(n), p2(n) on H(n) that satisfy the same
recursion relations as in Lemma 3.2.
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Figure 6: Illustration for the expression of h2(n + 1). The multiplication of two on the right-hand-side corresponds to the reflection
symmetry with respect to the central vertical axis.
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Figure 7: Illustration for the expression of p2(n+1). The multiplication of three on the right-hand-side corresponds to the three possible
orientations of SG2(n + 1).
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Figure 8: The first four stages n = 0, 1, 2, 3 of the graph H(n).



S.-C. Chang et al. / Filomat 27:1 (2013), 23–40 28

The values of f2(n), 12(n), h2(n), p2(n) for small n can be evaluated recursively by Eqs. (5) - (8) as listed
in Table 1. These numbers grow exponentially, and do not have simple integer factorizations. To estimate
the value of the asymptotic growth constant defined in Eq. (1), we need the following lemmas.

For the generalized two-dimensional Sierpinski gasket SG2,b(n), define the ratios

α2,b(n) =
12,b(n)
f2,b(n)

, β2,b(n) =
h2,b(n)
12,b(n)

, γ2,b(n) =
p2,b(n)
h2,b(n)

, (9)

where n is a positive integer. For the ordinary Sierpinski gasket in this section, they are simplified to be
α2(n), β2(n), γ2(n) and their values for small n are listed in Table 2. From the initial values of f2(n), 12(n), h2(n),
p2(n), it is easy to see that f2(n) ≥ 12(n) ≥ h2(n) ≥ p2(n) for all non-negative n by induction. Alternatively,
these inequalities can be obtained by an injection. For instance, if one of the independent sets enumerated
by 12(n) is given, one can remove the corner vertex to obtain another independent set that is among those
that are enumerated by f2(n) such that f2(n) ≥ 12(n) is established. Similarly, the other two inequalities can
be established. It follows that α2(n), β2(n), γ2(n) ∈ (0, 1].

Table 1: The first few values of f2(n), 12(n), h2(n), p2(n), m2(n).

n 0 1 2 3 4
f2(n) 1 4 125 4,007,754 132,460,031,222,098,852,477
12(n) 1 2 65 2,089,888 69,073,020,285,472,159,669
h2(n) 0 1 34 1,089,805 36,019,032,212,213,865,476
p2(n) 0 1 18 568,301 18,782,596,680,434,060,148
m2(n) 4 14 440 14,115,134 466,518,785,395,590,988,060

Table 2: The first few values of α2(n), β2(n), γ2(n). The last digits given are rounded off.

n 1 2 3 4
α2(n) 0.5 0.52 0.521461147565444 0.521463113425180
β2(n) 0.5 0.523076923076923 0.521465743618797 0.521463113431998
γ2(n) 1 0.529411764705882 0.521470354788242 0.521463113438816

Lemma 3.3. For any positive integer n, the ratios satisfy

α2(n) ≤ β2(n) ≤ γ2(n) . (10)

When n increases, the ratio α2(n) increases monotonically while γ2(n) decreases monotonically. The three ratios in
the large n limit are equal to each other

lim
n→∞
α2(n) = lim

n→∞
β2(n) = lim

n→∞
γ2(n) . (11)

Proof It is clear that Eq. (10) is valid for small values of n given in Table 2. In order to save space, we
will use αn, βn, γn to denote α2(n), β2(n), γ2(n) for the lengthy equations in this Lemma. By definition, we
have

αn+1 = αn
Bn

An
, βn+1 = αn

Cn

Bn
, γn+1 = αn

Dn

Cn
(12)
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for a positive n, where

An = 1 + 3α2
n + 3α3

nβn + α
3
nβ

3
n ,

Bn = 1 + 2αnβn + α
2
n + 2α2

nβ
2
n + α

2
nβnγn + α

2
nβ

3
nγn ,

Cn = 1 + β2
n + 2αnβn + αnβ

3
n + 2αnβ

2
nγn + αnβ

3
nγ

2
n ,

Dn = 1 + 3β2
n + 3β3

nγn + β
3
nγ

3
n , (13)

such that

αn+1 − αn =
1

An

{
2α2

n(1 + αnβn)(βn − αn) + α3
nβn(1 + β2

n)(γn − αn)
}
, (14)

βn+1 − αn =
1

Bn

{
αn(βn + αn + αnβ

2
n + αnβnγn)(βn − αn) + α2

nβ
2
n(1 + βnγn)(γn − αn)

}
. (15)

It follows that

βn+1 − αn+1 =
βn − αn

AnBn

{
αn(βn + αn + αnβ

2
n + αnβnγn)An − 2α2

n(1 + αnβn)Bn

}
+
γn − αn

AnBn

{
α2

nβ
2
n(1 + βnγn)An − α3

nβn(1 + β2
n)Bn

}
=
βn − αn

AnBn
αn(1 + αnβn)

{
(1 − α2

n − α2
nβnγn)(βn − αn) + αnβn(γn − αn) − α3

nβ
3
n(γn − βn)

}
+
γn − αn

AnBn
α2

nβn

{
(1 + α2

n + α
2
nβnγn)(βn − αn) + β2

n(γn − αn) + α2
nβ

2
n(2 + αnβn)(γn − βn)

}
,

(16)

where

AnBn = 1 + 4α2
n + 2αnβn + 3α4

n + 9α3
nβn + 2α2

nβ
2
n + α

2
nβnγn + 3α5

nβn + 12α4
nβ

2
n + α

3
nβ

3
n + 3α4

nβnγn + α
2
nβ

3
nγn

+7α5
nβ

3
n + 2α4

nβ
4
n + 3α5

nβ
2
nγn + 3α4

nβ
3
nγn + 2α5

nβ
5
n + 4α5

nβ
4
nγn + α

5
nβ

6
nγn . (17)

Since γn − αn = (γn − βn) + (βn − αn), Eq. (17) leads to

βn+1 − αn+1 =
βn − αn

AnBn
αn(1 + αnβn)

{
(1 + αnβn − α2

n − α2
nβnγn)(βn − αn) + (αnβn − α3

nβ
3
n)(γn − βn)

}
+
γn − αn

AnBn
α2

nβn

{
(1 + α2

n + α
2
nβnγn)(βn − αn) + β2

n(γn − αn) + α2
nβ

2
n(2 + αnβn)(γn − βn)

}
.

(18)

Using the fact that αn, βn, γn ∈ (0, 1] and the inequality βn ≤ γn to be shown below, αn ≤ βn is proved by
induction. Define ϵn = γn − αn, which is larger than γn − βn and βn − αn as we shall prove βn ≤ γn, then

βn+1 − αn+1 ≤ ϵ2n
AnBn

{
αn(1 + αnβn)2 + α2

nβn(1 + α2
n + α

2
nβnγn + β

2
n + 2α2

nβ
2
n + α

3
nβ

3
n)
}

=
ϵ2n

AnBn

{
αn + 3α2

nβn + α
3
nβ

2
n + α

4
nβn + α

2
nβ

3
n + 2α4

nβ
3
n + α

4
nβ

2
nγn + α

5
nβ

4
n

}
≤ ϵ2n

AnBn

{
1 + 3α2

n + 2α3
nβn + α

2
nβ

2
n + 3α4

nβ
2
n + α

5
nβ

3
n

}
≤ ϵ2n . (19)

Similarly, we have

γn+1 − αn =
1

Cn

{
2αnβn(1 + βnγn)(βn − αn) + αnβ

3
n(1 + γ2

n)(γn − αn)
}
, (20)

and

γn+1 − βn+1 =
βn − αn

BnCn

{
2αnβn(1 + βnγn)Bn − αn(βn + αn + αnβ

2
n + αnβnγn)Cn

}
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+
γn − αn

BnCn

{
αnβ

3
n(1 + γ2

n)Bn − α2
nβ

2
n(1 + βnγn)Cn

}
=
βn − αn

BnCn
αn

{
(1 + βnγn − αnβ

3
n)(βn − αn)

+βn(βn + αnβ
2
n + α

2
nβ

3
n − α2

nβ
2
nγn − α2

nβ
3
nγ

2
n)(γn − βn) − αnβ

4
nγn(γn − αn)

}
+
γn − αn

BnCn
αnβ

2
n

{
(1 + αnβn)(βn − αn) + βn(γn − αnβ

2
n + 2αnβnγn)(γn − αn)

+α2
nβnγn(1 + βnγn)(γn − βn)

}
=
βn − αn

BnCn
αn

{
(1 + βnγn − αnβ

3
n − αnβ

4
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+βn(βn + αnβ
2
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nβ
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nγ

2
n − αnβ

3
nγn)(γn − βn)

}
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γn − αn

BnCn
αnβ

2
n

{
(1 + αnβn)(βn − αn) + βn(γn − αnβ

2
n + 2αnβnγn)(γn − αn)

+α2
nβnγn(1 + βnγn)(γn − βn)

}
, (21)

where the last equality holds using γn − αn = (γn − βn) + (βn − αn), and

BnCn = 1 + α2
n + 4αnβn + β

2
n + 2α3

nβn + 7α2
nβ

2
n + 3αnβ

3
n + α

2
nβnγn + 2αnβ

2
nγn + 5α3

nβ
3
n + 4α2

nβ
4
n + 4α3

nβ
2
nγn

+6α2
nβ

3
nγn + αnβ

3
nγ

2
n + 2α3

nβ
5
n + 7α3

nβ
4
nγn + α

2
nβ

5
nγn + 3α3

nβ
3
nγ

2
n + 2α2

nβ
4
nγ

2
n + α

3
nβ

6
nγn + 4α3

nβ
5
nγ

2
n

+α3
nβ

4
nγ

3
n + α

3
nβ

6
nγ

3
n . (22)

Using the fact that αn, βn, γn ∈ (0, 1] and the inequality αn ≤ βn proven above, βn ≤ γn is proved by induction.
We also have

γn+1 − βn+1 ≤ ϵ2n
BnCn

{
αn(1 + βnγn + β

2
n + αnβ

3
n + α

2
nβ

4
n)

+αnβ
2
n(1 + αnβn + βnγn + 2αnβ

2
nγn + α

2
nβnγn + α

2
nβ

2
nγ

2
n)
}

=
ϵ2n

BnCn

{
αn + 2αnβ

2
n + αnβnγn + 2α2

nβ
3
n + α

3
nβ

4
n + αnβ

3
nγn + α

3
nβ

3
nγn + 2α2

nβ
4
nγn + α

3
nβ

4
nγ

2
n

}
≤ ϵ2n

BnCn

{
1 + 3αnβn + 3αnβ

3
n + 2α3

nβ
3
n + 2α2

nβ
3
nγn + α

3
nβ

4
nγn

}
≤ ϵ2n . (23)

From Eqs. (19) and (23), we obtain ϵn+1 ≤ 2ϵ2n for all positive n by induction. It follows that for any positive
integer m ≤ n,

ϵn ≤ 2ϵ2n−1 ≤ 2
[
2ϵ2n−2

]2
≤ · · · ≤ 1

2

[
2ϵm

]2n−m

. (24)

Taking m as an integer larger than one so that ϵm < 1/2, then we have the values of αn, βn, γn are close to
each other when n becomes large.

Finally, it is clear that α2(n) increases monotonically as n increases by Eq. (14). As

γn − γn+1 =
1

Cn

{
(1 + β2

n)(γn − αn) + 2αnβn(1 + βnγn)(γn − βn)
}
, (25)

we know γ2(n) decreases monotonically as n increases, and the proof is completed. �

Numerically, we find

lim
n→∞
α2(n) = lim

n→∞
β2(n) = lim

n→∞
γ2(n) = 0.521463113428094965776... (26)

From the above lemma, we have the following bounds for the asymptotic growth constant.
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Lemma 3.4. The asymptotic growth constant for the number of independent sets on SG2(n) is bounded:

2
3m+1 ln[ f2(m)] +

1
3m ln[1 + α2

2(m)] ≤ zSG2 ≤
2

3m+1 ln[ f2(m)] +
1

3m ln[1 + β2
2(m)] , (27)

where m is a positive integer.

Proof From Eq. (5) and Lemma 3.3, we have the upper bound for f2(n),

f2(n) = f 3
2 (n − 1)

[
1 + 3α2

2(n − 1) + 3α3
2(n − 1)β2(n − 1) + α3

2(n − 1)β3
2(n − 1)

]
≤ f 3

2 (n − 1)
[
1 + β2

2(n − 1)
]3

≤
{

f 3
2 (n − 2)

[
1 + β2

2(n − 2)
]3}3[

1 + β2
2(n − 1)

]3
≤ · · ·

≤
[

f2(m)
]3n−m[

1 + β2
2(m)

] 3
2 (3n−m−1)

. (28)

From Eq. (4), the number of independent sets has the upper bound

m2(n) = f2(n)
[
1+ 3α2(n)+ 3α2(n)β2(n)+α2(n)β2(n)γ2(n)

]
≤

[
f2(m)

]3n−m[
1+ β2

2(m)
] 3

2 (3n−m−1)[
1+γ2(n)

]3
. (29)

As the number of vertices of SG2(n) is 3(3n + 1)/2 by Eq. (3), the upper bound for zSG2 defined in Eq. (1)
follows. The lower bound for zSG2 can be derived similarly. �

As m increases, the difference between the upper and lower bounds in Eq. (27) becomes small and the
convergence is rapid. The numerical value of zSG2 can be obtained with more than a hundred significant
figures accurate when m is equal to eight.

Proposition 3.5. The asymptotic growth constant for the number of independent sets on the two-dimensional
Sierpinski gasket SG2(n) in the large n limit is zSG2 = 0.38430953443368558352....

For the square lattice which also has degree four, the asymptotic growth constant is zsq = 0.40749510126068800045...
[14] that is larger than our result here.

As mentioned previously, the number of dimer-monomers on the graph H(n) illustrated in Fig. 8 is the
same as the number of independent sets on the two-dimensional Sierpinski gasket SG2(n). Similar to Eq.
(1), one can define a constant for the exponential growth of the number of dimer-monomers:

z′G = lim
v(G)→∞

ln NDM(G)
v(G)

, (30)

where NDM(G) is the number of dimer-monomers on a graph G. As the number of vertices of H(n) is 3n + 3,
we have the following corollary.

Corollary 3.6. The asymptotic growth constant for the number of dimer-monomers on the graph H(n) in the large n
limit is z′H = 0.57646430165052837528....

This result can be obtained from the asymptotic formula given in [42].
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4. The number of independent sets on SG2,3(n)

The method given in the previous section can be applied to the number of independent sets on SGd,b(n)
with larger values of d and b. The number of configurations to be considered increases as d and b increase,
and the recursion relations must be derived individually for each d and b. In this section, we consider the
generalized two-dimensional Sierpinski gasket SG2,b(n) with the number of layers b equal to three. For
SG2,3(n), the numbers of edges and vertices are given by

e(SG2,3(n)) = 3 × 6n , (31)

v(SG2,3(n)) =
7 × 6n + 8

5
, (32)

where the three outmost vertices have degree two. There are (6n − 1)/5 vertices of SG2,3(n) with degree
six and 6(6n − 1)/5 vertices with degree four. The initial values for the number of independent sets with
various conditions are the same as those for SG2: f2,3(0) = 1, 12,3(0) = 1, h2,3(0) = 0 and p2,3(0) = 0. The
recursion relations for SG2,3(n) are lengthy and given in the appendix. Some values of f2,3(n), 12,3(n), h2,3(n),
p2,3(n), m2,3(n) are listed in Table 3. These numbers grow exponentially, and do not have simple integer
factorizations.

Table 3: The first few values of f2,3(n), 12,3(n), h2,3(n), p2,3(n), m2,3(n).

n 0 1 2 3
f2,3(n) 1 19 172,371,175 93,818,345,014,803,648,739,612,995,034,820,933,103,277,876,214,071
12,3(n) 1 9 80,291,169 43,700,938,182,461,202,772,695,141,988,444,331,720,442,482,282,619
h2,3(n) 0 4 37,399,906 20,356,061,468,851,869,739,344,457,713,631,919,274,541,443,648,604
p2,3(n) 0 2 17,420,990 9,481,930,039,890,479,716,613,035,420,873,292,623,048,215,623,126
m2,3(n) 4 60 542,865,390 295,471,274,008,633,345,992,344,829,561,922,978,711,277,869,630,866

The values of the ratios α2,3(n), β2,3(n), γ2,3(n) defined in Eq. (9) for small n are listed in Table 4. The
sequence of α2,3(n) decreases monotonically as n increases, while β2,3(n) increases monotonically. Except the
first term γ2,3(1), γ2,3(n) also increases monotonically for n ≥ 2. We again have α2,3(n), β2,3(n), γ2,3(n) ∈ (0, 1]
but γ2,3(n) ≤ β2,3(n) ≤ α2,3(n) for n ≥ 2, in contrast to Lemma 3.3.

Table 4: The first few values of α2,3(n), β2,3(n), γ2,3(n). The last digits given are rounded off.

n 1 2 3
α2,3(n) 0.47368421052631578947 0.46580391994195085112 0.46580376338514186621
β2,3(n) 0.44444444444444444444 0.46580348082863259844 0.46580376338514186620
γ2,3(n) 0.5 0.46580304239267339335 0.46580376338514186619

By the same argument given in Lemma 3.4, we have the upper and lower bounds of the asymptotic
growth constant for the number of independent sets on SG2,3(n):

1
7 × 6m

{
5 ln f2,3(m) + ln

[
1 + γ3

2,3(m)
]
+ 6 ln

[
1 + γ2

2,3(m)
]}
≤ zSG2,3

≤ 1
7 × 6m

{
5 ln f2,3(m) + ln

[
1 + α3

2,3(m)
]
+ 6 ln

[
1 + α2

2,3(m)
]}
, (33)

with m a positive integer. The convergence of the upper and lower bounds remains rapid. More than
a hundred significant figures for zSG2,3 can be obtained when m is equal to five. We have the following
proposition.
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Proposition 4.1. The asymptotic growth constant for the number of independent sets on the two-dimensional
Sierpinski gasket SG2,3(n) in the large n limit is zSG2,3 = 0.38135033366164857274....

5. The number of independent sets on SG3(n)

In this section, we derive the asymptotic growth constant of independent sets on the three-dimensional
Sierpinski gasket SG3(n). We use the following definitions.

Definition 5.1. Consider the three-dimensional Sierpinski gasket SG3(n) at stage n. (i) Define m3(n) ≡ NIS(SG3(n))
as the number of independent sets. (ii) Define f3(n) as the number of independent sets such that all four outmost
vertices are not in the vertex subset. (iii) Define 13(n) as the number of independent sets such that only one certain
outmost vertex is in the vertex subset. (iv) Define h3(n) as the number of independent sets such that exact two certain
outmost vertices are in the vertex subset. (v) Define p3(n) as the number of independent sets such that exact three
certain outmost vertices are in the vertex subset. (vi) Define q3(n) as the number of independent sets such that all four
outmost vertices are in the vertex subset.

The quantities f3(n), 13(n), h3(n), p3(n) and q3(n) are illustrated in Fig. 9, where only the outmost vertices
are shown. There are

(4
1
)
= 4 equivalent configurations for 13(n),

(4
2
)
= 6 equivalent configurations for h3(n),

and
(4

1
)
= 4 equivalent configurations for p3(n). By definition,

m3(n) = f3(n) + 413(n) + 6h3(n) + 4p3(n) + q3(n) . (34)

The initial values at stage zero are f3(0) = 1, 13(0) = 1, h3(0) = 0, p3(0) = 0, q3(0) = 0 and m3(0) = 5.
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T
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h3(n)

�
��

T
TT

�� QQt tdt
p3(n)
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T
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�� QQt ttt
q3(n)

Figure 9: Illustration for the configurations f3(n), 13(n), h3(n), p3(n) and q3(n). Only the four outmost vertices are shown explicitly,
where a solid circle is in the vertex subset and an open circle is not.

The recursion relations are lengthy and given in the appendix. Some values of f3(n), 13(n), h3(n), p3(n),
q3(n), m3(n) are listed in Table 5. These numbers grow exponentially, and do not have simple integer
factorizations.

Table 5: The first few values of f3(n), 13(n), h3(n), p3(n), q3(n), m3(n).

n 0 1 2 3
f3(n) 1 10 25,817 1,292,964,293,737,151,090
13(n) 1 4 11,387 571,820,791,550,665,532
h3(n) 0 2 5,050 252,892,039,471,313,074
p3(n) 0 1 2,252 111,843,868,747,687,217
q3(n) 0 1 1,010 49,464,202,269,253,193
m3(n) 5 43 111,683 5,594,439,374,027,693,723

Define ratios

α3(n) =
13(n)
f3(n)

, β3(n) =
h3(n)
13(n)

, γ3(n) =
p3(n)
h3(n)

, δ3(n) =
q3(n)
p3(n)

(35)
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for a positive integer n as in Eq. (9). As n increases, we find α3(n) increases monotonically while β3(n), γ3(n),
δ3(n) decrease monotonically with the relation α3(n) ≤ β3(n) ≤ γ3(n) ≤ δ3(n). The values of these ratios for
small n are listed in Table 6. Numerically, we find

lim
n→∞
α3(n) = lim

n→∞
β3(n) = lim

n→∞
γ3(n) = lim

n→∞
δ3(n) = 0.442256573677178603386... (36)

Table 6: The first few values of α3(n), β3(n), γ3(n), δ3(n). The last digits given are rounded off.

n 1 2 3 4
α3(n) 0.4 0.441065964287098 0.442255671189410 0.442256573676665
β3(n) 0.5 0.443488188284886 0.442257510059261 0.442256573677711
γ3(n) 0.5 0.445940594059406 0.442259349015113 0.442256573678758
δ3(n) 1 0.448490230905861 0.442261188057088 0.442256573679804

By a similar argument as Lemma 3.4, the asymptotic growth constant for the number of independent
sets on SG3(n) is bounded:

1
2 × 4m ln[ f3(m)] +

1
4m ln[1 + α2

3(m)] ≤ zSG3 ≤
1

2 × 4m ln[ f3(m)] +
1

4m ln[1 + δ2
3(m)] , (37)

where m is a positive integer. More than a hundred significant figures for zSG3 can be obtained when m is
equal to seven. We have the following proposition.

Proposition 5.2. The asymptotic growth constant for the number of independent sets on the three-dimensional
Sierpinski gasket SG3(n) in the large n limit is zSG3 = 0.32859960572147955761....

6. The number of independent sets on SG4(n)

In this section, we derive the asymptotic growth constant of independent sets on the four-dimensional
Sierpinski gasket SG4(n). We use the following definitions.

Definition 6.1. Consider the four-dimensional Sierpinski gasket SG4(n) at stage n. (i) Define m4(n) ≡ NIS(SG4(n))
as the number of independent sets. (ii) Define f4(n) as the number of independent sets such that all five outmost
vertices are not in the vertex subset. (iii) Define 14(n) as the number of independent sets such that only one certain
outmost vertex is in the vertex subset. (iv) Define h4(n) as the number of independent sets such that exact two certain
outmost vertices are in the vertex subset. (v) Define p4(n) as the number of independent sets such that exact three
certain outmost vertices are in the vertex subset. (vi) Define q4(n) as the number of independent sets such that exact
four certain outmost vertices are in the vertex subset. (vii) Define r4(n) as the number of independent sets such that
all five outmost vertices are in the vertex subset.

The quantities f4(n), 14(n), h4(n), p4(n), q4(n) and r4(n) are illustrated in Fig. 10, where only the outmost
vertices are shown. There are

(5
1
)
= 5 equivalent 14(n),

(5
2
)
= 10 equivalent h4(n),

(5
3
)
= 10 equivalent p3(n),

and
(5

4
)
= 5 equivalent q3(n). By definition,

m4(n) = f4(n) + 514(n) + 10h4(n) + 10p4(n) + 5q4(n) + r4(n) . (38)

The initial values at stage zero are f4(0) = 1, 14(0) = 1, h4(0) = 0, p4(0) = 0, q4(0) = 0, r4(0) = 0 and m4(0) = 6.
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Figure 10: Illustration for the configurations f4(n), 14(n), h4(n), p4(n), q4(n) and r4(n). Only the five outmost vertices are shown
explicitly, where a solid circle is in the vertex subset and an open circle is not.

Table 7: The first few values of f4(n), 14(n), h4(n), p4(n), q4(n), r4(n), m4(n).

n 0 1 2 3
f4(n) 1 26 48,645,865 1,209,689,823,065,753,613,801,849,265,389,348,210,254
14(n) 1 10 19,499,025 485,275,031,765,121,996,003,377,748,244,728,141,942
h4(n) 0 4 7,827,058 194,671,321,306,020,419,533,199,834,929,606,628,798
p4(n) 0 2 3,146,558 78,093,721,039,746,646,163,976,217,053,630,607,240
q4(n) 0 1 1,266,948 31,327,833,873,772,900,771,790,623,812,192,536,505
r4(n) 0 1 510,980 12,567,379,442,065,248,794,102,222,711,306,394,841
m4(n) 6 142 262,722,870 6,532,921,954,159,964,003,443,553,868,217,630,357,710

The recursion relations are lengthy and given in the appendix. Some values of f4(n), 14(n), h4(n), p4(n),
q4(n), r4(n), m4(n) are listed in Table 7. These numbers grow exponentially, and do not have simple integer
factorizations.

Define ratios

α4(n) =
14(n)
f4(n)

, β4(n) =
h4(n)
14(n)

, γ4(n) =
p4(n)
h4(n)

, δ4(n) =
q4(n)
p4(n)

, η4(n) =
r4(n)
q4(n)

(39)

for a positive integer n as in Eq. (9). As n ≥ 2 increases, we find α4(n) increases monotonically while β4(n),
γ4(n), δ4(n), η4(n) decrease monotonically with the relation α4(n) ≤ β4(n) ≤ γ4(n) ≤ δ4(n) ≤ η4(n). The values
of these ratios for small n are listed in Table 8. Numerically, we find

lim
n→∞
α4(n) = lim

n→∞
β4(n) = lim

n→∞
γ4(n) = lim

n→∞
δ4(n) = lim

n→∞
η4(n) = 0.401156636030339443965... (40)

Table 8: The first few values of α4(n), β4(n), γ4(n), δ4(n), η4(n). The last digits given are rounded off.

n 1 2 3 4
α4(n) 0.384615384615385 0.400836227292906 0.401156579572832 0.401156636030338
β4(n) 0.4 0.401407660126596 0.401156681393497 0.401156636030341
γ4(n) 0.5 0.402010308343186 0.401156783217105 0.401156636030344
δ4(n) 0.5 0.402645684586141 0.401156885043655 0.401156636030347
η4(n) 1 0.403315684621626 0.401156986873147 0.401156636030350

By a similar argument as Lemma 3.4, the asymptotic growth constant for the number of independent
sets on SG4(n) is bounded:

2
5m+1 ln[ f4(m)] +

1
5m ln[1 + α2

4(m)] ≤ zSG4 ≤
2

5m+1 ln[ f4(m)] +
1

5m ln[1 + η2
4(m)] , (41)
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where m is a positive integer. More than a hundred significant figures for zSG4 can be obtained when m is
equal to seven. We have the following proposition.

Proposition 6.2. The asymptotic growth constant for the number of independent sets on the four-dimensional
Sierpinski gasket SG4(n) in the large n limit is zSG4 = 0.28916553234872775551....

7. Bounds of the asymptotic growth constants

For the d-dimensional Sierpinski gasket SGd(n), we conjecture that similar upper and lower bounds for
the asymptotic growth constant as in Lemma 3.4 hold,

2
(d + 1)m+1 ln[ fd(m)] +

1
(d + 1)m ln[1 + α2

d(m)] ≤ zSGd ≤
2

(d + 1)m+1 ln[ fd(m)] +
1

(d + 1)m ln[1 + ζ2
d(m)] (42)

with a positive integer m, where the ratios are defined as

αd(n) =
1d(n)
fd(n)

, ζd(n) =
td(n)
sd(n)

, (43)

for a positive integer n. fd(n) again is the number of independent sets such that all d + 1 outmost vertices
are not in the vertex subset, 1d(n) is the number of independent sets such that one certain outmost vertex
is in the vertex subset, sd(n) is the number of independent sets such that all but one certain outmost vertex
are in the vertex subset, and t4(n) is the number of independent sets such that all d + 1 outmost vertices are
in the vertex subset.

Although the quantities in Eq. (42) for general m are difficult to obtain, one can consider the simplest case
m = 1. Denote the upper and lowers bounds at m = 1 as z̄SGd and zSGd

, respectively. Because sd(1) = td(1) = 1
and 1d(1) = fd−1(1), we have

z̄SGd =
2

(d + 1)2 ln[ fd(1)] +
1

d + 1
ln(2) ,

zSGd
=

2
(d + 1)2 ln[ fd(1)] +

1
d + 1

ln
[
1 +

( fd−1(1)
fd(1)

)2]
, (44)

and the task reduces to the determination of fd(1). It is easy to see that f1(1) = 2 and we formally set
f0(1) = 1, then fd(1) satisfies the recursion relation

fd(1) = fd−1(1) + d fd−2(1) (45)

for d ≥ 2. This relation can be understood as follows. The d-dimensional Sierpinski gasket SGd(1) at stage
one is the juxtaposition of d + 1 complete graphs Kd+1. For the enumeration of fd(1), consider one of the
complete graphs. In the case that all d interior vertices of the complete graph are not in the vertex subset,
the number is the same as 1d(1) = fd−1(1), which is given as the first term on the right-hand-side of Eq. (45).
In the case that one of the d interior vertices of the complete graph is in the vertex subset, the number is
given by fd−2(1), which gives the second term on the right-hand-side of Eq. (45). It follows that fd(1) is
equal to the number of permutation involutions on d + 1 elements, which is given by

fd(1) =
[(d+1)/2]∑

n=0

(d + 1)!
2nn!(d + 1 − 2n)!

(46)

as sequence A000085 in Ref. [43]. The values of fd(1), zSGd
, z̄SGd for small d are listed in Table 9. We notice

that zSGd
is closer to zSGd compared with z̄SGd , and serves as an approximation for zSGd . Furthermore, it is

easy to see that fd−1(1) ≪ fd(1) when d is large using Eq. (45), such that the second term of zSGd
in Eq. (44)

approaches zero in the infinite d limit. While the term ln(2)/(d+1) of z̄SGd also approaches zero in the infinite
d limit, 2

(d+1)2 ln[ fd(1)] decreases as d increases. The asymptotic behavior of fd(1) and the ratio fd(1)/ fd−1(1)
has been discussed in [44] and improved in [45]. Using the results in [45], we have the following conjecture.
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Conjecture 7.1. The asymptotic growth constant for the number of independent sets on the d-dimensional Sierpinski
gasket SGd with large d can be approximated as

zSGd ∼
ln(d + 1) − 1

d + 1
+

2
(d + 1)3/2

+
1/2 − ln 2
(d + 1)2 −

5
12(d + 1)5/2

+
17

48(d + 1)3 . (47)

Table 9: Numerical values of zSGd
, z̄SGd , and some ratios of them to zSGd . The last digits given are rounded off.

d fd(1) zSGd
z̄SGd zSGd zSGd

/zSGd z̄SGd/zSGd

2 4 0.3824465974 0.5391144738 0.3843095344 0.9951525088 1.402813164
3 10 0.3249281379 0.4611099318 0.3285996057 0.9888269257 1.403257715
4 26 0.2882396119 0.3992771592 0.2891655323 0.9967979570 1.380790981
5 76 0.2590427565 0.3561208268 - - -
6 232 0.2368781125 0.3213368369 - - -
7 764 0.2184809121 0.2940986410 - - -
8 2620 0.2034116955 0.2713602941 - - -
9 9496 0.1905090814 0.2524872368 - - -

10 35696 0.1794854089 0.2362827010 - - -

Appendix A. Recursion relations for SG2,3(n)

We give the recursion relations for the generalized two-dimensional Sierpinski gasket SG2,3(n) here.
Since the subscript is d = 2, b = 3 for all the quantities throughout this section, we will use the simplified
notation fn+1 to denote f2,3(n + 1) and similar notations for other quantities. For any non-negative integer
n, we have

fn+1 = f 6
n + 6 f 4

n1
2
n + 9 f 2

n1
4
n + 6 f 3

n1
2
nhn + 216

n + 12 fn14
nhn + 6 f 2

n1
2
nh2

n + 914
nh2

n + 6 fn12
nh3

n + 612
nh4

n + h6
n + f 3

n1
3
n

+6 f 2
n1

3
nhn + 9 fn13

nh2
n + 3 f 2

n1nh3
n + 3 fn14

npn + 213
nh3

n + 6 fn12
nh2

npn + 614
nhnpn + 6 fn1nh4

n + 3 fnh4
npn

+912
nh3

npn + 313
nhnp2

n + 61nh3
np2

n + h3
np3

n , (A.1)
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n . (A.4)

There are always 128 = 27 terms (counting multiplicity) in these equations.
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Appendix B. Recursion relations for SG3(n)

We give the recursion relations for the three-dimensional Sierpinski gasket SG3(n) here. Since the
subscript is d = 3 for all the quantities throughout this section, we will use the simplified notation fn+1 to
denote f3(n + 1) and similar notations for other quantities. For any non-negative integer n, we have

fn+1 = f 4
n + 6 f 2

n1
2
n + 12 fn12

nhn + 314
n + 4 fnh3
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n + 413
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There are always 64 = 26 terms (counting multiplicity) in these equations.

Appendix C. Recursion relations for SG4(n)

We give the recursion relations for the four-dimensional Sierpinski gasket SG4(n) here. Since the
subscript is d = 4 for all the quantities throughout this section, we will use the simplified notation fn+1 to
denote f4(n + 1) and similar notations for other quantities. For any non-negative integer n, we have
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There are always 1024 = 210 terms (counting multiplicity) in these equations.

References

[1] L. K. Runnels, Phase transitions of hard sphere lattice gases, Communications in Mathematical Physics 40 (1975) 37–48.
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