A New Characterization of Line-to-line Maps in the Upper Plane

Baokui Li ${ }^{\text {a }}$, Yuefei Wang ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, Beijing Institute of technology, Beijing 100081, China
${ }^{b}$ Institute of Mathematics, AMSS, Chinese Academy of Sciences, Beijing 100190, China

Abstract

The characterization of typical maps in a domain of a given space is a much harder problem than that in the whole space. In this paper, by using methods of hyperbolic and affine geometry, we give a new characterization of line-to-line maps in the upper plane. We show that a line-to-line surjection is either an affine transformation, or a composition of an affine transformation and a g-reflection. Moreover, we prove that the composition of two g-reflections with the same boundary is an affine transformation.

1. Introduction and The Main Result

Suppose that $\mathcal{D} \subset \mathbb{R}^{2}$ is a domain. We say that ℓ is a line in \mathcal{D} if there is a straight line $s \subset \mathbb{R}^{2}$ such that $\ell=s \cap \mathcal{D}$, and a map

$$
f: \mathcal{D} \mapsto \mathcal{D}
$$

is line-to-line if the image of each line in \mathcal{D} is contained in a line of \mathcal{D}.
The line-to-line maps have been investigated for a long time and there are many papers in literature. Among them, the following results are due to Artin and Jeffers, respectively $[2,10]$.

Theorem A. [2] Suppose that $f: \mathbb{R}^{n} \mapsto \mathbb{R}^{n}(n>1)$ is a bijection and preserves lines, and suppose that the images of any two parallel lines under f are still parallel lines, then f is an affine transformation.

Here, f is said to preserve lines if the image of each line is still a line.
Theorem B. [10, Theorem 4.5] Suppose that $f: \mathbb{R}^{n} \mapsto \mathbb{R}^{n}(n>1)$ is a bijection and preserves lines. Then f is an affine transformation.

In [5], Chubarev and Pinelis show that the condition " f being injective" in Theorems A and B can be removed, and the condition " f preserving lines" can be replaced by the one " f being line-to-line". Precisely, we have the following.

Theorem C. [5] Suppose that $f: \mathbb{R}^{n} \mapsto \mathbb{R}^{n}(n>1)$ is a line-to-line surjection. Then f is an affine transformation.

[^0]In [11], the authors proved
Theorem D. [11, Theorem 3] Suppose that $f: \mathbb{R}^{n} \mapsto \mathbb{R}^{n}(n>1)$ preserves lines. Then f is an affine transformation if and only if it is non-degenerate.

Here, a line-preserving map $f: \mathbb{R}^{n} \mapsto \mathbb{R}^{n}(n>1)$ is non-degenerate if the image $f\left(\mathbb{R}^{n}\right)$ is not contained in a line.

In [12], the authors introduce a new class of line to line map on $\mathbb{R}^{2} \backslash \mathcal{L}_{b}, g$-(triangle)-reflection ϕ, which is affinely conjugated to the following form:

$$
\eta:(x, y) \mapsto\left(-\frac{x}{1+K x}, \frac{y}{1+K x}\right),(K \neq 0) .
$$

Any g-reflection has a fixed-point line \mathcal{L}_{a}, called axis, an only isolated fixed point \mathcal{P}_{0}, called base point, an undefined line \mathcal{L}_{b}, called boundary and two invariant domains Ω_{1}, Ω_{2}, and $\mathbb{R}^{2} \backslash \mathcal{L}_{b}=\Omega_{1} \cup \Omega_{2}$.

The characterization of typical maps in a domain of a given space is a much harder problem than that in the whole space. In this paper, we mainly consider the transformations that preserves the upper plane. The g-reflection with the boundary $\mathcal{L}_{b}=\mathcal{X}=\left\{\left((x, y) \in \mathbb{R}^{2} \mid y=0\right)\right\}$, would have the following form

$$
\eta_{(K, a)}:(x, y) \mapsto\left(\frac{x-a}{K y}+a, \frac{1}{K^{2} y}\right), \quad(K \neq 0, a \in \mathbb{R})
$$

which is determined by the base point $\left(a,-\frac{1}{K}\right)$.
By using methods of hyperbolic and affine geometry, we shall prove the following
Theorem 1.1. Suppose that $f: \mathbb{H} \mapsto \mathbb{H}$ is a line-to-line surjection. Then either f is an affine transformation, or $f=A \circ \eta$, where $A: \mathbb{H} \mapsto \mathbb{H}$ is an affine transformation, and $\eta: \mathbb{H} \mapsto \mathbb{H}$ is a g-reflection.

Theorem 1.2. Suppose that η_{1}, η_{2} are two g-reflections with the same boundary. Then the composition $\eta_{1} \circ \eta_{2}$ is an affine transformation.

2. The Proof of Theorem 1.1

For the sake of convenience, in the following, we always use A, B, \cdots to denote the points in \mathbb{H}^{2}, l or L a line in $\mathbb{H}, L_{A B}$ the line determined by A and $B, A B$ the segment with the endpoints A and B. Primes will denote images under the function we consider.

As in [12], we say a line l in \mathbb{H} is complete, if l is a complete line in \mathbb{R}^{2}, denoted by $L_{y=k}$ for some $k>0$. Obviously, there exists only one complete line passing through a given point P, denoted by L_{P}. For any line l in \mathbb{H}, either it is complete, or it crosses any complete lines in \mathbb{H}.

In this section, we shall prove Theorem 1.1. If f is an affine transformation, it is obvious. So we suppose that f is not an affine transformation in the following.

Lemma 2.1. f is line onto line.
Proof. Suppose that f is not line onto line. There exists a line l, such that $f(l) \subset l^{\prime}$, and $l^{\prime} \backslash f(l) \neq \emptyset$. Since f is onto. One can choose $Q \notin l$, such that $Q^{\prime} \in l^{\prime} \backslash f(l)$.

If l is not a complete line, $L_{Q} \cap l \neq \emptyset$.
If l is a complete line, choose any point $P \in l$, and get $L_{P Q}$.
All above, we can get a complete line and a non-complete line, all of their images are contained in l^{\prime}.
On the other hand, choose $A^{\prime}, B^{\prime} \in \mathbb{H}$, such that $L_{A^{\prime} B^{\prime}} \cap l^{\prime}=\emptyset$. Let A, B be their inverse images. One can find $L_{A B}$ will cross at least one of the complete line and the non-complete line, which is impossible. This contradiction complete the proof.

Lemma 2.2. For any complete line, the image is complete. Moreover, the image of any non-complete line is noncomplete.

Proof. Suppose that l is a complete line, and $l^{\prime}=f(l)$ is non-complete. There exist three non-collinear points A, B, C, such that $l_{A^{\prime} B^{\prime}} \cap l^{\prime}=l_{A^{\prime} C^{\prime}} \cap l^{\prime}=\emptyset$. Their inverse images A, B, C are non-collinear, and $l_{A B} \cap l=l_{A C} \cap l=\emptyset$, which is impossible since l is complete.

Suppose that l is not complete, and l^{\prime} is complete. For any complete line L, L^{\prime} is complete, and $L \cap l \neq \emptyset$, denoting the cross point by P. One can find that $L^{\prime}=L_{P^{\prime}}, P^{\prime} \in l^{\prime}$, so $L^{\prime}=l^{\prime}$. From which we can obtain that $f(\mathbb{H})=l^{\prime}$, this is a contradiction.

Above all, we complete the proof.
Lemma 2.3. f is injection.
Proof. Suppose that f is not injection. There exist P_{1}, P_{2}, such that $f\left(P_{1}\right)=f\left(P_{2}\right)=P^{\prime}$.
Case I. $L_{P_{1} P_{2}}$ is not complete. By Lemma 2.2, $f\left(L_{P_{1} P_{2}}\right)$ is not complete. Choose $Q \in L_{P_{1}}$, such that $P^{\prime} \neq Q^{\prime}$. Then $L_{P^{\prime} Q^{\prime}}=f\left(L_{P_{1} Q}\right)$ is a complete line. One the other hand, $L_{P_{2} Q}$ is non-complete, and $L_{P^{\prime} Q^{\prime}}=f\left(L_{P_{2} Q}\right)$ is complete, this is a contradiction.

Case II. $L_{P_{1} P_{2}}$ is complete. $L_{P^{\prime}}=f\left(L_{P_{1} P_{2}}\right)$ is a complete line. Choose Q, such that $Q^{\prime} \notin L_{P^{\prime}}$.
Choose Q_{2}, such that $Q_{2}^{\prime} \notin L_{P^{\prime} Q^{\prime}} \cup L_{P^{\prime}}$. Then $L_{P_{1} Q_{2}} \cap L_{Q P_{2}}$ or $L_{P_{1} Q} \cap L_{P_{2} Q_{2}}$ must be not all empty set, denoting the cross point by P_{3}. Obviously, $P_{3} \notin L_{P_{1} P_{2}}$ and $f\left(P_{3}\right)=P^{\prime} . L_{P_{1} P_{3}}$ is not a complete line. By case I, this is a contradiction.

Therefore we complete the proof.
Lemma 2.4. f is order-preserving.
Proof. Suppose that f is not order-preserving. There are some line l and three points $A, B, C \in l, B$ is between A, C, while B^{\prime} is not between A^{\prime}, C^{\prime}. As in Figure I, we suppose that A^{\prime} is between B^{\prime}, C^{\prime}. Then one can choose three parallel non-complete lines, passing through $A^{\prime}, B^{\prime}, C^{\prime}$, respectively. Denoted by l_{1}, l_{2}, l_{3}. Then we can get $E \in l_{2}, F \in l_{3}$, such that $l_{E F} \cap l_{1}=\emptyset$. On the other hand, $l_{E^{\prime} F^{\prime}} \cap l_{1} \neq \emptyset$.

This contraction completes the Lemma.

Figure I

By composing some suit affine transformation(preserving \mathbb{H}), we always suppose that f fixes $(0,1),(1,1)$ and the line $L_{x=0}=\{(x, y) \in \mathbb{H} \mid x=0\}$ in the following. Denote the image of $(0,2)$ by $(0, a)$. We also suppose that $a>1$. Otherwise, we can compose the g-reflection:

$$
\eta_{(1,0)}:(x, y) \mapsto\left(\frac{x}{y}, \frac{1}{y}\right)
$$

Lemma 2.5. f is parallel-preserving. That is, for any two parallel lines l_{1}, l_{2}, the image lines $l_{1}^{\prime}, l_{2}^{\prime}$ are parallel.

Figure II

Proof. By Lemma 2.2, if l_{1}, l_{2} are complete, their image lines are complete. They are parallel obviously. So we can assume that l_{1}, l_{2} are not complete. For the contradiction, we suppose that l_{1} and l_{2} are parallel to each other, and their image l_{1}^{\prime} and l_{2}^{\prime} are not(As in Figure II). Let A, B, E, F denote the intersection points of l_{1}, l_{2}, and $L_{y=1}, L_{y=2}$. Since $l_{1}^{\prime} \cap l_{2}^{\prime}=\emptyset$. So there exists $G^{\prime} \in B^{\prime} F^{\prime}$, such that $L_{E^{\prime} G^{\prime}}$ is parallel to l_{1}^{\prime}. On the other hand, $G \in B F, L_{E G} \cap l_{1} \neq \emptyset$. This is a contradiction, which complete the proof.

As in Figure III, denote $A(0,1), B(0,2), P(1,1), A^{\prime}(0,1), B^{\prime}(0, a), P^{\prime}(1,1)$. Denote $\tau=a-1>0$. Since f is parallel-preserving, we can get the image $Q^{\prime}(1,1+\tau)$ of $Q(1,2)$ by $L_{P Q}\left\|L_{A B} . L_{B E}\right\| L_{A Q}$ and $L_{B E} \cap L_{A P}=$ $E(-1,1)$. So $L_{B^{\prime} E^{\prime}} \| L_{A^{\prime} Q^{\prime}}$ and $L_{B^{\prime} E^{\prime}} \cap L_{A^{\prime} P^{\prime}}=E^{\prime}(-1,1)$. $L_{B E} \cap L_{P Q}=R(1,3)$ and $L_{B^{\prime} E^{\prime}} \cap L_{P^{\prime} Q^{\prime}}=R^{\prime}(1,1+2 \tau)$. And so it goes on, we can find the following proposition.

Figure III
Proposition 2.6. For any whole number n_{1} and positive whole number n_{2}, the point $P\left(n_{1}, 1+n_{2}\right), f(P)=\left(n_{1}, 1+n_{2} \tau\right)$.
Obviously, both of f and f^{-1} are line-onto-line bijections. So we can suppose that $a>2$, that is $\tau>1$. Otherwise, if $1<a<2$, we can consider f^{-1} instead of f. One can find two positive whole numbers n_{1}, n_{2}, such that $1<\frac{n_{2}}{n_{1}}<\tau$. Then the line passing through $P_{1}(0,1)$ and $P_{2}\left(n_{1}, 1+n_{2}\right)$ will cross the line $L_{x=-1}$. While the line passing through $P_{1}^{\prime}(0,1)$ and $P_{2}^{\prime}\left(n_{1}, 1+n_{2} \tau\right)$ will not cross the line $L_{x=-1}$. This is the desired contradiction. That is $a=2$. Moreover, f fixes any points in $L_{x=0}$. So we can obtain

Lemma 2.7. Suppose that $f: \mathbb{H} \rightarrow \mathbb{H}$ is a line-to-line surjection, fixes $P_{1}(0,1), P_{2}(1,1)$, and $f\left(P_{3}(0,2)\right)=P_{3}^{\prime}(0, a)$. If $a>1$, then $f=i d$.

Lemma 2.7 show that Theorem 1.1 holds, and the following results can be got from Thoerem 1.1.
Corollary 2.8. Suppose that $f: \mathbb{H} \mapsto \mathbb{H}$ is a line to line surjection, and $f=A \cdot \eta$, where $A: \mathbb{H} \mapsto \mathbb{H}$ is an affine transformation, and $\eta: \mathbb{H} \mapsto \mathbb{H}$ is a g-reflection. Moreover, there exist A^{\prime} and η^{\prime}, such that $f=\eta^{\prime} \cdot A^{\prime}$.

Corollary 2.9. Suppose that $f: \mathbb{H} \rightarrow \mathbb{H}$ is a line-to-line surjection. If there exist two fixed points P, Q of f, then for any point $E \in L_{P Q}, f(E)=E$.

Corollary 2.10. Suppose that $f: \mathbb{H} \rightarrow \mathbb{H}$ is a line-to-line surjection. If there exist three non-collinear fixed points of f, then $f=i d$.

Corollary 2.11. Suppose that $f: \mathbb{H} \rightarrow \mathbb{H}$ is a line-to-line surjection. If there exists some parallelogram \mathfrak{P}, such that $f(\mathfrak{P})$ is a parallelogram. f is an affine transformation.

3. The Proof of Theorem 1.2

In this section, we shall prove Theorem 1.2 by computation. Conjugated by some suitable affine transformation, we suppose that g-reflections have the same boundary $\mathcal{L}_{b}=\mathcal{X}$. Then all of them preserve the half upper plane \mathbb{H}^{2}. In fact, any g-reflection preserving the half upper plane is determined by the base point $\mathcal{P}_{0}=\left\{\left(a,-\frac{1}{K}\right)\right\}$ for any real number $K \neq 0$ and a, which has the form

$$
\eta_{(K, a)}:(x, y) \mapsto\left(\frac{x-a}{K y}+a, \frac{1}{K^{2} y}\right) .
$$

Denote the other g-reflection $\eta_{\left(K^{\prime}, a^{\prime}\right)}$,

$$
\eta_{\left(K^{\prime}, a^{\prime}\right)}:(x, y) \mapsto\left(\frac{x-a^{\prime}}{K^{\prime} y}+a^{\prime}, \frac{1}{K^{\prime 2} y}\right)
$$

The composition:

$$
\eta_{\left(K^{\prime}, a^{\prime}\right)} \circ \eta_{(K, a)}:(x, y) \mapsto\left(\frac{K}{K^{\prime}} x+\frac{a-a^{\prime}}{K^{\prime}} K^{2} y+a^{\prime}-\frac{a K}{K^{\prime}}, \frac{K^{2}}{K^{\prime 2}} y\right)
$$

is an affine transformation. Therefore we complete the proof of Theorem 1.2.
Moreover, we have the following propositions
Proposition 3.1. The affine transformation $\eta_{\left(K^{\prime}, a^{\prime}\right)} \circ \eta_{(K, a)}$ fixes some point P in the boundary of \mathbb{H} in \mathbb{R}^{2}, if and only if the base points $\mathcal{P}_{0}^{1}\left(a,-\frac{1}{K}\right)$ and $\mathcal{P}_{0}^{2}\left(a^{\prime},-\frac{1}{K^{\prime}}\right)$ are collinear with P. That is $K \neq K^{\prime}$. Moreover, if $K=-K^{\prime}, \eta_{\left(K^{\prime}, a^{\prime}\right)} \circ \eta_{(K, a)}$ fixes any point in the line $L_{\mathcal{P}_{0}^{1} \mathcal{P}_{0}^{2}}$. If $K \neq \pm K^{\prime}, P$ is the only fixed point of $\eta_{\left(K^{\prime}, a^{\prime}\right)} \circ \eta_{(K, a)}$.

Proposition 3.2. If $K=K^{\prime}$, the affine transformation $\eta_{\left(K^{\prime}, a^{\prime}\right)} \circ \eta_{(K, a)}$ fixes any point in the line $L=\left\{(x, y) \in \mathbb{R}^{2} \left\lvert\, y=\frac{1}{K}\right.\right\}$.

Acknowledgement

The authors would like to thank the referee for helpful comments and suggestions.

References

[1] J. Acźel, M. A. McKiernan, On the characterization of plane projective and complex Möbius transformation, Mathematische Nachrichten 33 (1967) 315-337.
[2] E. Artin, Geometric algebra, Interscience Publishers, New York, 1957.
[3] A. F. Beardon, Geometry of discrete groups, Springer-Verlag, New York, 1983.
[4] A. F. Beardon, D. Minda, Sphere-preserving maps in inversive geometry, Proceedings of the American Mathematical Society 130 (2001) 987-998.
[5] A. Chubarev, I. Pinelis, Fuandamental theorem of geometry without the 1-to-1 assumption, Proceedings of the American Mathematical Society 127 (1999) 2735-2744.
[6] J. Gibbons, C. Webb, Circle-preserving functions of spheres, Transactions of the American Mathematical Society 248 (1979) 67-83.
[7] H. Haruki, A proof of the principle of circle-transformations by use of a theorem on univalent functions, L'Enseignement Mathématique 18 (1972) 145-146.
[8] H. Haruki, T. M. Rassias, A new characteristic of Möbius transformations by use of Apollonius quadrilaterals, Proceedings of the American Mathematical Society 126 (1998) 2857-2861.
[9] H. Haruki, T. M. Rassias, A new characterization of Möbius transformations by use of Apollonius hexagons, Proceedings of the American Mathematical Society 128 (2000) 2105-2109.
[10] J. Jeffers, Lost Theorems of Geometry, American Mathematical Monthly 107 (2000) 800-812.
[11] B. Li, Y. Wang, Transformations and non-degenerate maps, Science in China. Series A. Mathematics 48 (2005) 195-205.
[12] B. Li, X. Wang, Y. Wang, The pseudo-affine transformations in \mathbb{R}^{2}. Science China Mathematics 53(3) (2010) 755-762.
[13] N. Y. Özgür, S. Bulut, A note on the characteristic properties of Möbius transformations, Radovi Matematički 12 (2004) 129-133.
[14] N. Samaris, A new characterization of Möbius transformations by use of $2 n$ points, Journal of Natural Geometry 22 (2002) 35-38.

[^0]: 2010 Mathematics Subject Classification. Primary 30C35; Secondary 51 F99
 Keywords. Affine transformation; g-reflection; line-to-line map
 Received: 09 April 2012; Accepted: 09 April 2012
 Communicated by Miodrag Mateljević
 Research supported by NSFC of China No. 11101032 (Baokui Li) and No. 10831004 (Yuefei Wang))
 Email addresses: henan_lbk@bit.edu.cn (Baokui Li), wangyf@math.ac.cn (Yuefei Wang)

