Filomat 27:1 (2013), 127–133 DOI 10.2298/FIL1301127L Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

A New Characterization of Line-to-line Maps in the Upper Plane

Baokui Li^a, Yuefei Wang^b

^aDepartment of Mathematics, Beijing Institute of technology, Beijing 100081, China ^bInstitute of Mathematics, AMSS, Chinese Academy of Sciences, Beijing 100190, China

Abstract. The characterization of typical maps in a domain of a given space is a much harder problem than that in the whole space. In this paper, by using methods of hyperbolic and affine geometry, we give a new characterization of line-to-line maps in the upper plane. We show that a line-to-line surjection is either an affine transformation, or a composition of an affine transformation and a g-reflection. Moreover, we prove that the composition of two g-reflections with the same boundary is an affine transformation.

1. Introduction and The Main Result

Suppose that $\mathcal{D} \subset \mathbb{R}^2$ is a domain. We say that ℓ is a *line* in \mathcal{D} if there is a straight line $s \subset \mathbb{R}^2$ such that $\ell = s \cap \mathcal{D}$, and a map

 $f: \mathcal{D} \mapsto \mathcal{D}$

is *line-to-line* if the image of each line in \mathcal{D} is contained in a line of \mathcal{D} .

The line-to-line maps have been investigated for a long time and there are many papers in literature. Among them, the following results are due to Artin and Jeffers, respectively [2, 10].

Theorem A. [2] Suppose that $f : \mathbb{R}^n \mapsto \mathbb{R}^n$ (n > 1) is a bijection and preserves lines, and suppose that the images of any two parallel lines under f are still parallel lines, then f is an affine transformation.

Here, *f* is said to preserve lines if the image of each line is still a line.

Theorem B. [10, Theorem 4.5] Suppose that $f : \mathbb{R}^n \mapsto \mathbb{R}^n$ (n > 1) is a bijection and preserves lines. Then f is an affine transformation.

In [5], Chubarev and Pinelis show that the condition "f being injective" in Theorems A and B can be removed, and the condition "f preserving lines" can be replaced by the one "f being line-to-line". Precisely, we have the following.

Theorem C. [5] Suppose that $f : \mathbb{R}^n \mapsto \mathbb{R}^n$ (n > 1) is a line-to-line surjection. Then f is an affine transformation.

²⁰¹⁰ Mathematics Subject Classification. Primary 30C35; Secondary 51F99

Keywords. Affine transformation; *g*-reflection; line-to-line map

Received: 09 April 2012; Accepted: 09 April 2012

Communicated by Miodrag Mateljević

Research supported by NSFC of China No. 11101032 (Baokui Li) and No. 10831004 (Yuefei Wang))

Email addresses: henan_lbk@bit.edu.cn (Baokui Li), wangyf@math.ac.cn (Yuefei Wang)

In [11], the authors proved

Theorem D. [11, Theorem 3] Suppose that $f : \mathbb{R}^n \mapsto \mathbb{R}^n$ (n > 1) preserves lines. Then f is an affine transformation *if and only if it is non-degenerate.*

Here, a line-preserving map $f : \mathbb{R}^n \mapsto \mathbb{R}^n$ (n > 1) is *non-degenerate* if the image $f(\mathbb{R}^n)$ is not contained in a line.

In [12], the authors introduce a new class of line to line map on $\mathbb{R}^2 \setminus \mathcal{L}_b$, *g*-(triangle)-reflection ϕ , which is affinely conjugated to the following form:

$$\eta:(x,y)\mapsto (-\frac{x}{1+Kx},\frac{y}{1+Kx}), (K\neq 0).$$

Any *g*-reflection has a fixed-point line \mathcal{L}_a , called *axis*, an only isolated fixed point \mathcal{P}_0 , called *base* point, an undefined line \mathcal{L}_b , called *boundary* and two invariant domains Ω_1, Ω_2 , and $\mathbb{R}^2 \setminus \mathcal{L}_b = \Omega_1 \cup \Omega_2$.

The characterization of typical maps in a domain of a given space is a much harder problem than that in the whole space. In this paper, we mainly consider the transformations that preserves the upper plane. The *g*-reflection with the boundary $\mathcal{L}_b = \mathcal{X} = \{((x, y) \in \mathbb{R}^2 | y = 0)\}$, would have the following form

$$\eta_{(K,a)}:(x,y)\mapsto (\frac{x-a}{Ky}+a,\frac{1}{K^2y}),\quad (K\neq 0,a\in\mathbb{R})$$

which is determined by the base point $(a, -\frac{1}{K})$.

By using methods of hyperbolic and affine geometry, we shall prove the following

Theorem 1.1. Suppose that $f : \mathbb{H} \to \mathbb{H}$ is a line-to-line surjection. Then either f is an affine transformation, or $f = A \circ \eta$, where $A : \mathbb{H} \to \mathbb{H}$ is an affine transformation, and $\eta : \mathbb{H} \to \mathbb{H}$ is a *g*-reflection.

Theorem 1.2. Suppose that η_1 , η_2 are two *g*-reflections with the same boundary. Then the composition $\eta_1 \circ \eta_2$ is an affine transformation.

2. The Proof of Theorem 1.1

For the sake of convenience, in the following, we always use A, B, \dots to denote the points in \mathbb{H}^2 , l or L a line in \mathbb{H} , L_{AB} the line determined by A and B, AB the segment with the endpoints A and B. Primes will denote images under the function we consider.

As in [12], we say a line l in \mathbb{H} is complete, if l is a complete line in \mathbb{R}^2 , denoted by $L_{y=k}$ for some k > 0. Obviously, there exists only one complete line passing through a given point P, denoted by L_P . For any line l in \mathbb{H} , either it is complete, or it crosses any complete lines in \mathbb{H} .

In this section, we shall prove Theorem 1.1. If f is an affine transformation, it is obvious. So we suppose that f is not an affine transformation in the following.

Lemma 2.1. *f* is line onto line.

Proof. Suppose that *f* is not line onto line. There exists a line *l*, such that $f(l) \subset l'$, and $l' \setminus f(l) \neq \emptyset$. Since *f* is onto. One can choose $Q \notin l$, such that $Q' \in l' \setminus f(l)$.

If *l* is not a complete line, $L_Q \cap l \neq \emptyset$.

If *l* is a complete line, choose any point $P \in l$, and get L_{PO} .

All above, we can get a complete line and a non-complete line, all of their images are contained in l'.

On the other hand, choose $A', B' \in \mathbb{H}$, such that $L_{A'B'} \cap l' = \emptyset$. Let A, B be their inverse images. One can find L_{AB} will cross at least one of the complete line and the non-complete line, which is impossible. This contradiction complete the proof. \Box

Lemma 2.2. For any complete line, the image is complete. Moreover, the image of any non-complete line is non-complete.

Proof. Suppose that *l* is a complete line, and l' = f(l) is non-complete. There exist three non-collinear points *A*, *B*, *C*, such that $l_{A'B'} \cap l' = l_{A'C'} \cap l' = \emptyset$. Their inverse images *A*, *B*, *C* are non-collinear, and $l_{AB} \cap l = l_{AC} \cap l = \emptyset$, which is impossible since *l* is complete.

Suppose that *l* is not complete, and *l'* is complete. For any complete line *L*, *L'* is complete, and $L \cap l \neq \emptyset$, denoting the cross point by *P*. One can find that $L' = L_{P'}$, $P' \in l'$, so L' = l'. From which we can obtain that $f(\mathbb{H}) = l'$, this is a contradiction.

Above all, we complete the proof. \Box

Lemma 2.3. *f* is injection.

Proof. Suppose that *f* is not injection. There exist P_1, P_2 , such that $f(P_1) = f(P_2) = P'$.

Case I. $L_{P_1P_2}$ is not complete. By Lemma 2.2, $f(L_{P_1P_2})$ is not complete. Choose $Q \in L_{P_1}$, such that $P' \neq Q'$. Then $L_{P'Q'} = f(L_{P_1Q})$ is a complete line. One the other hand, L_{P_2Q} is non-complete, and $L_{P'Q'} = f(L_{P_2Q})$ is complete, this is a contradiction.

Case II. $L_{P_1P_2}$ is complete. $L_{P'} = f(L_{P_1P_2})$ is a complete line. Choose Q, such that $Q' \notin L_{P'}$.

Choose Q_2 , such that $Q'_2 \notin L_{P'Q'} \cup L_{P'}$. Then $L_{P_1Q_2} \cap L_{QP_2}$ or $L_{P_1Q} \cap L_{P_2Q_2}$ must be not all empty set, denoting the cross point by P_3 . Obviously, $P_3 \notin L_{P_1P_2}$ and $f(P_3) = P'$. $L_{P_1P_3}$ is not a complete line. By case I, this is a contradiction.

Therefore we complete the proof. \Box

Lemma 2.4. f is order-preserving.

Proof. Suppose that *f* is not order-preserving. There are some line *l* and three points *A*, *B*, *C* \in *l*, *B* is between *A*, *C*, while *B*' is not between *A*', *C*'. As in Figure I, we suppose that *A*' is between *B*', *C*'. Then one can choose three parallel non-complete lines, passing through *A*', *B*', *C*', respectively. Denoted by *l*₁, *l*₂, *l*₃. Then we can get $E \in l_2$, $F \in l_3$, such that $l_{EF} \cap l_1 = \emptyset$. On the other hand, $l_{E'F'} \cap l_1 \neq \emptyset$.

This contraction completes the Lemma. \Box

Baokui Li, Yuefei Wang / Filomat 27:1 (2013), 127-133

By composing some suit affine transformation(preserving \mathbb{H}), we always suppose that f fixes (0, 1), (1, 1) and the line $L_{x=0} = \{(x, y) \in \mathbb{H} | x = 0\}$ in the following. Denote the image of (0, 2) by (0, *a*). We also suppose that a > 1. Otherwise, we can compose the g-reflection:

$$\eta_{(1,0)}:(x,y)\mapsto (\frac{x}{y},\frac{1}{y}).$$

Lemma 2.5. *f* is parallel-preserving. That is, for any two parallel lines l_1 , l_2 , the image lines l'_1 , l'_2 are parallel.

Proof. By Lemma 2.2, if l_1, l_2 are complete, their image lines are complete. They are parallel obviously. So we can assume that l_1, l_2 are not complete. For the contradiction, we suppose that l_1 and l_2 are parallel to each other, and their image l'_1 and l'_2 are not(As in Figure II). Let A, B, E, F denote the intersection points of l_1, l_2 , and $L_{y=1}, L_{y=2}$. Since $l'_1 \cap l'_2 = \emptyset$. So there exists $G' \in B'F'$, such that $L_{E'G'}$ is parallel to l'_1 . On the other hand, $G \in BF, L_{EG} \cap l_1 \neq \emptyset$. This is a contradiction, which complete the proof. \Box

As in Figure *III*, denote A(0, 1), B(0, 2), P(1, 1), A'(0, 1), B'(0, a), P'(1, 1). Denote $\tau = a - 1 > 0$. Since f is parallel-preserving, we can get the image $Q'(1, 1 + \tau)$ of Q(1, 2) by $L_{PQ} \parallel L_{AB}$. $L_{BE} \parallel L_{AQ}$ and $L_{BE} \cap L_{AP} = E(-1, 1)$. So $L_{B'E'} \parallel L_{A'Q'}$ and $L_{B'E'} \cap L_{A'P'} = E'(-1, 1)$. $L_{BE} \cap L_{PQ} = R(1, 3)$ and $L_{B'E'} \cap L_{P'Q'} = R'(1, 1 + 2\tau)$. And so it goes on, we can find the following proposition.

130

Proposition 2.6. For any whole number n_1 and positive whole number n_2 , the point $P(n_1, 1+n_2)$, $f(P) = (n_1, 1+n_2\tau)$.

Obviously, both of f and f^{-1} are line-onto-line bijections. So we can suppose that a > 2, that is $\tau > 1$. Otherwise, if 1 < a < 2, we can consider f^{-1} instead of f. One can find two positive whole numbers n_1, n_2 , such that $1 < \frac{n_2}{n_1} < \tau$. Then the line passing through $P_1(0, 1)$ and $P_2(n_1, 1 + n_2)$ will cross the line $L_{x=-1}$. While the line passing through $P'_1(0, 1)$ and $P'_2(n_1, 1 + n_2\tau)$ will not cross the line $L_{x=-1}$. This is the desired contradiction. That is a = 2. Moreover, f fixes any points in $L_{x=0}$. So we can obtain

Lemma 2.7. Suppose that $f : \mathbb{H} \to \mathbb{H}$ is a line-to-line surjection, fixes $P_1(0, 1)$, $P_2(1, 1)$, and $f(P_3(0, 2)) = P'_3(0, a)$. If a > 1, then f = id.

Lemma 2.7 show that Theorem 1.1 holds, and the following results can be got from Thoerem 1.1.

Corollary 2.8. Suppose that $f : \mathbb{H} \to \mathbb{H}$ is a line to line surjection, and $f = A \cdot \eta$, where $A : \mathbb{H} \to \mathbb{H}$ is an affine transformation, and $\eta : \mathbb{H} \to \mathbb{H}$ is a g-reflection. Moreover, there exist A' and η' , such that $f = \eta' \cdot A'$.

Corollary 2.9. Suppose that $f : \mathbb{H} \to \mathbb{H}$ is a line-to-line surjection. If there exist two fixed points P, Q of f, then for any point $E \in L_{PQ}$, f(E) = E.

Corollary 2.10. Suppose that $f : \mathbb{H} \to \mathbb{H}$ is a line-to-line surjection. If there exist three non-collinear fixed points of f, then f = id.

Corollary 2.11. Suppose that $f : \mathbb{H} \to \mathbb{H}$ is a line-to-line surjection. If there exists some parallelogram \mathfrak{P} , such that $f(\mathfrak{P})$ is a parallelogram. f is an affine transformation.

3. The Proof of Theorem 1.2

In this section, we shall prove Theorem 1.2 by computation. Conjugated by some suitable affine transformation, we suppose that *g*-reflections have the same boundary $\mathcal{L}_b = X$. Then all of them preserve the half upper plane \mathbb{H}^2 . In fact, any *g*-reflection preserving the half upper plane is determined by the base point $\mathcal{P}_0 = \{(a, -\frac{1}{K})\}$ for any real number $K \neq 0$ and *a*, which has the form

$$\eta_{(K,a)}:(x,y)\mapsto (\frac{x-a}{Ky}+a,\frac{1}{K^2y}).$$

Denote the other *g*-reflection $\eta_{(K',a')}$,

$$\eta_{(K',a')}:(x,y)\mapsto (\frac{x-a'}{K'y}+a',\frac{1}{K'^2y})$$

The composition:

$$\eta_{(K',a')} \circ \eta_{(K,a)}: (x,y) \mapsto (\frac{K}{K'}x + \frac{a-a'}{K'}K^2y + a' - \frac{aK}{K'}, \frac{K^2}{K'^2}y)$$

is an affine transformation. Therefore we complete the proof of Theorem 1.2. Moreover, we have the following propositions

Proposition 3.1. The affine transformation $\eta_{(K',a')} \circ \eta_{(K,a)}$ fixes some point P in the boundary of \mathbb{H} in \mathbb{R}^2 , if and only if the base points $\mathcal{P}_0^1(a, -\frac{1}{K})$ and $\mathcal{P}_0^2(a', -\frac{1}{K'})$ are collinear with P. That is $K \neq K'$. Moreover, if K = -K', $\eta_{(K',a')} \circ \eta_{(K,a)}$ fixes any point in the line $L_{\mathcal{P}_0^1\mathcal{P}_0^2}$. If $K \neq \pm K'$, P is the only fixed point of $\eta_{(K',a')} \circ \eta_{(K,a)}$.

Proposition 3.2. If K = K', the affine transformation $\eta_{(K',a')} \circ \eta_{(K,a)}$ fixes any point in the line $L = \{(x, y) \in \mathbb{R}^2 | y = \frac{1}{K}\}$.

Acknowledgement

The authors would like to thank the referee for helpful comments and suggestions.

References

- J. Acźel, M. A. McKiernan, On the characterization of plane projective and complex Möbius transformation, Mathematische Nachrichten 33 (1967) 315–337.
- [2] E. Artin, Geometric algebra, Interscience Publishers, New York, 1957.
- [3] A. F. Beardon, Geometry of discrete groups, Springer-Verlag, New York, 1983.
- [4] A. F. Beardon, D. Minda, Sphere-preserving maps in inversive geometry, Proceedings of the American Mathematical Society 130 (2001) 987–998.
- [5] A. Chubarev, I. Pinelis, Fuandamental theorem of geometry without the 1-to-1 assumption, Proceedings of the American Mathematical Society 127 (1999) 2735–2744.
- [6] J. Gibbons, C. Webb, Circle-preserving functions of spheres, Transactions of the American Mathematical Society 248 (1979) 67–83.
- [7] H. Haruki, A proof of the principle of circle-transformations by use of a theorem on univalent functions, L'Enseignement Mathématique 18 (1972) 145–146.
- [8] H. Haruki, T. M. Rassias, A new characteristic of Möbius transformations by use of Apollonius quadrilaterals, Proceedings of the American Mathematical Society 126 (1998) 2857–2861.
- [9] H. Haruki, T. M. Rassias, A new characterization of Möbius transformations by use of Apollonius hexagons, Proceedings of the American Mathematical Society 128 (2000) 2105–2109.
- [10] J. Jeffers, Lost Theorems of Geometry, American Mathematical Monthly 107 (2000) 800-812.
- [11] B. Li, Y. Wang, Transformations and non-degenerate maps, Science in China. Series A. Mathematics 48 (2005) 195–205.
- [12] B. Li, X. Wang, Y. Wang, The pseudo-affine transformations in \mathbb{R}^2 . Science China Mathematics 53(3) (2010) 755–762.
- [13] N. Y. Özgür, S. Bulut, A note on the characteristic properties of Möbius transformations, Radovi Matematički 12 (2004) 129–133.
- [14] N. Samaris, A new characterization of Möbius transformations by use of 2n points, Journal of Natural Geometry 22 (2002) 35–38.