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Abstract. The characterization of typical maps in a domain of a given space is a much harder problem
than that in the whole space. In this paper, by using methods of hyperbolic and affine geometry, we give a
new characterization of line-to-line maps in the upper plane. We show that a line-to-line surjection is either
an affine transformation, or a composition of an affine transformation and a 1−reflection. Moreover, we
prove that the composition of two 1−reflections with the same boundary is an affine transformation.

1. Introduction and The Main Result

Suppose thatD ⊂ R2 is a domain. We say that ℓ is a line inD if there is a straight line s ⊂ R2 such that
ℓ = s ∩D, and a map

f : D 7→ D
is line-to-line if the image of each line inD is contained in a line ofD.

The line-to-line maps have been investigated for a long time and there are many papers in literature.
Among them, the following results are due to Artin and Jeffers, respectively [2, 10].

Theorem A. [2] Suppose that f : Rn 7→ Rn (n > 1) is a bijection and preserves lines, and suppose that the images of
any two parallel lines under f are still parallel lines, then f is an affine transformation.

Here, f is said to preserve lines if the image of each line is still a line.

Theorem B. [10, Theorem 4.5] Suppose that f : Rn 7→ Rn (n > 1) is a bijection and preserves lines. Then f is an
affine transformation.

In [5], Chubarev and Pinelis show that the condition “ f being injective” in Theorems A and B can be
removed, and the condition “ f preserving lines” can be replaced by the one “ f being line-to-line”. Precisely,
we have the following.

Theorem C. [5] Suppose that f : Rn 7→ Rn (n > 1) is a line-to-line surjection. Then f is an affine transformation.
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In [11], the authors proved

Theorem D. [11, Theorem 3] Suppose that f : Rn 7→ Rn (n > 1) preserves lines. Then f is an affine transformation
if and only if it is non-degenerate.

Here, a line-preserving map f : Rn 7→ Rn (n > 1) is non-degenerate if the image f (Rn) is not contained in
a line.

In [12], the authors introduce a new class of line to line map on R2\Lb, 1-(triangle)-reflection ϕ, which
is affinely conjugated to the following form:

η : (x, y) 7→ (− x
1 + Kx

,
y

1 + Kx
), (K , 0).

Any 1−reflection has a fixed-point lineLa, called axis, an only isolated fixed point P0, called base point, an
undefined line Lb, called boundary and two invariant domains Ω1,Ω2, and R2\Lb = Ω1 ∪Ω2.

The characterization of typical maps in a domain of a given space is a much harder problem than that
in the whole space. In this paper, we mainly consider the transformations that preserves the upper plane.
The 1-reflection with the boundary Lb = X = {((x, y) ∈ R2|y = 0)}, would have the following form

η(K,a) : (x, y) 7→ (
x − a
Ky
+ a,

1
K2y

), (K , 0, a ∈ R)

which is determined by the base point (a,− 1
K ).

By using methods of hyperbolic and affine geometry, we shall prove the following

Theorem 1.1. Suppose that f : H 7→ H is a line-to-line surjection. Then either f is an affine transformation, or
f = A ◦ η, where A :H 7→H is an affine transformation, and η :H 7→H is a 1-reflection.

Theorem 1.2. Suppose that η1, η2 are two 1-reflections with the same boundary. Then the composition η1 ◦ η2 is an
affine transformation.
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2. The Proof of Theorem 1.1

For the sake of convenience, in the following, we always use A, B, · · · to denote the points inH2, l or L
a line inH, LAB the line determined by A and B, AB the segment with the endpoints A and B. Primes will
denote images under the function we consider.

As in [12], we say a line l inH is complete, if l is a complete line in R2, denoted by Ly=k for some k > 0.
Obviously, there exists only one complete line passing through a given point P, denoted by LP. For any line
l inH, either it is complete, or it crosses any complete lines inH.

In this section, we shall prove Theorem 1.1. If f is an affine transformation, it is obvious. So we suppose
that f is not an affine transformation in the following.

Lemma 2.1. f is line onto line.

Proof. Suppose that f is not line onto line. There exists a line l, such that f (l) ⊂ l′, and l′\ f (l) , ∅. Since f is
onto. One can choose Q < l, such that Q′ ∈ l′\ f (l).

If l is not a complete line, LQ ∩ l , ∅.
If l is a complete line, choose any point P ∈ l, and get LPQ.
All above, we can get a complete line and a non-complete line, all of their images are contained in l′.
On the other hand, choose A′,B′ ∈H, such that LA′B′ ∩ l′ = ∅. Let A,B be their inverse images. One can

find LAB will cross at least one of the complete line and the non-complete line, which is impossible. This
contradiction complete the proof.

Lemma 2.2. For any complete line, the image is complete. Moreover, the image of any non-complete line is non-
complete.

Proof. Suppose that l is a complete line, and l′ = f (l) is non-complete. There exist three non-collinear points
A,B,C, such that lA′B′∩l′ = lA′C′∩l′ = ∅. Their inverse images A,B,C are non-collinear, and lAB∩l = lAC∩l = ∅,
which is impossible since l is complete.

Suppose that l is not complete, and l′ is complete. For any complete line L, L′ is complete, and L∩ l , ∅,
denoting the cross point by P. One can find that L′ = LP′ , P′ ∈ l′, so L′ = l′. From which we can obtain that
f (H) = l′, this is a contradiction.

Above all, we complete the proof.

Lemma 2.3. f is injection.

Proof. Suppose that f is not injection. There exist P1,P2, such that f (P1) = f (P2) = P′.
Case I. LP1P2 is not complete. By Lemma 2.2, f (LP1P2 ) is not complete. Choose Q ∈ LP1 , such that P′ , Q′.

Then LP′Q′ = f (LP1Q) is a complete line. One the other hand, LP2Q is non-complete, and LP′Q′ = f (LP2Q) is
complete, this is a contradiction.

Case II. LP1P2 is complete. LP′ = f (LP1P2 ) is a complete line. Choose Q, such that Q′ < LP′ .
Choose Q2, such that Q′2 < LP′Q′ ∪ LP′ . Then LP1Q2 ∩ LQP2 or LP1Q ∩ LP2Q2 must be not all empty set,

denoting the cross point by P3. Obviously, P3 < LP1P2 and f (P3) = P′. LP1P3 is not a complete line. By case I,
this is a contradiction.

Therefore we complete the proof.

Lemma 2.4. f is order-preserving.

Proof. Suppose that f is not order-preserving. There are some line l and three points A,B,C ∈ l, B is between
A,C, while B′ is not between A′,C′. As in Figure I, we suppose that A′ is between B′,C′. Then one can
choose three parallel non-complete lines, passing through A′,B′,C′, respectively. Denoted by l1, l2, l3. Then
we can get E ∈ l2, F ∈ l3, such that lEF ∩ l1 = ∅. On the other hand, lE′F′ ∩ l1 , ∅.

This contraction completes the Lemma.



Baokui Li, Yuefei Wang / Filomat 27:1 (2013), 127–133 130

X X′�
�
�
�
�
�
�
�
�
�
��l

Ar
Br

Cr

�
�
�
�
�
�
�
�
�
�
��l′

B′r
A′r

C′r

@
@

@
@

@
@

@@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@

@
@

@
@

@
@

@@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@

�
�
�
�
�
�
�
��

Er
Fr

E′r
F′r

Figure I

By composing some suit affine transformation(preservingH), we always suppose that f fixes (0, 1), (1, 1)
and the line Lx=0 = {(x, y) ∈ H|x = 0} in the following. Denote the image of (0, 2) by (0, a). We also suppose
that a > 1. Otherwise, we can compose the 1−reflection:

η(1,0) : (x, y) 7→ (
x
y
,

1
y

).

Lemma 2.5. f is parallel-preserving. That is, for any two parallel lines l1, l2, the image lines l′1, l
′
2 are parallel.
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Figure II

Proof. By Lemma 2.2, if l1, l2 are complete, their image lines are complete. They are parallel obviously. So
we can assume that l1, l2 are not complete. For the contradiction, we suppose that l1 and l2 are parallel to
each other, and their image l′1 and l′2 are not(As in Figure II). Let A,B,E, F denote the intersection points of
l1, l2, and Ly=1, Ly=2. Since l′1 ∩ l′2 = ∅. So there exists G′ ∈ B′F′, such that LE′G′ is parallel to l′1. On the other
hand, G ∈ BF, LEG ∩ l1 , ∅. This is a contradiction, which complete the proof.

As in Figure III, denote A(0, 1),B(0, 2),P(1, 1), A′(0, 1),B′(0, a),P′(1, 1). Denote τ = a − 1 > 0. Since f is
parallel-preserving, we can get the image Q′(1, 1 + τ) of Q(1, 2) by LPQ ∥ LAB. LBE ∥ LAQ and LBE ∩ LAP =
E(−1, 1). So LB′E′ ∥ LA′Q′ and LB′E′ ∩LA′P′ = E′(−1, 1). LBE ∩LPQ = R(1, 3) and LB′E′ ∩LP′Q′ = R′(1, 1+ 2τ). And
so it goes on, we can find the following proposition.
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Proposition 2.6. For any whole number n1 and positive whole number n2, the point P(n1, 1+n2), f (P) = (n1, 1+n2τ).

Obviously, both of f and f−1 are line-onto-line bijections. So we can suppose that a > 2, that is τ > 1.
Otherwise, if 1 < a < 2, we can consider f−1 instead of f . One can find two positive whole numbers n1,n2,
such that 1 < n2

n1
< τ. Then the line passing through P1(0, 1) and P2(n1, 1 + n2) will cross the line Lx=−1.

While the line passing through P′1(0, 1) and P′2(n1, 1 + n2τ) will not cross the line Lx=−1. This is the desired
contradiction. That is a = 2. Moreover, f fixes any points in Lx=0. So we can obtain

Lemma 2.7. Suppose that f :H→H is a line-to-line surjection, fixes P1(0, 1), P2(1, 1), and f (P3(0, 2)) = P′3(0, a).
If a > 1, then f = id.

Lemma 2.7 show that Theorem 1.1 holds, and the following results can be got from Thoerem 1.1.

Corollary 2.8. Suppose that f : H 7→ H is a line to line surjection, and f = A · η, where A : H 7→ H is an affine
transformation, and η :H 7→H is a 1-reflection. Moreover, there exist A′ and η′, such that f = η′ · A′.

Corollary 2.9. Suppose that f :H→H is a line-to-line surjection. If there exist two fixed points P,Q of f , then for
any point E ∈ LPQ, f (E) = E.

Corollary 2.10. Suppose that f : H → H is a line-to-line surjection. If there exist three non-collinear fixed points
of f , then f = id.

Corollary 2.11. Suppose that f :H→H is a line-to-line surjection. If there exists some parallelogramP, such that
f (P) is a parallelogram. f is an affine transformation.
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3. The Proof of Theorem 1.2

In this section, we shall prove Theorem 1.2 by computation. Conjugated by some suitable affine
transformation, we suppose that 1−reflections have the same boundary Lb = X. Then all of them preserve
the half upper planeH2. In fact, any 1−reflection preserving the half upper plane is determined by the base
point P0 = {(a,− 1

K )} for any real number K , 0 and a, which has the form

η(K,a) : (x, y) 7→ (
x − a
Ky
+ a,

1
K2y

).

Denote the other 1−reflection η(K′,a′),

η(K′,a′) : (x, y) 7→ (
x − a′

K′y
+ a′,

1
K′2y

).

The composition:

η(K′,a′) ◦ η(K,a) : (x, y) 7→ (
K
K′

x +
a − a′

K′
K2y + a′ − aK

K′
,

K2

K′2
y)

is an affine transformation. Therefore we complete the proof of Theorem 1.2.
Moreover, we have the following propositions

Proposition 3.1. The affine transformation η(K′,a′) ◦ η(K,a) fixes some point P in the boundary ofH inR2, if and only
if the base pointsP1

0(a,− 1
K ) andP2

0(a′,− 1
K′ ) are collinear with P. That is K , K′. Moreover, if K = −K′, η(K′,a′) ◦η(K,a)

fixes any point in the line LP1
0P2

0
. If K , ±K′, P is the only fixed point of η(K′,a′) ◦ η(K,a).

Proposition 3.2. If K = K′, the affine transformation η(K′,a′)◦η(K,a) fixes any point in the line L = {(x, y) ∈ R2|y = 1
K }.
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