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Abstract. In this paper, we studyI-paracompact spaces and discuss their properties. Also, we characterize
I-paracompact spaces. Some of the results in paracompact spaces have been generalized in terms of
I−paracompact spaces.

1. Introduction

The subject of ideals in topological spaces has been studied by Kuratowski [10] and Vaidyanathaswamy
[14]. An idealI on a set X is a nonempty collection of subsets of X which satisfies (i) A ∈ I and B ⊂ A implies
B ∈ I and (ii) A ∈ I and B ∈ I implies A ∪ B ∈ I. An ideal I is said to be a σ − ideal [9] if it is countably
additive. Given a topological space (X, τ) with an ideal I on X and if ℘(X) is the set of all subsets of X, a set
operator ()⋆ : ℘(X)→ ℘(X), called a local function [9] of A with respect to τ and I, is defined as follows: for
A ⊂ X, A⋆(I, τ) = {x ∈ X | U ∩A < I for every U ∈ τ(x)}where τ(x) = {U ∈ τ | x ∈ U}. A Kuratowski closure
operator cl⋆() for a topology τ⋆(I, τ), called ⋆−topology, finer than τ is defined by cl⋆(A) = A ∪A⋆(I, τ) [9].
If I is an ideal on X, then (X, τ,I) is called an ideal space. A subset A of a topological space (X, τ) is said
to be a generalized Fσ−subset [13] if for each open subset U of X containing A, there exists an Fσ−subset B
of X which is contained in U and contains A. A space X is said to be totally normal [12] if it is normal and
every open subset G of X is expressible as a union of a locally finite (in G) family of open Fσ−subset of X.
A space X is said to be perfectly normal [6] if it is normal and in which each open set is an Fσ−set. A subset
A of a space (X, τ) is said to be g-closed [11] if cl(A) ⊆ U, whenever A ⊆ U and U ∈ τ. By a space (X, τ), we
always mean a topological space (X, τ) with no separation properties assumed. If A ⊂ X, cl(A) and int(A)
will, respectively, denote the closure and interior of A in (X, τ).

Lemma 1.1. [1] The union of a finite family of locally finite collection of sets in a space (X, τ) is again locally finite.

Lemma 1.2. [1] IfV is a locally finite family of sets in a space (X, τ), then λ = {cl(Q) | Q ∈ V} is locally finite in X.

Lemma 1.3. [3] If {Aα | α ∈△} is a locally finite family of subsets in a space (X, τ), and if Bα ⊂ Aα for each α ∈△,
then the family {Bα | α ∈△} is locally finite in X.
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2. I−paracompact subsets

The concept of paracompactness with respect to an ideal was introduced by Zahid [15] and is fur-
ther studied by T.R. Hamlett, D. Rose and D. Janković [8]. An ideal space (X, τ,I) is said to be paracom-
pact modulo I orI−paracompact [8] if and only if every open coverU of X has a locally finite open refinement
V (not necessarily a cover) such that X − ∪{V | V ∈ V} ∈ I. A subset A of an ideal space (X, τ,I) is said to
be I − paracompact relative to X (I − paracompact subset [8]) if for any open cover U of A, there exist I ∈ I
and locally finite family V of open sets such that V refines U and A ⊂ ∪{V | V ∈ V} ∪ I. A is said to
be I−paracompact (I−paracompact subspace [8]) if (A, τA,IA) is IA−paracompact as a subspace, where τA
is the usual subspace topology. Theorem 2.1 below shows that a space (X, τ) is paracompact if and only
if it is paracompact modulo {∅}, the easy proof of which is omitted. A space X is said to be hereditarily
I−paracompact if every subset of X is I−paracompact. In this section, we characterize I− paracompact
spaces.

Theorem 2.1. Let (X, τ) be a space with an ideal I = {∅}. Then (X, τ) is paracompact if and only if (X, τ) is
paracompact modulo I.
The following Theorem 2.2 gives a property of subsets of X which are I−paracompact.

Theorem 2.2. If every open subset of (X, τ,I) is I−paracompact, then every subset of X is I−paracompact.

Proof. Let B be a subset of X and UB = {Uα ∩ B | α ∈△} be a τB−open cover of B, where each Uα is open
in X. Then U = {Uα | α ∈△} is a τ−open cover of V where V = ∪Uα. By hypothesis, there exist I ∈ I
and τ−locally finite family V = {Vβ | β ∈ ▽} which refines U such that V = ∪{Vβ | β ∈ ▽} ∪ I. Then
V ∩ B =

(
∪ {Vβ | β ∈ ▽} ∪ I

)
∩ B which implies that B = ∪{Vβ ∩ B | β ∈ ▽} ∪ (I ∩ B) which implies that

B = ∪{Vβ ∩ B | β ∈ ▽} ∪ IB where IB = I ∩ B ∈ IB. Let x ∈ B. Since V is τ−locally finite, there exists
U ∈ τ(x) such that Vβ ∩ U = ∅ for all β , β1, β2, ..., βn and so (Vβ ∩ U) ∩ B = ∅ for all β , β1, β2, ..., βn. Hence
(Vβ ∩ B) ∩ (U ∩ B) = ∅ for all β , β1, β2, ..., βn. Therefore, VB = {Vβ ∩ B | β ∈ ▽} is τB−locally finite. Let
Vβ ∩ B ∈ VB. Then Vβ ∈ V. SinceV refinesU, there is some Uα ∈ U such that Vβ ⊂ Uα which implies that
Vβ ∩ B ⊂ Uα ∩ B. Therefore,VB refinesUB. Hence every subset of X is an I−paracompact subspace.

If I = {∅} in the above Theorem 2.2, we have the following Corollary 2.3.

Corollary 2.3. [4, 7] If every open subset of a space (X, τ) is paracompact, then every subset of X is paracompact.

Hamlett, Rose and Janković [8] established that every closed subset of an I−paracompact space is I−
paracompact. The following Theorem 2.4 is a generalization of the above result. If I = {∅} in the Theorem
2.4, we have Corollary 2.6.

Theorem 2.4. Every Fσ−set (countable union of closed sets) of anI−paracompact space (X, τ,I) is anI−paracompact
subspace of X.

Proof. Let A be an Fσ−subset of X. Then A = ∪{Ai | i ∈ N} where each Ai is closed. LetU = {Uα | α ∈△} be a
τA−open cover of A where Uα = Vα ∩ A such that Vα is open in X. ThenU1 = {Vα | α ∈△} ∪ {X − Ai | i ∈ N}
is an open cover of X. By hypothesis, there exist I ∈ I and open locally finite family V1 = {Vβ | β ∈△0}
which refines U1 such that X = ∪{Vβ | β ∈△0} ∪ I. Let B = {Vβ | Vβ ∈ V1 and Vβ ∩ Ai , ∅ for every i}.
Then B is locally finite. Let Vβ ∈ B. Then Vβ ∈ V1 and since V1 refines U1, there exists some U in U1
such that Vβ ⊂ U. This U must be some Vα. Suppose, if U = X − Ai for some i, then Vβ ⊂ X − Ai for some
i which implies that Vβ ∩ Ai = ∅. Then Vβ < B, which is a contradiction. Therefore, U must be some Vα.
Since X = ∪{Vβ | β ∈△0} ∪ I, A = (∪{Vβ | β ∈△0} ∪ I) ∩ A = ∪{(Vβ ∩ A) | β ∈△0} ∪ (I ∩ A) which implies that
A ⊂ ∪{(Vβ ∩ A) | β ∈△0} ∪ I. Let BA = {Vβ ∩ A | Vβ ∈ B and β ∈△0}. Let x ∈ A. Since B is locally finite, there
exists W ∈ τ(x) such that Vβ ∩W = ∅ for all β , β1, β2, ...βn. Now (Vβ ∩W) ∩ A = ∅ for all β , β1, β2, ...βn
implies that (Vβ ∩ A) ∩ (W ∩ A) = ∅ for all β , β1, β2, ...βn. Hence BA = {Vβ ∩ A | Vβ ∈ B and β ∈△0} is
τA−locally finite. Let Vβ∩A ∈ BA where Vβ ∈ B. Since every element ofB is contained in some Vα, Vβ ⊂ Vα
for some αwhich implies that Vβ ∩A ⊂ Vα ∩A and so Vβ ∩A ⊂ Uα. Therefore, BA refinesU.Hence A is an
I−paracompact subspace.
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Corollary 2.5. [8] Let (X, τ,I) be an I−paracompact space. If A ⊆ X is closed, then A is I−paracompact.

Corollary 2.6. [7, P.218, Theorem 8] Every Fσ−set of a paracompact space (X, τ) is paracompact.

Theorem 2.7. Let (X, τ,I) be a space and let A be a subset of X such that for each open set U ⊃ A, there is an
I−paracompact set B with A ⊂ B ⊂ U. Then A is I−paracompact.

Proof. Let U = {Uα | α ∈△} be a τA−open cover of A where Uα = A ∩ Vα such that Vα is open in X.
By the given condition, there exists an I−paracompact subset B of X such that A ⊂ B ⊂ ∪Vα. Then
UB = {Vα ∩ B | α ∈△} is a τB−open cover of B. By hypothesis, there exist I ∩ B = IB ∈ IB and τB−locally
finite family VB = {Vβ ∩ B | β ∈ ▽} which refines UB such that B ⊂ ∪{Vβ ∩ B | β ∈ ▽} ∪ (I ∩ B). Then
A = B ∩ A ⊂ (∪{Vβ ∩ B | β ∈ ▽} ∪ (I ∩ B)) ∩ A = ∪{Vβ ∩ B ∩ A | β ∈ ▽} ∪ (I ∩ A) which implies that
A ⊂ ∪{Vβ ∩ A | β ∈ ▽} ∪ IA. Let x ∈ A. SinceVB = {Vβ ∩ B | β ∈ ▽} is τB−locally finite, there exists W ∈ τ(x)
such that (Vβ ∩ B) ∩W = ∅ for all β , β1, β2, ..., βn which implies that ((Vβ ∩ B) ∩ (W ∩ B)) ∩ A = ∅ for all
β , β1, β2, ..., βn.Hence (Vβ∩B∩A)∩ (W∩B∩A) = ∅ for all β , β1, β2, ..., βn and so (Vβ∩A)∩ (W∩A) = ∅ for
all β , β1, β2, ..., βn. Therefore,V = {Vβ ∩ A | β ∈ ▽} is τA−locally finite. Let Vβ ∩ A ∈ V. Then Vβ ∩ B ∈ VB.
Since VB refines UB, there is some Vα ∩ B ∈ UB such that Vβ ∩ B ⊂ Vα ∩ B. Also, A ⊂ B implies that
Vβ ∩ A ⊂ Vβ ∩ B. Thus, Vβ ∩ A ⊂ Vα ∩ A = Uα so thatV refinesU. Hence A is I−paracompact.

Corollary 2.8. Every generalized Fσ−subset of an I−paracompact space (X, τ,I) is I−paracompact.

Proof. Let X be anI−paracompact space. Let A be a generalized Fσ−subset of X. Then for every open subset
U of X containing A, there exists an Fσ− subset B of X which is contained in U and contains A. By Theorem
2.4, B is I−paracompact. Therefore, by Theorem 2.7, A is I−paracompact.

If I = {∅} in the above Theorem 2.7, we have the following Corollary 2.9.

Corollary 2.9. [6] Let (X, τ) be a space and let A be a subset of X such that for each open set U ⊃ A, there is a
paracompact set B with A ⊂ B ⊂ U. Then A is paracompact.

If I = {∅} in the above Corollary 2.8, we have Corollary 2.10.

Corollary 2.10. Every generalized Fσ−subset of a paracompact space (X, τ) is paracompact.

Theorem 2.11. Every subset of a perfectly normal I−paracompact space (X, τ,I) is I−paracompact.

Proof. Suppose that (X, τ,I) is a perfectly normal I− paracompact space. Since X is perfectly normal, every
open set is an Fσ set and so every open set is I−paracompact, by Theorem 2.4. Therefore, by Theorem 2.2,
every subset of X is I−paracompact.

If I = {∅} in the above Theorem 2.11, we have Corollary 2.12.

Corollary 2.12. [5, 7] Every subset of a perfectly normal, paracompact space (X, τ) is paracompact.

Corollary 2.13. Every perfectly normal I−paracompact space (X, τ,I) is hereditarily I−paracompact.

If I = {∅} in the above Corollary 2.13, we have Corollary 2.14.

Corollary 2.14. Every perfectly normal paracompact space (X, τ) is hereditarily paracompact.

Theorem 2.15. Let {Vα | α ∈△} be a locally finite open covering of a space (X, τ,I) such that each cl(Vα) is
I−paracompact relative to X. Then X is I−paracompact.
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Proof. LetU = {Uγ | γ ∈△0} be an open cover of X. Then for each α, U is a cover of cl(Vα) by τ−open sets.
By hypothesis, there exist I ∈ I and locally finite familyV1 = {Vβ | β ∈△1} of open sets which refinesU such
that cl(Vα) ⊂ ∪{Vβ | β ∈△1}∪ I.Now Vα = cl(Vα)∩Vα ⊂ (∪{Vβ | β ∈△1}∪ I

)
∩Vα = ∪{Vβ∩Vα | β ∈△1}∪ (I∩Vα)

which implies that Vα ⊂ ∪{Vβ ∩ Vα | β ∈△1} ∪ I. Since {Vα | α ∈△} is an open covering of X, X = ∪{Vβ ∩ Vα |
α ∈△, β ∈△1} ∪ I. Since {Vα | α ∈△} and V1 = {Vβ | β ∈△1} are locally finite, V = {Vβ ∩ Vα | α ∈△, β ∈△1} is
locally finite. If Vβ∩Vα ∈ V, then Vβ ∈ V1 and sinceV1 refinesU, there is some Uγ ∈ U such that Vβ ⊂ Uγ.
Also, Vβ∩Vα ⊂ Vβ ⊂ Uγ implies that Vβ∩Vα ⊂ Uγ. Therefore,V refinesU.Hence X is I−paracompact.

If I = {∅} in the above Theorem 2.15, we have the following Corollary 2.16.

Corollary 2.16. Let {Vα | α ∈△} be a locally finite open covering of a space (X, τ) such that each cl(Vα) is paracompact
relative to X. Then X is paracompact.

Theorem 2.17. Every subset of a totally normal I−paracompact space (X, τ,I) is I−paracompact.

Proof. Let X be a totally normal I−paracompact space. Let G be an open subset of X. Since X is totally
normal, G = ∪Gi where G′i s are open Fσ-subset of X and locally finite in G. Therefore, {Gi} is a locally finite
open covering of G. Also, for each i, cl(Gi) is a closed subsets of X and so by Theorem IV.3[8], cl(Gi) is
I−paracompact relative to X for each i. Then cl(Gi) is I−paracompact relative to G for each i. Therefore, G
is I−paracompact, by Theorem 2.15. Since G is an open subset of X, by Theorem 2.2, every subset of X is
I−paracompact.

Corollary 2.18. Every totally normal I−paracompact space is hereditarily I−paracompact.

If I = {∅} in the above Theorem 2.17, we have the following Corollary 2.19.

Corollary 2.19. Every subset of a totally normal paracompact space is paracompact.

A collectionV of subsets of X is said to be an I − cover [15] of X if X − ∪{Vα | Vα ∈ V} ∈ I. A collection
A of subsets of a space (X, τ) is said to be σ − locally f inite [8] if A =

∞
∪

n=1
An where each collection An is a

locally finite. The following Theorem 2.20 gives a property of I−paracompact spaces.

Theorem 2.20. Let (X, τ,I) be a regular ideal space. If X is I−paracompact, then every open cover of X has a closed
locally finite I−cover refinement.

Proof. LetU be an open cover of X. For each x ∈ X, let Ux ∈ U such that x ∈ Ux. Since (X, τ) is regular, for
each x ∈ X, there exists a neighborhood Vx of x such that cl(Vx) ⊂ Ux. Now U1 = {Vx | x ∈ X} is an open
cover of X and so there exist an I ∈ I and a locally finite family W1 = {Wβ | β ∈△} of open sets which
refines U1 such that X = ∪{Wβ | β ∈△} ∪ I which implies that X = ∪{cl(Wβ) | β ∈△} ∪ I. Since the family
W1 = {Wβ | β ∈△} is locally finite, the family W = {cl(Wβ) | Wβ ∈ W1} is locally finite, by Lemma 1.2.
Let cl(Wβ) ∈ W. Then Wβ ∈ W1. Since W1 refines U1, there is some Vx ∈ U1 such that Wβ ⊂ Vx and so
cl(Wβ) ⊂ cl(Vx). Also, cl(Vx) ⊂ Ux implies that cl(Wβ) ⊂ Ux. HenceW refinesU. Thus,W = {cl(Wβ) | β ∈△}
is a closed locally finite family which refinesU which completes the proof.

Corollary 2.21. [7, P.210, Lemma 2] If every covering of a regular space X has a locally finite refinement, then every
open covering of that space also has closed locally finite refinement.

Theorem 2.22. Let (X, τ,I) be a regular ideal space. Then X is I−paracompact if and only if every open cover of X
has an open σ−locally finite I−cover refinement.

Proof. Since every locally finite refinement is σ−locally finite refinement, it is enough to prove the sufficiency.
Let U be an open cover of X. Then there exists I ∈ I and open σ−locally finite refinement V of U such
that X ⊂ ∪{V | V ∈ V} ∪ I. Also, V = ∪

n∈N
Vn where each Vn is locally finite. For each n ∈ N, let
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Wn = ∪{V | V ∈ Vn}. Then X ⊂ ∪{Wn | n ∈ N} ∪ I. For each n ∈ N, let W′
n =Wn −

n−1
∪
i=1

Wi. Then W′
n refines Wn.

Let x ∈ X and n be the smallest member of {n ∈ N | x ∈ Wn}. Then x ∈ W′
n. Hence X ⊂ ∪{W′

n | n ∈ N} ∪ I.
Also, Wnx is a neighborhood of x that intersect only finite number of members of W′

n so that {W′
n | n ∈ N} is

locally finite. LetW = {W′
n ∩ V | n ∈ N and V ∈ Vn}. Let x ∈ X. Since {W′

n | n ∈ N} is locally finite, there
exists a neighborhood P containing x that intersects only a finite number of members of {W′

n | n ∈ N}. Also,
for each i = 1, 2, ...k, there exists a neighborhood Ox(i) containing x that intersects only a finite number of
members ofVn,i. Then P∩Ox(i) is a neighborhood of x that intersects only a finite number of members ofW.
HenceW is locally finite. Let W′

n ∩V ∈ W. Then V ∈ V. SinceV refinesU, there is some U ∈ U such that
V ⊂ U. Then W′

n ∩ V ⊂ V ⊂ U. Thus,W refinesU. Since X ⊂ ∪{V | V ∈ V} ∪ I and X ⊂ ∪{W′
n | n ∈ N} ∪ I,

X ⊂ ∪{(W′
n ∩ V) | n ∈ N and V ∈ V} ∪ I. Therefore, (X, τ,I) is I−paracompact.

Corollary 2.23. [7, P.210, Theorem 4] Let (X, τ) be a regular space. Then (X, τ) is paracompact if and only if every
open cover of X has an open σ−locally finite refinement.

3. Relative I−paracompact subsets

In this section, we discuss some of the properties of subsets of I− paracompact spaces.

Theorem 3.1. Let (X, τ,I) be an ideal space. If B is an open subset of X, A ⊂ B and A is I− paracompact relative to
X, then A is I−paracompact subset of B.

Proof. Let U = {Uα | α ∈△} be a cover of A by sets open in B. Then U = {Uα | α ∈△} is a open cover of A,
since B is open in X. By hypothesis, there exist I ∈ I and locally finite familyV = {Vβ | β ∈△0} by sets open
in X which refines U such that A ⊂ ∪{Vβ | β ∈△0} ∪ I which implies A ⊂ ∪{Vβ ∩ B | β ∈△0} ∪ I. Let x ∈ B.
Since V = {Vβ | β ∈△0} is locally finite in X, there exists W ∈ τ(x) such that W ∩ Vβ = ∅ for β , β1, β2, ...βn
which implies (W ∩ Vβ) ∩ B = ∅ for β , β1, β2, ...βn which implies (W ∩ B) ∩ (Vβ ∩ B) = ∅ for β , β1, β2, ...βn.
Therefore, the family V1 = {Vβ ∩ B | β ∈△0} is B−locally finite. Let Vβ ∩ B ∈ V1. Then Vβ ∈ V. Since V
refinesU, there is some Uα ∈ U such that Vβ ⊂ Uα which implies Vβ ∩ B ⊂ Uα ∩ B ⊂ Uα. HenceV1 refines
U. Therefore, A is I−paracompact relative to B.

Theorem 3.2. Let S be a closed subspace of an ideal space (X, τ,I). If F ⊆ S is I−paracompact relative to S and if
there exists an open set G in X such that F ⊂ G ⊂ S, then F is I−paracompact relative to X.

Proof. Let U = {Uα | α ∈△} be an open cover of F by sets open in X. Then U1 = {Uα ∩ G | α ∈△} is an
open cover of F by sets open in G so thatU1 = {Uα ∩ G | α ∈△} is an open cover of F by sets open in S. By
hypothesis, there exist I ∈ I and locally finite family V1 = {Wβ | β ∈△0} in S where each Wβ = Vβ ∩ S is
open in S which refines U1 such that F ⊂ ∪{Vβ ∩ S | β ∈△0} ∪ I. Then F ∩ G ⊂

(
∪ {Vβ ∩ S | β ∈△0} ∪ I

)
∩ G

which implies that F ⊂ ∪{Vβ ∩ G | β ∈△0} ∪ (I ∩ G) implies that F ⊂ ∪{Vβ ∩ G | β ∈△0} ∪ I. Let x ∈ X. If x ∈ S,
there exists W ∈ τ(x) such that (Vβ ∩ S) ∩W = ∅ for β , β1, β2, ...βn which implies ((Vβ ∩ S) ∩W) ∩ G = ∅ for
β , β1, β2, ...βn which implies (Vβ ∩ G) ∩W = ∅ for β , β1, β2, ...βn. If x ∈ X − S, then X − S is an open set
containing x such that (Vβ ∩G)∩ (X− S) = ∅. Thus, the familyV = {Vβ ∩G | β ∈△0} is locally finite in X. Let
Vβ ∩ G ∈ V. Then Vβ ∩ S ∈ V1. SinceV1 refinesU1, there is some Uα ∩ G ∈ U1 such that Vβ ∩ S ⊂ Uα ∩ G
which implies Vβ ∩ G ⊂ Uα. HenceV refinesU. Therefore, F is I−paracompact relative to X.

Theorem 3.3. If A is I− paracompact relative to X and B is a closed subset of X, then A ∩ B is I− paracompact
relative to X.

Proof. LetU = {Uγ | γ ∈△0} be an open cover of A ∩ B. ThenUA = {Uγ | γ ∈△0} ∪ (X − B) is an open cover
of A. By hypothesis, there exist I ∈ I and locally finite familyVA = {Vα ∪ (X − B) | α ∈△} which refinesUA
such that A ⊂ ∪{Vα ∪ (X − B) | α ∈△} ∪ I. Then A ∩ B ⊂ ∪{(Vα ∪ (X − B)) ∩ B | α ∈△} ∪ (I ∩ B) which implies
that A ∩ B ⊂ ∪{Vα ∩ B | α ∈△} ∪ I. Let x ∈ X. SinceVA = {Vα ∪ (X − B) | α ∈△} is locally finite, there exists
W ∈ τ(x) such that (Vα ∪ (X − B)) ∩W = ∅ for α , α1, α2, ...αn which implies (Vα ∩W) ∪ ((X − B) ∩W) = ∅
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for α , α1, α2, ...αn which implies ((Vα ∩W) ∪ ((X − B) ∩W)) ∩ B = ∅ for α , α1, α2, ...αn which implies
((Vα ∩W)∩B)∪ ((X−B)∩W ∩B) = ∅ for α , α1, α2, ...αn which implies (Vα ∩B)∩W = ∅ for α , α1, α2, ...αn.
Therefore, the familyV = {Vα ∩ B | α ∈△} is locally finite. Let Vα ∩ B ∈ V. Then Vα ∪ (X − B) ∈ VA. Since
VA refines UA, there is some Uγ ∪ (X − B) ∈ UA such that Vα ∪ (X − B) ⊂ Uγ ∪ (X − B) which implies
(Vα ∪ (X − B))∩ B ⊂ (Uγ ∪ (X − B))∩ B which implies Vα ∩ B ⊂ Uγ ∩ B ⊂ Uγ.HenceV refinesU. Therefore,
A ∩ B is I−paracompact relative to X.

Corollary 3.4. If A is I− paracompact relative to X and B ⊂ A is a closed subset of X, then B is I− paracompact
relative to X.

Theorem 3.5. Let A beI−paracompact relative to X and B an open set contained in A. Then A−B isI−paracompact
relative to X.

Proof. Let U = {Uα | α ∈△} be a cover of A − B by sets open in X. Then U1 = {Uα | α ∈△} ∪ B is a cover
of A by sets open in X. By hypothesis, there exist I ∈ I and locally finite family V1 = {Vβ | β ∈△0} ∪ B
which refines U1 such that A ⊂ ∪({Vβ | β ∈△0} ∪ B) ∪ I. Then A − B ⊂ ∪

(
({Vβ | β ∈△0} ∪ B) ∪ I

)
− B which

implies that A − B ⊂ ∪{Vβ − B | β ∈△0} ∪ I. Since the familyV1 = {Vβ ∪ B | β ∈△0} is locally finite, the family
V = {Vβ − B | β ∈△0} is locally finite, by Lemma 1.3. Let Vβ − B ∈ V. Then Vβ ∪ B ∈ V1. Since V1 refines
U1, there is some Uα ∪ B ∈ U1 such that Vβ ∪ B ⊂ Uα ∪ B which implies (Vβ ∪ B) − B ⊂ (Uα ∪ B) − B and so
Vβ − B ⊂ Uα − B ⊂ Uα. Therefore,V refinesU. Hence A − B is I−paracompact relative to X.

Theorem 3.6. In a space (X, τ,I), if A and B are I−paracompact relative to X, then A∪B is I−paracompact relative
to X.

Proof. Let U = {Uγ | γ ∈△} be a cover of A ∪ B by sets open in X. Then U = {Uγ | γ ∈△} is an open cover
of A and B. By hypothesis, there exist IA, IB ∈ I and locally finite families VA = {Vα | α ∈△0} of A and
VB = {Vβ | β ∈△1} of B which refinesU such that A ⊂ ∪{Vα | α ∈△0} ∪ IA and B ⊂ ∪{Vβ | β ∈△1} ∪ IB. Then
A∪B ⊂

(
∪{Vα | α ∈△0}∪IA

)
∪
(
∪{Vβ | β ∈△1}∪IB

)
which implies that A∪B ⊂ ∪{Vα∪Vβ | α ∈△0, β ∈△1}∪(IA∪IB)

which implies A∪B ⊂ ∪{Vα∪Vβ | α ∈△0, β ∈△1}∪ I where I = IA∪ IB. Since the familyVA andVB are locally
finite, the family V = {Vα ∪ Vβ | α ∈△0, β ∈△1} is locally finite, by Lemma 1.1, which refines U. Therefore,
A ∪ B is I−paracompact relative to X.

Theorem 3.7. Every 1−closed subset of an I−paracompact space is I−paracompact relative to X.

Proof. Let A be a 1−closed subset of (X, τ,I). Let U = {Uα | α ∈△} be an open cover of A. Then A ⊂ ∪Uα.
Since A is 1−closed, cl(A) ⊂ ∪Uα. ThenU1 = {Uα | α ∈△} ∪ (X − cl(A)) is an open cover of X. By hypothesis,
there exist I ∈ I and locally finite familyV1 = {Vβ ∪ V | β ∈△0} (Vβ ⊂ Uα and V ⊂ X − cl(A)) which refines
U1 such that X = ∪{Vβ ∪V | β ∈△0} ∪ I. Then cl(A)−∪

β
Vβ = cl(A)− (V ∪ (∪

β
Vβ)) ⊂ X − (V ∪ (∪

β
Vβ)) ∈ I. Thus,

cl(A) − ∪
β

Vβ ∈ I. Since A − ∪
β

Vβ ⊂ cl(A) − ∪
β

Vβ, A − ∪
β

Vβ ∈ I, by hereditary. SinceV1 = {Vβ ∪ V | β ∈△0} is

locally finite, the familyV = {Vβ | β ∈△0} is locally finite, by Lemma 1.3. Thus, the familyV is locally finite
which refinesU. Therefore, A is I−paracompact relative to X.

Theorem 3.8. Let (X, τ,I) be a perfectly normal ideal space with a σ−ideal I and G be a subset of X such that G is
the union of countable number of open subsets Gn of X. Then each Gn,n ∈ N is I−paracompact relative to X if and
only if G is I−paracompact relative to X.

Proof. Suppose each Gn,n ∈ N is I−paracompact relative to X. LetU = {Vα | α ∈△} be a cover of G by sets
open in X. Then Un = {Vα ∩ Gn | α ∈△} is an open cover of Gn for each n ∈ N. By hypothesis, there exist
In ∈ I and locally finite family Vn = {Vβ,n | β ∈△1} which refines Un such that Gn ⊂ ∪{Vβ,n | β ∈△1} ∪ In.
Then ∪

n
Gn ⊂ ∪

n
(∪{Vβ,n | β ∈△1} ∪ In) which implies that G ⊂ ∪

n
{Wn | n ∈ N} ∪ I where Wn = ∪{Vβ,n | β ∈△1}

and I = ∪{In | n ∈ N}. Let x ∈ X. Since Vn = {Vβ,n | β ∈△1} is locally finite, there exists a neighborhood U
containing x such that U∩Vβ,n , ∅ for every β ∈ △0 where△0 is a finite subset of△1. SupposeV = {Wn | n ∈ N}
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is not locally finite. Then there exists an element x ∈ X such that for all neighborhood U of x, we have
U∩Wi = ∅ for all i = 1, 2, ..., k which implies that U∩ (∪Vβ,i) = ∅ for all i = 1, 2, ..., k which in turn implies that
∪(U ∩Vβ,i) = ∅ for all i = 1, 2, ..., k and so U ∩Vβ,i = ∅ for all i = 1, 2, ..., k,which is a contradiction to the fact
thatVn is locally finite. Therefore,V = {Wn | n ∈ N} is locally finite. Let Wn ∈ V where Wn = ∪

β
Vβ,n. Then

Vβ,n ∈ Vn. SinceVn refinesUn, there is some Vα∩Gn ∈ Un such that Vβ,n ⊂ Vα∩Gn which implies Vβ,n ⊂ Vα.
Thus, ∪

β
Vβ,n ⊂ Vα and so Wn ⊂ Vα for some Vα ∈ U. Therefore, V refines U. Hence G is I−paracompact.

Conversely, suppose G is I−paracompact. Since the subset of a perfectly normal space is perfectly normal,
G is perfectly normal. Then each Gn is an Fσ-set. Therefore, by Theorem 2.4, each Gn is I−paracompact.
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