Filomat 27:2 (2013), 333–339 DOI 10.2298/FIL1302333S Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Paracompactness with respect to an ideal

N. Sathiyasundari^a, V. Renukadevi^b

^aDepartment of Mathematics, ANJA College, Sivaksi 626124, Tamil Nadu, India. ^bDepartment of Mathematics, ANJA College, Sivaksi 626124, Tamil Nadu, India.

Abstract. In this paper, we study I-paracompact spaces and discuss their properties. Also, we characterize I-paracompact spaces. Some of the results in paracompact spaces have been generalized in terms of I-paracompact spaces.

1. Introduction

The subject of ideals in topological spaces has been studied by Kuratowski [10] and Vaidyanathaswamy [14]. An *ideal* I on a set X is a nonempty collection of subsets of X which satisfies (i) $A \in I$ and $B \subset A$ implies $B \in I$ and (ii) $A \in I$ and $B \in I$ implies $A \cup B \in I$. An ideal I is said to be a σ – *ideal* [9] if it is countably additive. Given a topological space (X, τ) with an ideal I on X and if $\wp(X)$ is the set of all subsets of X, a set operator ()* : $\wp(X) \rightarrow \wp(X)$, called a *local function* [9] of A with respect to τ and I, is defined as follows: for $A \subset X, A^*(I, \tau) = \{x \in X \mid U \cap A \notin I \text{ for every } U \in \tau(x)\}$ where $\tau(x) = \{U \in \tau \mid x \in U\}$. A Kuratowski closure operator $cl^*()$ for a topology $\tau^*(I, \tau)$, called \star -topology, finer than τ is defined by $cl^*(A) = A \cup A^*(I, \tau)$ [9]. If I is an ideal on X, then (X, τ, I) is called an ideal space. A subset A of a topological space (X, τ) is said to be a *generalized* F_{σ} -subset [13] if for each open subset U of X containing A, there exists an F_{σ} -subset B of X which is contained in U and contains A. A space X is said to be totally normal [12] if it is normal and every open subset G of X is expressible as a union of a locally finite (in G) family of open F_{σ} -subset of X. A space X is said to be *g*-closed [11] if $cl(A) \subseteq U$, whenever $A \subseteq U$ and $U \in \tau$. By a space (X, τ) , we always mean a topological space (X, τ) with no separation properties assumed. If $A \subset X$, cl(A) and *int(A*) will, respectively, denote the closure and *interior* of A in (X, τ) .

Lemma 1.1. [1] *The union of a finite family of locally finite collection of sets in a space* (X, τ) *is again locally finite.*

Lemma 1.2. [1] If \mathcal{V} is a locally finite family of sets in a space (X, τ) , then $\lambda = \{cl(Q) \mid Q \in \mathcal{V}\}$ is locally finite in X.

Lemma 1.3. [3] If $\{A_{\alpha} \mid \alpha \in \Delta\}$ is a locally finite family of subsets in a space (X, τ) , and if $B_{\alpha} \subset A_{\alpha}$ for each $\alpha \in \Delta$, then the family $\{B_{\alpha} \mid \alpha \in \Delta\}$ is locally finite in X.

Keywords. Ideal, paracompact modulo I space, totally normal, perfectly normal, generalized F_{σ} -set

Received: 16 August 2012; Accepted: 31 December 2012

²⁰¹⁰ Mathematics Subject Classification. Primary 54D15; Secondary 54D20, 03E75

Communicated by Ljubiša D. R. Kočinac

Email addresses: sathyamat03@yahoo.co.in (N. Sathiyasundari), renu_siva2003@yahoo.com (V. Renukadevi)

2. *I*-paracompact subsets

The concept of paracompactness with respect to an ideal was introduced by Zahid [15] and is further studied by T.R. Hamlett, D. Rose and D. Janković [8]. An ideal space (X, τ, I) is said to be *paracompact modulo I* or I-*paracompact* [8] if and only if every open cover \mathcal{U} of *X* has a locally finite open refinement \mathcal{V} (not necessarily a cover) such that $X - \bigcup \{V \mid V \in \mathcal{V}\} \in I$. A subset *A* of an ideal space (X, τ, I) is said to be I - *paracompact relative to* X (I - *paracompact subset* [8]) if for any open cover \mathcal{U} of *A*, there exist $I \in I$ and locally finite family \mathcal{V} of open sets such that \mathcal{V} refines \mathcal{U} and $A \subset \bigcup \{V \mid V \in \mathcal{V}\} \cup I$. *A* is said to be I-paracompact (I-paracompact subspace [8]) if (A, τ_A, I_A) is I_A -paracompact as a subspace, where τ_A is the usual subspace topology. Theorem 2.1 below shows that a space (X, τ) is paracompact if and only if it is paracompact modulo { \emptyset }, the easy proof of which is omitted. A space X is said to be *hereditarily* I-paracompact if every subset of X is I-paracompact. In this section, we characterize I- paracompact spaces.

Theorem 2.1. Let (X, τ) be a space with an ideal $I = \{\emptyset\}$. Then (X, τ) is paracompact if and only if (X, τ) is paracompact modulo I.

The following Theorem 2.2 gives a property of subsets of X which are I-paracompact.

Theorem 2.2. If every open subset of (X, τ, I) is I-paracompact, then every subset of X is I-paracompact.

Proof. Let *B* be a subset of *X* and $\mathcal{U}_B = \{U_\alpha \cap B \mid \alpha \in \Delta\}$ be a τ_B -open cover of *B*, where each U_α is open in *X*. Then $\mathcal{U} = \{U_\alpha \mid \alpha \in \Delta\}$ is a τ -open cover of *V* where $V = \bigcup U_\alpha$. By hypothesis, there exist $I \in I$ and τ -locally finite family $\mathcal{V} = \{V_\beta \mid \beta \in \nabla\}$ which refines \mathcal{U} such that $V = \bigcup \{V_\beta \mid \beta \in \nabla\} \cup I$. Then $V \cap B = (\bigcup \{V_\beta \mid \beta \in \nabla\} \cup I) \cap B$ which implies that $B = \bigcup \{V_\beta \cap B \mid \beta \in \nabla\} \cup (I \cap B)$ which implies that $B = \bigcup \{V_\beta \cap B \mid \beta \in \nabla\} \cup I_B$ where $I_B = I \cap B \in I_B$. Let $x \in B$. Since \mathcal{V} is τ -locally finite, there exists $U \in \tau(x)$ such that $V_\beta \cap U = \emptyset$ for all $\beta \neq \beta_1, \beta_2, ..., \beta_n$ and so $(V_\beta \cap U) \cap B = \emptyset$ for all $\beta \neq \beta_1, \beta_2, ..., \beta_n$. Hence $(V_\beta \cap B) \cap (U \cap B) = \emptyset$ for all $\beta \neq \beta_1, \beta_2, ..., \beta_n$. Therefore, $\mathcal{V}_B = \{V_\beta \cap B \mid \beta \in \nabla\}$ is τ_B -locally finite. Let $V_\beta \cap B \in \mathcal{V}_B$. Then $V_\beta \in \mathcal{V}$. Since \mathcal{V} refines \mathcal{U} , there is some $U_\alpha \in \mathcal{U}$ such that $V_\beta \subset U_\alpha$ which implies that $V_\beta \cap B \subset U_\alpha \cap B$. Therefore, \mathcal{V}_B refines \mathcal{U}_B . Hence every subset of *X* is an *I*-paracompact subspace. \Box

If $I = \{\emptyset\}$ in the above Theorem 2.2, we have the following Corollary 2.3.

Corollary 2.3. [4, 7] If every open subset of a space (X, τ) is paracompact, then every subset of X is paracompact.

Hamlett, Rose and Janković [8] established that every closed subset of an I-paracompact space is I-paracompact. The following Theorem 2.4 is a generalization of the above result. If $I = \{\emptyset\}$ in the Theorem 2.4, we have Corollary 2.6.

Theorem 2.4. Every F_{σ} -set (countable union of closed sets) of an I-paracompact space (X, τ, I) is an I-paracompact subspace of X.

Proof. Let *A* be an F_{σ} -subset of *X*. Then $A = \bigcup \{A_i \mid i \in \mathbb{N}\}$ where each A_i is closed. Let $\mathcal{U} = \{U_\alpha \mid \alpha \in \Delta\}$ be a τ_A -open cover of *A* where $U_\alpha = V_\alpha \cap A$ such that V_α is open in *X*. Then $\mathcal{U}_1 = \{V_\alpha \mid \alpha \in \Delta\} \cup \{X - A_i \mid i \in \mathbb{N}\}$ is an open cover of *X*. By hypothesis, there exist $I \in I$ and open locally finite family $\mathcal{V}_1 = \{V_\beta \mid \beta \in \Delta_0\}$ which refines \mathcal{U}_1 such that $X = \bigcup \{V_\beta \mid \beta \in \Delta_0\} \cup I$. Let $\mathcal{B} = \{V_\beta \mid V_\beta \in \mathcal{V}_1 \text{ and } V_\beta \cap A_i \neq \emptyset$ for every *i*}. Then \mathcal{B} is locally finite. Let $V_\beta \in \mathcal{B}$. Then $V_\beta \in \mathcal{V}_1$ and since \mathcal{V}_1 refines \mathcal{U}_1 , there exists some *U* in \mathcal{U}_1 such that $V_\beta \subset \mathcal{U}$. This *U* must be some V_α . Suppose, if $U = X - A_i$ for some *i*, then $V_\beta \subset X - A_i$ for some *i* which implies that $V_\beta \cap A_i = \emptyset$. Then $V_\beta \notin \mathcal{B}$, which is a contradiction. Therefore, *U* must be some V_α . Since $X = \bigcup \{V_\beta \mid \beta \in \Delta_0\} \cup I$, $A = (\bigcup \{V_\beta \mid \beta \in \Delta_0\} \cup I) \cap A = \bigcup \{(V_\beta \cap A) \mid \beta \in \Delta_0\} \cup (I \cap A)$ which implies that $A \subset \bigcup \{(V_\beta \cap A) \mid \beta \in \Delta_0\} \cup I$. Let $\mathcal{B}_A = \{V_\beta \cap A \mid V_\beta \in \mathcal{B}$ and $\beta \in \Delta_0\}$. Let $x \in A$. Since \mathcal{B} is locally finite, there exists $W \in \tau(x)$ such that $V_\beta \cap W = \emptyset$ for all $\beta \neq \beta_1, \beta_2, ..., \beta_n$. Hence $\mathcal{B}_A = \{V_\beta \cap A \mid V_\beta \in \mathcal{B} \text{ and } \beta \in \Delta_0\}$ is τ_A -locally finite. Let $V_\beta \cap A \in \mathcal{B}_A$ where $V_\beta \in \mathcal{B}$. Since every element of \mathcal{B} is contained in some V_α , $V_\beta \subset V_\alpha$ for some α which implies that $V_\beta \cap A \subset V_\alpha \cap A$ and so $V_\beta \cap A \subset U_\alpha$. Therefore, \mathcal{B}_A refines \mathcal{U} . Hence A is an I-paracompact subspace. \Box

Corollary 2.5. [8] Let (X, τ, I) be an I-paracompact space. If $A \subseteq X$ is closed, then A is I-paracompact.

Corollary 2.6. [7, P.218, Theorem 8] *Every* F_{σ} -set of a paracompact space (X, τ) is paracompact.

Theorem 2.7. Let (X, τ, I) be a space and let A be a subset of X such that for each open set $U \supset A$, there is an I-paracompact set B with $A \subset B \subset U$. Then A is I-paracompact.

Proof. Let $\mathcal{U} = \{U_{\alpha} \mid \alpha \in \Delta\}$ be a τ_A -open cover of A where $U_{\alpha} = A \cap V_{\alpha}$ such that V_{α} is open in X. By the given condition, there exists an I-paracompact subset B of X such that $A \subset B \subset \cup V_{\alpha}$. Then $\mathcal{U}_B = \{V_{\alpha} \cap B \mid \alpha \in \Delta\}$ is a τ_B -open cover of B. By hypothesis, there exist $I \cap B = I_B \in I_B$ and τ_B -locally finite family $\mathcal{V}_B = \{V_{\beta} \cap B \mid \beta \in \nabla\}$ which refines \mathcal{U}_B such that $B \subset \cup \{V_{\beta} \cap B \mid \beta \in \nabla\} \cup (I \cap B)$. Then $A = B \cap A \subset (\cup \{V_{\beta} \cap B \mid \beta \in \nabla\} \cup (I \cap B)) \cap A = \cup \{V_{\beta} \cap B \cap A \mid \beta \in \nabla\} \cup (I \cap A)$ which implies that $A \subset \cup \{V_{\beta} \cap A \mid \beta \in \nabla\} \cup I_A$. Let $x \in A$. Since $\mathcal{V}_B = \{V_{\beta} \cap B \mid \beta \in \nabla\}$ is τ_B -locally finite, there exists $W \in \tau(x)$ such that $(V_{\beta} \cap B) \cap W = \emptyset$ for all $\beta \neq \beta_1, \beta_2, ..., \beta_n$ which implies that $((V_{\beta} \cap B) \cap (W \cap B)) \cap A = \emptyset$ for all $\beta \neq \beta_1, \beta_2, ..., \beta_n$. Hence $(V_{\beta} \cap B \cap A) \cap (W \cap B \cap A) = \emptyset$ for all $\beta \neq \beta_1, \beta_2, ..., \beta_n$ and so $(V_{\beta} \cap A) \cap (W \cap A) = \emptyset$ for all $\beta \neq \beta_1, \beta_2, ..., \beta_n$. Therefore, $\mathcal{V} = \{V_{\beta} \cap A \mid \beta \in \nabla\}$ is τ_A -locally finite. Let $V_{\beta} \cap A \in \mathcal{V}$. Then $V_{\beta} \cap B \in \mathcal{V}_B$. Since \mathcal{V}_B refines \mathcal{U}_B , there is some $V_{\alpha} \cap B \in \mathcal{U}_B$ such that $V_{\beta} \cap B \subset V_{\alpha} \cap B$. Also, $A \subset B$ implies that $V_{\beta} \cap A \subset V_{\beta} \cap B$. Thus, $V_{\beta} \cap A \subset V_{\alpha} \cap A = U_{\alpha}$ so that \mathcal{V} refines \mathcal{U} . Hence A is I-paracompact. \Box

Corollary 2.8. Every generalized F_{σ} -subset of an I-paracompact space (X, τ, I) is I-paracompact.

Proof. Let *X* be an *I*-paracompact space. Let *A* be a generalized F_{σ} -subset of *X*. Then for every open subset *U* of *X* containing *A*, there exists an F_{σ} - subset *B* of *X* which is contained in *U* and contains *A*. By Theorem 2.4, *B* is *I*-paracompact. Therefore, by Theorem 2.7, *A* is *I*-paracompact. \Box

If $I = \{\emptyset\}$ in the above Theorem 2.7, we have the following Corollary 2.9.

Corollary 2.9. [6] Let (X, τ) be a space and let A be a subset of X such that for each open set $U \supset A$, there is a paracompact set B with $A \subset B \subset U$. Then A is paracompact.

If $I = \{\emptyset\}$ in the above Corollary 2.8, we have Corollary 2.10.

Corollary 2.10. Every generalized F_{σ} -subset of a paracompact space (X, τ) is paracompact.

Theorem 2.11. Every subset of a perfectly normal I-paracompact space (X, τ, I) is I-paracompact.

Proof. Suppose that (X, τ, I) is a perfectly normal I – paracompact space. Since X is perfectly normal, every open set is an F_{σ} set and so every open set is I – paracompact, by Theorem 2.4. Therefore, by Theorem 2.2, every subset of X is I – paracompact. \Box

If $I = \{\emptyset\}$ in the above Theorem 2.11, we have Corollary 2.12.

Corollary 2.12. [5, 7] Every subset of a perfectly normal, paracompact space (X, τ) is paracompact.

Corollary 2.13. Every perfectly normal I-paracompact space (X, τ, I) is hereditarily I-paracompact.

If $I = \{\emptyset\}$ in the above Corollary 2.13, we have Corollary 2.14.

Corollary 2.14. *Every perfectly normal paracompact space* (X, τ) *is hereditarily paracompact.*

Theorem 2.15. Let $\{V_{\alpha} \mid \alpha \in \Delta\}$ be a locally finite open covering of a space (X, τ, I) such that each $cl(V_{\alpha})$ is I-paracompact relative to X. Then X is I-paracompact.

Proof. Let $\mathcal{U} = \{U_{\gamma} \mid \gamma \in \Delta_0\}$ be an open cover of *X*. Then for each α , \mathcal{U} is a cover of $cl(V_{\alpha})$ by τ -open sets. By hypothesis, there exist $I \in I$ and locally finite family $\mathcal{V}_1 = \{V_{\beta} \mid \beta \in \Delta_1\}$ of open sets which refines \mathcal{U} such that $cl(V_{\alpha}) \subset \cup \{V_{\beta} \mid \beta \in \Delta_1\} \cup I$. Now $V_{\alpha} = cl(V_{\alpha}) \cap V_{\alpha} \subset (\cup \{V_{\beta} \mid \beta \in \Delta_1\} \cup I) \cap V_{\alpha} = \cup \{V_{\beta} \cap V_{\alpha} \mid \beta \in \Delta_1\} \cup (I \cap V_{\alpha})$ which implies that $V_{\alpha} \subset \cup \{V_{\beta} \cap V_{\alpha} \mid \beta \in \Delta_1\} \cup I$. Since $\{V_{\alpha} \mid \alpha \in \Delta\}$ is an open covering of $X, X = \cup \{V_{\beta} \cap V_{\alpha} \mid \alpha \in \Delta\}$ and $\mathcal{V}_1 = \{V_{\beta} \mid \beta \in \Delta_1\}$ are locally finite, $\mathcal{V} = \{V_{\beta} \cap V_{\alpha} \mid \alpha \in \Delta, \beta \in \Delta_1\}$ is locally finite. If $V_{\beta} \cap V_{\alpha} \in \mathcal{V}$, then $V_{\beta} \in \mathcal{V}_1$ and since \mathcal{V}_1 refines \mathcal{U} , there is some $U_{\gamma} \in \mathcal{U}$ such that $V_{\beta} \subset U_{\gamma}$. Also, $V_{\beta} \cap V_{\alpha} \subset V_{\beta} \subset U_{\gamma}$ implies that $V_{\beta} \cap V_{\alpha} \subset U_{\gamma}$. Therefore, \mathcal{V} refines \mathcal{U} . Hence X is I-paracompact.

If $I = \{\emptyset\}$ in the above Theorem 2.15, we have the following Corollary 2.16.

Corollary 2.16. Let $\{V_{\alpha} \mid \alpha \in \Delta\}$ be a locally finite open covering of a space (X, τ) such that each $cl(V_{\alpha})$ is paracompact relative to X. Then X is paracompact.

Theorem 2.17. Every subset of a totally normal I-paracompact space (X, τ, I) is I-paracompact.

Proof. Let *X* be a totally normal *I*-paracompact space. Let *G* be an open subset of *X*. Since *X* is totally normal, $G = \bigcup G_i$ where G'_i s are open F_σ -subset of *X* and locally finite in *G*. Therefore, $\{G_i\}$ is a locally finite open covering of *G*. Also, for each *i*, $cl(G_i)$ is a closed subsets of *X* and so by Theorem IV.3[8], $cl(G_i)$ is *I*-paracompact relative to *X* for each *i*. Then $cl(G_i)$ is *I*-paracompact relative to *G* for each *i*. Therefore, *G* is *I*-paracompact, by Theorem 2.15. Since *G* is an open subset of *X*, by Theorem 2.2, every subset of *X* is *I*-paracompact. \Box

Corollary 2.18. *Every totally normal I*-paracompact space is hereditarily *I*-paracompact.

If $I = \{\emptyset\}$ in the above Theorem 2.17, we have the following Corollary 2.19.

Corollary 2.19. Every subset of a totally normal paracompact space is paracompact.

A collection \mathcal{V} of subsets of X is said to be an I - cover [15] of X if $X - \bigcup \{V_{\alpha} \mid V_{\alpha} \in \mathcal{V}\} \in I$. A collection \mathcal{A} of subsets of a space (X, τ) is said to be σ – *locally finite* [8] if $\mathcal{A} = \bigcup_{n=1}^{\infty} \mathcal{A}_n$ where each collection \mathcal{A}_n is a locally finite. The following Theorem 2.20 gives a property of I-paracompact spaces.

Theorem 2.20. *Let* (X, τ, I) *be a regular ideal space. If* X *is* I*-paracompact, then every open cover of* X *has a closed locally finite* I*-cover refinement.*

Proof. Let \mathcal{U} be an open cover of X. For each $x \in X$, let $U_x \in \mathcal{U}$ such that $x \in U_x$. Since (X, τ) is regular, for each $x \in X$, there exists a neighborhood V_x of x such that $cl(V_x) \subset U_x$. Now $\mathcal{U}_1 = \{V_x \mid x \in X\}$ is an open cover of X and so there exist an $I \in I$ and a locally finite family $\mathcal{W}_1 = \{W_\beta \mid \beta \in \Delta\}$ of open sets which refines \mathcal{U}_1 such that $X = \bigcup \{W_\beta \mid \beta \in \Delta\} \cup I$ which implies that $X = \bigcup \{cl(W_\beta) \mid \beta \in \Delta\} \cup I$. Since the family $\mathcal{W}_1 = \{W_\beta \mid \beta \in \Delta\}$ is locally finite, the family $\mathcal{W} = \{cl(W_\beta) \mid W_\beta \in \mathcal{W}_1\}$ is locally finite, by Lemma 1.2. Let $cl(W_\beta) \in \mathcal{W}$. Then $W_\beta \in \mathcal{W}_1$. Since \mathcal{W}_1 refines \mathcal{U}_1 , there is some $V_x \in \mathcal{U}_1$ such that $W_\beta \subset V_x$ and so $cl(W_\beta) \subset cl(V_x)$. Also, $cl(V_x) \subset U_x$ implies that $cl(W_\beta) \subset U_x$. Hence \mathcal{W} refines \mathcal{U} . Thus, $\mathcal{W} = \{cl(W_\beta) \mid \beta \in \Delta\}$ is a closed locally finite family which refines \mathcal{U} which completes the proof. \Box

Corollary 2.21. [7, P.210, Lemma 2] *If every covering of a regular space* X *has a locally finite refinement, then every open covering of that space also has closed locally finite refinement.*

Theorem 2.22. Let (X, τ, I) be a regular ideal space. Then X is I-paracompact if and only if every open cover of X has an open σ -locally finite I-cover refinement.

Proof. Since every locally finite refinement is σ -locally finite refinement, it is enough to prove the sufficiency. Let \mathcal{U} be an open cover of X. Then there exists $I \in I$ and open σ -locally finite refinement \mathcal{V} of \mathcal{U} such that $X \subset \bigcup \{V \mid V \in \mathcal{V}\} \cup I$. Also, $\mathcal{V} = \bigcup_{n \in \mathbb{N}} \mathcal{V}_n$ where each \mathcal{V}_n is locally finite. For each $n \in \mathbb{N}$, let $W_n = \bigcup\{V \mid V \in \mathcal{V}_n\}$. Then $X \subset \bigcup\{W_n \mid n \in N\} \cup I$. For each $n \in N$, let $W'_n = W_n - \bigcup_{i=1}^{n-1} W_i$. Then W'_n refines W_n . Let $x \in X$ and n be the smallest member of $\{n \in N \mid x \in W_n\}$. Then $x \in W'_n$. Hence $X \subset \bigcup\{W'_n \mid n \in N\} \cup I$. Also, W_{nx} is a neighborhood of x that intersect only finite number of members of W'_n so that $\{W'_n \mid n \in N\}$ is locally finite. Let $\mathcal{W} = \{W'_n \cap V \mid n \in N \text{ and } V \in \mathcal{V}_n\}$. Let $x \in X$. Since $\{W'_n \mid n \in N\}$ is locally finite, there exists a neighborhood P containing x that intersects only a finite number of members of $\{W'_n \mid n \in N\}$. Also, for each i = 1, 2, ...k, there exists a neighborhood $O_{x(i)}$ containing x that intersects only a finite number of members of $\mathcal{V}_{n,i}$. Then $P \cap O_{x(i)}$ is a neighborhood of x that intersects only a finite number of members of W. Hence \mathcal{W} is locally finite. Let $W'_n \cap V \in \mathcal{W}$. Then $V \in \mathcal{V}$. Since \mathcal{V} refines \mathcal{U} , there is some $U \in \mathcal{U}$ such that $V \subset U$. Then $W'_n \cap V \subset V \subset U$. Thus, \mathcal{W} refines \mathcal{U} . Since $X \subset \bigcup\{V \mid V \in \mathcal{V}\} \cup I$ and $X \subset \bigcup\{W'_n \mid n \in N\} \cup I$, $X \subset \bigcup\{(W'_n \cap V) \mid n \in N \text{ and } V \in \mathcal{V}\} \cup I$. Therefore, (X, τ, I) is I-paracompact. \Box

Corollary 2.23. [7, P.210, Theorem 4] Let (X, τ) be a regular space. Then (X, τ) is paracompact if and only if every open cover of X has an open σ -locally finite refinement.

3. Relative *I*-paracompact subsets

In this section, we discuss some of the properties of subsets of I – paracompact spaces.

Theorem 3.1. Let (X, τ, I) be an ideal space. If B is an open subset of $X, A \subset B$ and A is I – paracompact relative to X, then A is I – paracompact subset of B.

Proof. Let $\mathcal{U} = \{U_{\alpha} \mid \alpha \in \Delta\}$ be a cover of A by sets open in B. Then $\mathcal{U} = \{U_{\alpha} \mid \alpha \in \Delta\}$ is a open cover of A, since B is open in X. By hypothesis, there exist $I \in I$ and locally finite family $\mathcal{V} = \{V_{\beta} \mid \beta \in \Delta_0\}$ by sets open in X which refines \mathcal{U} such that $A \subset \cup \{V_{\beta} \mid \beta \in \Delta_0\} \cup I$ which implies $A \subset \cup \{V_{\beta} \cap B \mid \beta \in \Delta_0\} \cup I$. Let $x \in B$. Since $\mathcal{V} = \{V_{\beta} \mid \beta \in \Delta_0\}$ is locally finite in X, there exists $W \in \tau(x)$ such that $W \cap V_{\beta} = \emptyset$ for $\beta \neq \beta_1, \beta_2, ..., \beta_n$ which implies $(W \cap V_{\beta}) \cap B = \emptyset$ for $\beta \neq \beta_1, \beta_2, ..., \beta_n$ which implies $(W \cap B) \cap (V_{\beta} \cap B) = \emptyset$ for $\beta \neq \beta_1, \beta_2, ..., \beta_n$. Therefore, the family $\mathcal{V}_1 = \{V_{\beta} \cap B \mid \beta \in \Delta_0\}$ is B-locally finite. Let $V_{\beta} \cap B \in \mathcal{V}_1$. Then $V_{\beta} \in \mathcal{V}$. Since \mathcal{V} refines \mathcal{U} , there is some $U_{\alpha} \in \mathcal{U}$ such that $V_{\beta} \subset U_{\alpha}$ which implies $V_{\beta} \cap B \subset U_{\alpha} \cap B \subset U_{\alpha}$. Hence \mathcal{V}_1 refines \mathcal{U} . Therefore, A is I-paracompact relative to B.

Theorem 3.2. Let *S* be a closed subspace of an ideal space (X, τ, I) . If $F \subseteq S$ is I-paracompact relative to *S* and if there exists an open set *G* in *X* such that $F \subseteq G \subseteq S$, then *F* is *I*-paracompact relative to *X*.

Proof. Let $\mathcal{U} = \{U_{\alpha} \mid \alpha \in \Delta\}$ be an open cover of *F* by sets open in *X*. Then $\mathcal{U}_1 = \{U_{\alpha} \cap G \mid \alpha \in \Delta\}$ is an open cover of *F* by sets open in *G* so that $\mathcal{U}_1 = \{U_{\alpha} \cap G \mid \alpha \in \Delta\}$ is an open cover of *F* by sets open in *S*. By hypothesis, there exist $I \in I$ and locally finite family $\mathcal{V}_1 = \{W_{\beta} \mid \beta \in \Delta_0\}$ in *S* where each $W_{\beta} = V_{\beta} \cap S$ is open in *S* which refines \mathcal{U}_1 such that $F \subset \bigcup \{V_{\beta} \cap S \mid \beta \in \Delta_0\} \cup I$. Then $F \cap G \subset (\bigcup \{V_{\beta} \cap S \mid \beta \in \Delta_0\} \cup I) \cap G$ which implies that $F \subset \bigcup \{V_{\beta} \cap G \mid \beta \in \Delta_0\} \cup (I \cap G)$ implies that $F \subset \bigcup \{V_{\beta} \cap G \mid \beta \in \Delta_0\} \cup (I \cap G)$ implies that $F \subset \bigcup \{V_{\beta} \cap S \mid \beta \in \Delta_0\} \cup I$. Let $x \in X$. If $x \in S$, there exists $W \in \tau(x)$ such that $(V_{\beta} \cap S) \cap W = \emptyset$ for $\beta \neq \beta_1, \beta_2, ..., \beta_n$ which implies $((V_{\beta} \cap S) \cap W) \cap G = \emptyset$ for $\beta \neq \beta_1, \beta_2, ..., \beta_n$. If $x \in X - S$, then X - S is an open set containing *x* such that $(V_{\beta} \cap G) \cap (X - S) = \emptyset$. Thus, the family $\mathcal{V} = \{V_{\beta} \cap G \mid \beta \in \Delta_0\}$ is locally finite in *X*. Let $V_{\beta} \cap G \in \mathcal{V}$. Then $V_{\beta} \cap S \in \mathcal{V}_1$. Since \mathcal{V}_1 refines \mathcal{U}_1 , there is some $U_{\alpha} \cap G \in \mathcal{U}_1$ such that $V_{\beta} \cap S \subset U_{\alpha} \cap G$ which implies $V_{\beta} \cap G \subset U_{\alpha}$. Hence \mathcal{V} refines \mathcal{U} . Therefore, *F* is *I* – paracompact relative to *X*.

Theorem 3.3. If A is I – paracompact relative to X and B is a closed subset of X, then $A \cap B$ is I – paracompact relative to X.

Proof. Let $\mathcal{U} = \{U_{\gamma} \mid \gamma \in \Delta_0\}$ be an open cover of $A \cap B$. Then $\mathcal{U}_A = \{U_{\gamma} \mid \gamma \in \Delta_0\} \cup (X - B)$ is an open cover of A. By hypothesis, there exist $I \in I$ and locally finite family $\mathcal{V}_A = \{V_{\alpha} \cup (X - B) \mid \alpha \in \Delta\}$ which refines \mathcal{U}_A such that $A \subset \cup \{V_{\alpha} \cup (X - B) \mid \alpha \in \Delta\} \cup I$. Then $A \cap B \subset \cup \{(V_{\alpha} \cup (X - B)) \cap B \mid \alpha \in \Delta\} \cup (I \cap B)$ which implies that $A \cap B \subset \cup \{V_{\alpha} \cap B \mid \alpha \in \Delta\} \cup I$. Let $x \in X$. Since $\mathcal{V}_A = \{V_{\alpha} \cup (X - B) \mid \alpha \in \Delta\}$ is locally finite, there exists $W \in \tau(x)$ such that $(V_{\alpha} \cup (X - B)) \cap W = \emptyset$ for $\alpha \neq \alpha_1, \alpha_2, ..., \alpha_n$ which implies $(V_{\alpha} \cap W) \cup ((X - B) \cap W) = \emptyset$

for $\alpha \neq \alpha_1, \alpha_2, ..., \alpha_n$ which implies $((V_\alpha \cap W) \cup ((X - B) \cap W)) \cap B = \emptyset$ for $\alpha \neq \alpha_1, \alpha_2, ..., \alpha_n$ which implies $((V_\alpha \cap W) \cap B) \cup ((X - B) \cap W \cap B) = \emptyset$ for $\alpha \neq \alpha_1, \alpha_2, ..., \alpha_n$ which implies $(V_\alpha \cap B) \cap W = \emptyset$ for $\alpha \neq \alpha_1, \alpha_2, ..., \alpha_n$. Therefore, the family $\mathcal{V} = \{V_\alpha \cap B \mid \alpha \in \Delta\}$ is locally finite. Let $V_\alpha \cap B \in \mathcal{V}$. Then $V_\alpha \cup (X - B) \in \mathcal{V}_A$. Since \mathcal{V}_A refines \mathcal{U}_A , there is some $U_\gamma \cup (X - B) \in \mathcal{U}_A$ such that $V_\alpha \cup (X - B) \subset U_\gamma \cup (X - B)$ which implies $(V_\alpha \cup (X - B)) \cap B \subset (U_\gamma \cup (X - B)) \cap B$ which implies $V_\alpha \cap B \subset U_\gamma \cap B \subset U_\gamma$. Hence \mathcal{V} refines \mathcal{U} . Therefore, $A \cap B$ is I-paracompact relative to X. \Box

Corollary 3.4. If A is I – paracompact relative to X and $B \subset A$ is a closed subset of X, then B is I – paracompact relative to X.

Theorem 3.5. Let A be I-paracompact relative to X and B an open set contained in A. Then A-B is I-paracompact relative to X.

Proof. Let $\mathcal{U} = \{U_{\alpha} \mid \alpha \in \Delta\}$ be a cover of A - B by sets open in X. Then $\mathcal{U}_1 = \{U_{\alpha} \mid \alpha \in \Delta\} \cup B$ is a cover of A by sets open in X. By hypothesis, there exist $I \in I$ and locally finite family $\mathcal{V}_1 = \{V_{\beta} \mid \beta \in \Delta_0\} \cup B$ which refines \mathcal{U}_1 such that $A \subset \cup(\{V_{\beta} \mid \beta \in \Delta_0\} \cup B) \cup I$. Then $A - B \subset \cup(\{V_{\beta} \mid \beta \in \Delta_0\} \cup B) \cup I) - B$ which implies that $A - B \subset \cup\{V_{\beta} - B \mid \beta \in \Delta_0\} \cup I$. Since the family $\mathcal{V}_1 = \{V_{\beta} \cup B \mid \beta \in \Delta_0\}$ is locally finite, the family $\mathcal{V} = \{V_{\beta} - B \mid \beta \in \Delta_0\}$ is locally finite, by Lemma 1.3. Let $V_{\beta} - B \in \mathcal{V}$. Then $V_{\beta} \cup B \in \mathcal{V}_1$. Since \mathcal{V}_1 refines \mathcal{U}_1 , there is some $U_{\alpha} \cup B \in \mathcal{U}_1$ such that $V_{\beta} \cup B \subset U_{\alpha} \cup B$ which implies $(V_{\beta} \cup B) - B \subset (U_{\alpha} \cup B) - B$ and so $V_{\beta} - B \subset U_{\alpha} - B \subset U_{\alpha}$. Therefore, \mathcal{V} refines \mathcal{U} . Hence A - B is I-paracompact relative to X.

Theorem 3.6. In a space (X, τ, I) , if A and B are I-paracompact relative to X, then $A \cup B$ is I-paracompact relative to X.

Proof. Let $\mathcal{U} = \{U_{\gamma} \mid \gamma \in \Delta\}$ be a cover of $A \cup B$ by sets open in X. Then $\mathcal{U} = \{U_{\gamma} \mid \gamma \in \Delta\}$ is an open cover of A and B. By hypothesis, there exist $I_A, I_B \in I$ and locally finite families $\mathcal{V}_A = \{V_{\alpha} \mid \alpha \in \Delta_0\}$ of A and $\mathcal{V}_B = \{V_{\beta} \mid \beta \in \Delta_1\}$ of B which refines \mathcal{U} such that $A \subset \cup \{V_{\alpha} \mid \alpha \in \Delta_0\} \cup I_A$ and $B \subset \cup \{V_{\beta} \mid \beta \in \Delta_1\} \cup I_B$. Then $A \cup B \subset (\bigcup \{V_{\alpha} \mid \alpha \in \Delta_0\} \cup \cup I_A) \cup (\bigcup \{V_{\beta} \mid \beta \in \Delta_1\} \cup \cup I_B)$ which implies that $A \cup B \subset \cup \{V_{\alpha} \cup V_{\beta} \mid \alpha \in \Delta_0, \beta \in \Delta_1\} \cup (I_A \cup I_B)$ which implies $A \cup B \subset \cup \{V_{\alpha} \cup V_{\beta} \mid \alpha \in \Delta_0, \beta \in \Delta_1\} \cup I$ where $I = I_A \cup I_B$. Since the family \mathcal{V}_A and \mathcal{V}_B are locally finite, the family $\mathcal{V} = \{V_{\alpha} \cup V_{\beta} \mid \alpha \in \Delta_0, \beta \in \Delta_1\}$ is locally finite, by Lemma 1.1, which refines \mathcal{U} . Therefore, $A \cup B$ is I-paracompact relative to X. \Box

Theorem 3.7. Every *g*-closed subset of an *I*-paracompact space is *I*-paracompact relative to X.

Proof. Let *A* be a *g*-closed subset of (X, τ, I) . Let $\mathcal{U} = \{U_{\alpha} \mid \alpha \in \Delta\}$ be an open cover of *A*. Then $A \subset \cup U_{\alpha}$. Since *A* is *g*-closed, $cl(A) \subset \cup U_{\alpha}$. Then $\mathcal{U}_1 = \{U_{\alpha} \mid \alpha \in \Delta\} \cup (X - cl(A))$ is an open cover of *X*. By hypothesis, there exist $I \in I$ and locally finite family $\mathcal{V}_1 = \{V_{\beta} \cup V \mid \beta \in \Delta_0\} (V_{\beta} \subset U\alpha \text{ and } V \subset X - cl(A))$ which refines \mathcal{U}_1 such that $X = \cup \{V_{\beta} \cup V \mid \beta \in \Delta_0\} \cup I$. Then $cl(A) - \bigcup V_{\beta} = cl(A) - (V \cup (\bigcup V_{\beta})) \subset X - (V \cup (\bigcup V_{\beta})) \in I$. Thus, $cl(A) - \bigcup V_{\beta} \in I$. Since $A - \bigcup V_{\beta} \subset cl(A) - \bigcup V_{\beta} \in I$, by hereditary. Since $\mathcal{V}_1 = \{V_{\beta} \cup V \mid \beta \in \Delta_0\}$ is locally finite, the family $\mathcal{V} = \{V_{\beta} \mid \beta \in \Delta_0\}$ is locally finite, by Lemma 1.3. Thus, the family \mathcal{V} is locally finite which refines \mathcal{U} . Therefore, *A* is *I*-paracompact relative to *X*.

Theorem 3.8. Let (X, τ, I) be a perfectly normal ideal space with a σ -ideal I and G be a subset of X such that G is the union of countable number of open subsets G_n of X. Then each G_n , $n \in \mathbb{N}$ is I-paracompact relative to X if and only if G is I-paracompact relative to X.

Proof. Suppose each G_n , $n \in \mathbb{N}$ is I-paracompact relative to X. Let $\mathcal{U} = \{V_\alpha \mid \alpha \in \Delta\}$ be a cover of G by sets open in X. Then $\mathcal{U}_n = \{V_\alpha \cap G_n \mid \alpha \in \Delta\}$ is an open cover of G_n for each $n \in \mathbb{N}$. By hypothesis, there exist $I_n \in I$ and locally finite family $\mathcal{V}_n = \{V_{\beta,n} \mid \beta \in \Delta_1\}$ which refines \mathcal{U}_n such that $G_n \subset \bigcup \{V_{\beta,n} \mid \beta \in \Delta_1\} \cup I_n$. Then $\bigcup G_n \subset \bigcup (\bigcup \{V_{\beta,n} \mid \beta \in \Delta_1\} \cup I_n)$ which implies that $G \subset \bigcup \{W_n \mid n \in \mathbb{N}\} \cup I$ where $W_n = \bigcup \{V_{\beta,n} \mid \beta \in \Delta_1\}$ and $I = \bigcup \{I_n \mid n \in \mathbb{N}\}$. Let $x \in X$. Since $\mathcal{V}_n = \{V_{\beta,n} \mid \beta \in \Delta_1\}$ is locally finite, there exists a neighborhood U containing x such that $U \cap V_{\beta,n} \neq \emptyset$ for every $\beta \in \Delta_0$ where Δ_0 is a finite subset of Δ_1 . Suppose $\mathcal{V} = \{W_n \mid n \in \mathbb{N}\}$ is not locally finite. Then there exists an element $x \in X$ such that for all neighborhood U of x, we have $U \cap W_i = \emptyset$ for all i = 1, 2, ..., k which implies that $U \cap (\bigcup V_{\beta,i}) = \emptyset$ for all i = 1, 2, ..., k which in turn implies that $\bigcup (U \cap V_{\beta,i}) = \emptyset$ for all i = 1, 2, ..., k which in turn implies that $\bigcup (U \cap V_{\beta,i}) = \emptyset$ for all i = 1, 2, ..., k which is a contradiction to the fact that \mathcal{V}_n is locally finite. Therefore, $\mathcal{V} = \{W_n \mid n \in \mathbf{N}\}$ is locally finite. Let $W_n \in \mathcal{V}$ where $W_n = \bigcup_{\beta \in \mathcal{V}} V_{\beta,n}$. Then

 $V_{\beta,n} \in \mathcal{V}_n$. Since \mathcal{V}_n refines \mathcal{U}_n , there is some $V_\alpha \cap G_n \in \mathcal{U}_n$ such that $V_{\beta,n} \subset V_\alpha \cap G_n$ which implies $V_{\beta,n} \subset V_\alpha$. Thus, $\bigcup_{\beta} V_{\beta,n} \subset V_\alpha$ and so $W_n \subset V_\alpha$ for some $V_\alpha \in \mathcal{U}$. Therefore, \mathcal{V} refines \mathcal{U} . Hence G is I-paracompact.

Conversely, suppose *G* is *I*-paracompact. Since the subset of a perfectly normal space is perfectly normal, *G* is perfectly normal. Then each G_n is an F_σ -set. Therefore, by Theorem 2.4, each G_n is *I*-paracompact. \Box

References

- A.V. Arkhangel'skii, V.I. Ponomarëv, Fundamentals of General Topology–Problems and Exercises, Hindustan Pub. Corporation, Delhi, 1966
- [2] C.E. Aull, Paracompact and countably paracompact susets, In: General Topology and its Relations to Modern Analysis and Algebra, Proc. Kanpur Topol. Conf. 1966, Academic Press, New York, 1971, 49–53.
- [3] N. Bourbaki, General Topology, Addison-Wesley, Mass., 1966.
- [4] J. Dieudonné, Une generalization des escapes compacts, J. Math. Pures Appl. 23 (1944) 65-76.
- [5] C. H. Dowker, An imbedding theorem for paracompact metric spaces, Duke Math. J. 14 (1947) 639–645.
- [6] J. Dugundji, Topology, Allyn and Bacon, Boston, 1996.
- [7] R. Engelking, General Topology, Helderman Verlag, 1989.
- [8] T.R. Hamlett, D. Rose, D. Janković, Paracompactness with respect to an ideal, Internat. J. Math. Math. Sci. 20 (1997) 433-442.
- [9] D. Janković, T.R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly 97 (1990) 295-310.
- [10] K. Kuratowski, Topolgie I, Warszawa, 1933.
- [11] N. Levine, Generalised closed sets in topology, Rend, Circ. Mat. Palermo 19 (1970) 89-96.
- [12] M.K. Singal, S.P. Arya, On the closure preserving sum theorem, Proc. Amer. Math. Soc. 53 (1975) 518–522.
- [13] M.K. Singal, P. Jain, On subparacompact and countably subparacompact spaces, Bull. Austral. Math. Soc. 5 (1971) 289–304.
- [14] R. Vaidyanathaswamy, Set Topology, Chelsea Publishing Company, New York, 1946.
- [15] M.I. Zahid, Para H-closed spaces, locally para H-closed spaces and their minimal topologies, Ph.D dissertation, University of Pittsburgh, 1981.