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Abstract. In this paper, we investigate trigonometric polynomials associated with f ∈ Lip(α, p), (0 ≤ α ≤
1, p ≥ 1) to approximate f in Lp norm to the degree of O(n−α)(0 < α ≤ 1) for a more general class of lower
triangular regular matrices with non-negative entries and row sums tn.

1. Introduction

Let f be a 2Π-periodic signal and let f ∈ Lp[0, 2Π] = Lp for p ≥ 1. Then the Fourier series of function
(signal) f at any point x is given by

f (x) ∼ a0

2
+

∞∑
k=1

(akcosx + bksinx) ≡
∞∑

k=0

Ak( f ; x). (1)

Denote by sn( f ; x), n = 0, 1, ... the nth partial sums of the series (1) at the point x, that is, sn( f ; x) =
∑∞

k=0 Ak( f ; x),
a trigonometric polynomial of degree (or order) n,
where
A0( f ; x) = a0

2 , Ak( f ; x) = akcosx + bksinx, k = 1, 2, ....
We define

τn( f ; x) =
∞∑

k=0

an,ksk( f ; x) ∀n ≥ 0, (2)

where T ≡ (an,k) is a linear operator represented by a lower triangular regular matrix with non-negative
entries and row sums tn. The forward difference operator ∆ is defined by ∆kan,k = an,k − an,k+1. Such a
matrix T is said to have monotone rows if, for each n, {an,k} is either non-increasing or non- decreasing in k,
0 ≤ k ≤ n. The series (2) is said to be T− summable to s, if τn( f ; x)→ s as n→∞.
The T− operator reduces to the Nörlund (Np)-operator, if

an,k =

{ pn−k
Pn
, o ≤ k ≤ n,

0, k > n,
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where Pn =
∑∞

k=0 pk , 0 and p−1 = 0 = P−1. In this case, the transform τn( f ; x) reduces to the Nörlund
transform Nn( f ; x).
The T− operator reduces to the weighted (Riesz) (N̄p)- operator, if

an,k =

{ pk
Pn
, o ≤ k ≤ n,

0, k > n,

where Pn =
∑∞

k=0 pk , 0 and p−1 = 0 = P−1. In this case, the transform τn( f ; x) reduces to the Nörlund
transform N̄n( f ; x) (or Rn( f ; x)).
A function (signal) f ∈ Lip(α, p) for p ≥ 1, 0 ≤ α ≤ 1, if( ∫ 2Π

0

∣∣∣∣∣ f (x + t) − f (x)
∣∣∣∣∣pdx

) 1
p

= O(tα).

The integral modulus of continuity of function f ∈ Lp[0, 2Π] is defined by

ωp(δ; f ) = sup
0<|h|≤δ

( 1
2Π

∫ 2Π

0

∣∣∣∣∣ f (x + h) − f (x)
∣∣∣∣∣pdx

) 1
p

.

If, for α > 0,

ωp(δ; f ) = O(δα),

then f ∈ Lip(α, p), (p ≥ 1).
The Lp -norm of f is defined by

∥ f ∥p =
( 1

2Π

∫ 2Π

0
| f (x)|pdx

) 1
p

( f ∈ Lp(p ≥ 1)).

Also

sn( f ) =
1
Π

∫ 2Π

0
f (x + t)Dn(t)dt, σn( f ; x) =

1
n + 1

n∑
m=0

sm( f ; x),

Dn(t) =
sin(n + 1/2)t

2sin(t/2)
,

the Dirichlet Kernel of degree (or order) n.
A positive sequence c := {cn} is called almost monotone decreasing (or increasing) if there exists a constant
K := K(c), depending on the sequence c only, such that for all n ≤ m,

cn ≤ Kcm (Kcn ≥ cm).

Such sequences will be denoted by c ∈ AMDS and c ∈ AMIS, respectively. A sequence which is either
AMDS or AMIS is called monotone and will be denoted by c ∈ AMS.

Nn( f ; x) =
1

Pn

n∑
k=0

pn−ksk( f ; x), Pn =

n∑
r=0

pr , 0, p−1 = 0 = P−1.

Rn( f ; x) =
1

Pn

n∑
k=0

pksk( f ; x), Pn =

n∑
r=0

pr , 0, p−1 = 0 = P−1.

An,k =

n∑
r=k

an,r, tn =

n∑
k=0

an,k = An,0, bn,k =
An,k − An,0

k
∀1 ≤ k ≤ n,
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∆kan,k = an,k − an,k+1, ∆ fk1k = 1k∆ fk + fk+1∆1k,

[x]- denotes the greatest integer not exceeding x.
A signal (function) f is approximated by trigonometric polynomials τ of order (or degree) n and the degree
of approximation En( f ) is given by

En( f ) = min
n
∥ f (x) − τn( f ; x)∥p.

This method of approximation is called trigonometric Fourier Approximation (TFA).
Let σn( f ) denote the nth term of the (C, 1) transform of the partial sums of the Fourier series of a 2Π -periodic
function f . The approximation properties of the Cesàro means σn( f ) in Lipschitz classes Lip(α, p) 1 ≤ p < ∞,
0 < α ≤ 1 were investigated by Quade in [10]. He proved:

Theorem 1.1. ([10]) If f ∈ Lip(α, p) for 0 < α ≤ 1, then

∥ f (x) − σn( f ; x)∥p = O(n−α). (3)

for either (i) p > 1 and 0 < α ≤ 1 or (ii) p = 1 and 0 < α < 1.
and if p = α = 1, then

∥ f (x) − σn( f ; x)∥1 = O(n−1lo1(n + 1)). (4)

In the paper Chandra [1] extended the work of Quade [10], gave some conditions on the sequence
{pn}∞0 and obtained very satisfactory results about approximation by the means Nn( f ) and Rn( f ) in Lip(α, p),
1 ≤ p < ∞, 0 < α ≤ 1, where Nn( f ) and Rn( f ) denote the nth terms of the Nörlund and weighted mean
transforms of the sequences of partial sums, respectively. He proved:

Theorem 1.2. ([1]) Let f ∈ Lip(α, p) and let {pn} be a positive sequence such that

(n + 1)pn = O(Pn). (5)

If either
(i) p > 1, 0 < α ≤ 1 and
(ii) {pn} is monotonic,
or
(i) p = 1, 0 < α < 1 and
(ii) {pn} is non-decreasing sequence,
then

∥ f (x) −Nn( f ; x)∥p = O(n−α). (6)

Theorem 1.3. ([1]) Let f ∈ Lip(α, p) and let {pn} be positive. Suppose that either
(i) p > 1, 0 < α ≤ 1, and
(ii)

∑n−1
k=0

∣∣∣∣∆ (
Pk

k+1

)∣∣∣∣ = O
(

Pn
n+1

)
,

or
(i) p = 1, 0 < α < 1 and
(ii) {pn} with (5) is positive and non-decreasing.
Then

∥ f (x) − Rn( f ; x)∥p = O(n−α). (7)

Later, Leindler in [2] weakened the conditions given by Chandra [1] on the generating sequence {pn}∞0
and generalized his results. He proved:
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Theorem 1.4. ([2]) Let f ∈ Lip(α, p) and let {pn} be positive. If one of the conditions
(i) p > 1, 0 < α < 1, {pn} ∈ AMDS,
(ii) p > 1, 0 < α < 1 and {pn} ∈ AMIS and (5) holds,
(iii) p > 1, α = 1 and

∑n−1
k=1 k|∆pk| = O(Pn),

(iv) p > 1, α = 1,
∑n−1

k=0 |∆pk| = O(Pn/n) and (5) holds,
(v) p = 1, 0 < α < 1,

∑n−1
k=−1 |∆pk| = O(Pn/n)

maintains, then (6) holds.

Theorem 1.5. ([2]) Let f ∈ Lip(α, 1), 0 < α < 1. If the positive sequence {pn} satisfies (5) and the condition∑n−1
k=0 |∆pk| = O(Pn/n) holds, then (7) holds.

Recently Mittal et al. [6] have generalized two theorems 1.2 and 1.3 (Chandra [1],Theorems 1.1 and 1.2)
to more general classes of triangular matrix methods. They proved:

Theorem 1.6. ([6]) Let f ∈ Lip(α, p) and let T have monotone rows and satisfy

|tn − 1| = O(n−α). (8)

(i) If p > 1, 0 < α < 1, and T also satisfies

(n + 1) max{an,o, an,r} = O(1), (9)

where r := [n/2], then

∥τn( f ; x) − f (x)∥p = O(n−α). (10)

(ii) If p > 1, α = 1 and T also satisfies (9), then (10) is satisfied.
(iii) If p = 1, 0 < α < 1, and T also satisfies

(n + 1) max{an,o, an,r} = O(1), (11)

then (10) is satisfied.

2. Main result

It is well known that the theory of approximation i.e. TFA, which originated from a theorem of Weier-
strass, has become an exciting interdisciplinary field of study for the last 131 years. These approximations
have assumed important new dimensions due to their wide applications in signal analysis [8], in gen-
eral and in Digital Signal Processing [9] in particular, in view of the classical Shannon sampling theorem.
Broadly speaking, signals are treated as function of one variable and images are represented by functions
of two variable.
This has motivated Mishra [3], Mittal et al. ([5, 7]) and Mishra and Mishra [4] to obtain many interesting
results on TFA using different summability matrices without monotone rows.
In this paper, we extend Theorems 1.4 and 1.5 of Leindler ([2], Theorems 1.1 and 1.2) to more general classes
of triangular matrix methods with non-negative entries and row sums tn. Our Theorem 2.1 also generalize
partially Theorem 1.6 of Mittal et al. [6], by dropping monotonicity on the elements of the matrix rows (that
is, weakening the conditions on the filter T, we improve the quality of the digital filter). We prove:

Theorem 2.1. Let f ∈ Lip(α, p), and let T have monotone rows and satisfy

|tn − 1| = O(n−α). (12)

(i) p > 1, 0 < α < 1, {an,k} ∈ AMS in k and satisfies

(n + 1) max{an,o, an,r} = O(1), (13)
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where r := [n/2], then (10) is satisfied.

(ii) p > 1, α = 1 and
n−1∑
k=0

(n − k)|∆kan,k| = O(1), or (14)

(iii) p > 1, α = 1 and
n∑

k=0

|∆kan,k| = O(an,0), or (15)

(iv) p = 1, 0 < α < 1,
n∑

k=0

|∆kan,k| = O(an,0), (16)

and also (n + 1) max{an,o, an,n} = O(1), hold then (10) is satis f ied. (17)

It is easy to examine that the conditions of Theorems 2.1 claim less than the requirements of our Theorems
1.6 for An,0 = tn.
For example, the condition on the sum in (14) is always satisfied if the sequence {an,k} is non-decreasing in
k, then using (17), we get

n−1∑
k=0

(n − k)|∆kan,k| =
n−1∑
k=0

(n − k)|an,k − an,k+1| =
n−1∑
k=0

(n − k)(an,k+1 − an,k)

= An,o − (n + 1)an,o = tn +O(1) = O(n−1) +O(1) = O(1).

If {an,k} is non-increasing in k and (17) holds then

n∑
k=0

|∆kan,k| =
n∑

k=0

|an,k − an,k+1| =
n∑

k=0

(an,k − an,k+1) = an,0 − an,n+1 = an,0, as an+1,0 = 0,

is also true. Consequently Theorem 2.1 partially generalized Theorem 1.6.

3. Lemmas

We shall use the following lemmas in the proof of the theorem:

Lemma 3.1. ([10]) If f ∈ Lip(1, p), p > 1 then

∥σn( f ; x) − sn( f ; x)∥p = O(n−1). (18)

Lemma 3.2. ([10]) Let, for 0 < α ≤ 1 and p > 1, f ∈ Lip(α, p). Then

∥ f (x) − sn( f ; x)∥p = O(n−α) ∀n > 0. (19)

Lemma 3.3. Let T have monotone rows and satisfy (9). Then, for 0 < α < 1,

n∑
k=1

an,kk−α = O(n−α) (20)

Proof. Let r := [n/2]. Then, we have

n∑
k=0

an,kk−α =
r∑

k=1

an,kk−α +
n∑

k=r+1

an,kk−α.
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Case I. If an,k is non-decreasing in k. Then, using (13), we get

n∑
k=1

an,kk−α ≤ an,r

r∑
k=1

k−α + (r + 1)−α
n∑

k=r+1

an,k

≤ an,r

r∑
k=0

k−α + (r + 1)−αtn

= O((n + 1)−1)O(n1−α) +O(n−α) = O(n−α).

Case II. If an,k is non-increasing in k. Then, using (13), we get

n∑
k=1

an,kk−α ≤ an,0

r∑
k=1

k−α +O(n−α) = O(n−α).

4. Proof of Theorem 2.1

Proof. Case I. If p > 1, 0 < α < 1. The proof runs similar to the case (i) of Theorem 1.6 [6]. Let an,k be AMS
in k. Then

τn( f ; x) − f (x) =
n∑

k=0

an,ksk( f ; x) − tn f (x) + (tn − 1) f (x)

=

n∑
k=0

an,k(sk( f ; x) − f (x)) + (tn − 1) f (x). (21)

Using (12) and Lemmas (3.2) and (3.3),

∥τn( f ; x) − f (x)∥p ≤
n∑

k=0

an,k∥sk( f ; x) − f (x)∥p + |(tn − 1)|p∥ f (x)∥p

=

n∑
k=1

an,kO(k−α) +O(n−α) = O(n−α).

Case III. If p > 1, α = 1, we have

τn( f ; x) − f (x) = τn( f ; x) − sn( f ; x) + sn( f ; x) − f (x).

Now, using Lemma 3.2, we get

∥τn( f ; x) − f (x)∥p ≤ ∥τn( f ; x) − sn( f ; x)∥p + ∥sn( f ; x) − f (x)∥p

= ∥τn( f ; x) − sn( f ; x)∥p +O(n−1). (22)

Now to prove our theorem, it remains to show that

∥τn( f ; x) − sn( f ; x)∥p = O(n−1). (23)

Now, we write

τn( f ; x) =
n∑

k=0

an,ksk( f ; x) =
n∑

k=0

an,k

 k∑
i=0

ui( f ; x)

 = n∑
k=0

An,kuk( f ; x),
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and thus, as An,o = tn, we have

τn( f ; x) − sn( f ; x) =
n∑

k=1

(An,k − An,0)uk( f ; x) + (tn − 1) f (x).

Hence by Abeł’s transformation, we obtain

n∑
k=1

(
An,k − An,0

k

)
kuk( f ; x) =

n∑
k=1

bn,kkuk( f ; x)

=

n−1∑
k=1

(∆kbn,k)

 k∑
j=1

ju j( f ; x)

 + bn,n

n∑
j=1

ju j( f ; x).

Thus by triangle inequality, we find

∥τn( f ; x) − f (x)∥p ≤
n−1∑
k=1

|∆kbn,k|

∥∥∥∥∥∥∥∥
k∑

j=1

ju j( f ; x)

∥∥∥∥∥∥∥∥
p

+ |bn,n|

∥∥∥∥∥∥∥∥
n∑

j=1

ju j( f ; x)

∥∥∥∥∥∥∥∥
p

+ |tn − 1| ∥ f (x)∥p

=

n−1∑
k=1

|∆kbn,k|

∥∥∥∥∥∥∥∥
k∑

j=1

ju j( f ; x)

∥∥∥∥∥∥∥∥
p

+ |bn,n|

∥∥∥∥∥∥∥∥
n∑

j=1

ju j( f ; x)

∥∥∥∥∥∥∥∥
p

+O(n−1). (24)

Now

σn( f ; x) − sn( f ; x) =
1

n + 1

n∑
m=0

sm( f ; x) − sn( f ; x) =
1

n + 1

n∑
m=0

sm( f ; x) −
k∑

k=0

uk( f ; x) = − 1
n + 1

n∑
j=1

ju j( f ; x).

Therefore by Lemma 3.1, we have∥∥∥∥∥∥∥∥
n∑

j=1

ju j( f ; x)

∥∥∥∥∥∥∥∥
p

= (n + 1)∥σn( f ; x) − sn( f ; x)∥p = (n + 1)O(n−1) = O(1). (25)

We note that

|bn,n| =
∣∣∣∣∣An,n − An,0

n

∣∣∣∣∣ = |An,0 − An,n|
n

=
|tn − an,n|

n
= O(n−1).

Thus ∥∥∥∥∥∥∥∥bn,n

n∑
j=1

ju j( f ; x)

∥∥∥∥∥∥∥∥
p

= |bn,n|

∥∥∥∥∥∥∥∥
n∑

j=1

ju j( f ; x)

∥∥∥∥∥∥∥∥
p

= O(n−1). (26)

As in case (ii) of proof of Theorem 1.6 ([6], p. 672), we write

∆kbn,k =
1

k(k + 1)

(k + 1)an,k −
k∑

r=0

an,r

 . (27)

Next we shall verify by mathematical induction that∣∣∣∣∣∣∣
k∑

r=0

an,r − (k + 1)an,k

∣∣∣∣∣∣∣ ≤
k−1∑
r=0

(r + 1)|an,r − an,r+1|. (28)
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If k = 1, then∣∣∣∣∣∣∣
1∑

r=0

an,r − 2an,1

∣∣∣∣∣∣∣ = |an,0 − an,1|.

Thus (28) holds.
Now let us suppose that (28) holds for k = m i.e.∣∣∣∣∣∣∣

m∑
r=0

an,r − (m + 1)an,k

∣∣∣∣∣∣∣ ≤
m−1∑
r=0

(r + 1)|an,r − an,r+1|, (29)

and we have to show that (28) is true for k = m + 1.
For k = m + 1 and using (29), we get∣∣∣∣∣∣∣

m+1∑
r=0

an,r − (m + 2)an,m+1

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣

m∑
r=0

an,r − (m + 1)an,m+1

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
m∑

r=0

an,r − (m + 1)an,m + (m + 1)an,m − (m + 1)an,m+1

∣∣∣∣∣∣∣
≤

m−1∑
r=0

(r + 1)|an,r − an,r+1| + (m + 1)|an,m − an,m+1|

=

(m+1)−1∑
r=0

(r + 1)|an,r − an,r+1|,

which shows that (28) is true for k = m + 1. Thus (28) holds good ∀ k ∈ N.
Using (13), (17),(27) and (28), we find

n∑
k=1

|∆kbn,k| =
n∑

k=1

∣∣∣∆k[k−1(An,k − An,0)]
∣∣∣ = n∑

k=1

k−1(k + 1)−1

∣∣∣∣∣∣∣(k + 1)an,k −
k∑

r=0

an,r

∣∣∣∣∣∣∣
=

n∑
k=1

k−1(k + 1)−1

∣∣∣∣∣∣∣
k∑

r=0

an,r − (k + 1)an,k

∣∣∣∣∣∣∣
≤

n∑
k=1

k−1(k + 1)−1
k−1∑
r=0

(r + 1)|an,r − an,r+1| =
n∑

k=1

k−1(k + 1)−1
k∑

m=1

m|an,m−1 − an,m|

≤
n∑

m=1

m|∆man,m−1|
∞∑

k=m

1
k(k + 1)

=

n−1∑
k=0

|∆kan,k| = O(an,0) = O(n−1). (30)

Combining (24), (25, (26) and (30) yields (23). From (23) and (22), we get

∥τn( f ; x) − f (x)∥p = O(n−1).

Case II. If p > 1, α = 1. For this, we first prove that the condition

n−1∑
k=0

(n − k)|∆kan,k| = O(1) =⇒

Bn ≡
n∑

k=1

|∆kbn,k| =
n∑

k=1

∣∣∣∆k{k−1(An,k − An,0)}
∣∣∣ = O(n−1). (31)
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For this, using (28) as in case (iii), we have

Bn =

n∑
k=1

k−1(k + 1)−1

∣∣∣∣∣∣∣(k + 1)an,k −
k∑

r=0

an,r

∣∣∣∣∣∣∣ ≤
n∑

k=1

k−1(k + 1)−1
k−1∑
r=0

(r + 1)|an,r − an,r+1|

≤
 r∑

k=1

+

n∑
k=r

 k−1(k + 1)−1
k∑

m=1

m|an,m−1| = B1 + B2, say. (32)

Now, using (14) and interchanging the order of summation, we get

B1 ≡
r∑

k=1

k−1(k + 1)−1
k∑

m=1

m|∆man,m−1| ≤
r∑

m=1

m|∆man,m−1|
∞∑

k=m

1
k(k + 1)

=

r∑
m=1

|∆man,m−1| =
n∑

m=n−r+1

|∆n−man,n−m| ≤
n∑

m=r−1

|∆n−man,n−m|
( m

r − 1

)
≤ 1

r − 1

n∑
m=1

m|∆n−man,n−m| =
1

r − 1

n−1∑
k=0

(n − k)|∆kan,k|

=
1

r − 1
O(1) = O(n−1). (33)

On the other hand

B2 ≡
n∑

k=r

k−1(k + 1)−1
k∑

m=1

m|∆man,m−1|

≤
n∑

k=r

k−1(k + 1)−1


 r∑

m=1

+

k∑
m=r

 m|∆man,m−1|


= Bn,1 + Bn,2, say. (34)

Using arguments as B1 and (14), we obtain

Bn,1 ≡
n∑

k=r

k−1(k + 1)−1
r∑

m=1

m|∆man,m−1|

≤
n∑

k=r

(k + 1)−1
r∑

m=1

|∆man,m−1| =
n∑

k=r

(k + 1)−1
n∑

m=n−r+1

|∆n−man,n−m|

≤
n∑

k=r

(k + 1)−1
n∑

m=r−2

|∆n−man,n−m|
m

r − 2

≤ 1
r − 2

n∑
k=r

(k + 1)−1
n∑

m=1

m|∆n−man,n−m|

=
1

r − 2

n∑
k=r

(k + 1)−1
n−1∑
k=0

(n − k)|∆kan,k|

=
1

r − 2

n∑
k=r

(k + 1)−1O(1) = O(1/n), (35)
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again using (14) and interchanging the order of summation, we have

Bn,2 ≡
n∑

k=r

k−1(k + 1)−1
k∑

m=r

m|∆man,m−1| ≤
n∑

k=r

(k + 1)−1
k∑

m=r

|∆man,m−1|

≤ 1
r + 1

n∑
m=r

|∆man,m−1|
n∑

k=m

1 =
1

r + 1

n∑
m=r

(n −m + 1)|∆man,m−1|

=
1

r + 1

n−1∑
k=r−1

(n − k)|∆kan,k| =
1

r + 1
O(1) = O(n−1). (36)

From (32), (33), (34), (35) and (36), we get (31).
Thus (22), (24), (25), the estimate of bn,n and Lemma 3.2 again yield (10).
Case IV. If p = 1, 0 < α < 1, using (21), an,n+1 = 0 and the Abeł’s transformation, we obtain

τn( f ; x) − f (x) =

n∑
k=0

an,k(sk( f ; x) − f (x)) + (1 − tn) f (x)

=

n−1∑
k=0

(∆kan,k)

 k∑
r=0

(sr( f ; x) − f (x))

 + (an,n − an,n+1)
n∑

r=0

(sr( f ; x) − f (x)) + (1 − tn) f (x)

=

n∑
k=0

(∆kan,k)

 k∑
r=0

(sr( f ; x) − f (x))

 + (1 − tn) f (x)

=

n∑
k=0

(∆kan,k)(k + 1)(σk( f ; x) − f (x)) + (1 − tn) f (x).

Hence, by condition (13), (16) and Lemma3.1, we find

∥τn( f ; x) − f (x)∥1 ≤
n∑

k=0

k |∆kan,k| ∥(σk( f ; x) − f (x))∥1 + |(1 − tn)| ∥ f (x)∥1

= O

 n∑
k=0

k1−α |∆kan,k|
 +O(n−α) = O(n1−α)

n∑
k=0

|∆kan,k| +O(n−α)

= O(n1−α)O(an,0) = O(n1−α)O(n−1) +O(n−α) = O(n−α).

This completes the proof of case (iv) and consequently the proof of Theorem 2.1 is complete.
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