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Abstract. We establish the formulas of the maximal rank of a 3×3 partial banded block matrix

 M11 M12 X
M21 Y M23

Z M32 M33


where X, Y, and Z are three variant quaternion matrices subject to linear matrix equationsA1X = C1, XB1 =
C2, A2Y = D1, YB2 = D2, A3Z = E1, ZB3 = E2. In order to demonstrate the feasibility of the result obtained,
we present a necessary and sufficient condition for the solvability to the cubic system A1X = C1, XB1 =
C2, A2Y = D1, YB2 = D2, A3Z = E1, ZB3 = E2,XYZ = J over the quaternion algebra.

1. Introduction

Throughout this paper, we denote the real number field by R, the set of all m × n matrices over the
quaternion algebra

H = {a0 + a1i + a2 j + a3k | i2 = j2 = k2 = i jk = −1, a0, a1, a2, a3 ∈ R}

by Hm×n, the identity matrix with the appropriate dimension by I, the rank of matrix A by r(A), and a
reflexive inverse of matrix A over H by A+ which satisfies simultaneously AA+A = A, A+AA+ = A+.
Moreover, RA and LA stand for the two projectors RA = I − AA+, LA = I − A+A induced by A, where A+ is
any but fixed reflexive inverse of A. Clearly, RA and LA are idempotent and one of its reflexive inverses is
itself.

In matrix theory, the solvability of matrix equations is one of the important topics. In recent years, some
authors ([2]-[9]) investigate the extremal ranks of the general solutions of systems subject to consistent
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systems and provide applications over the quaternion algebraH. In this paper, We formulate the maximal
rank of a kind of 3×3 partial banded block matrix

M(X,Y,Z) =

 M11 M12 X
M21 Y M23

Z M32 M33

 , (1.1)

where Mi j[(i, j) = (1, 1); (1, 2); (2, 1); (2, 3); (3, 2); (3, 3)] ∈ Hmi×n j are known, X ∈ Hm1×n3 , Y ∈ Hm2×n2 and
Z ∈Hm3×n1 are three independent variant matrices subject to consistent system

A1X = C1, XB1 = C2, A2Y = D1, YB2 = D2, A3Z = E1, ZB3 = E2 (1.2)

overH. As an application of the result derived, in Section 3, we present a necessary and sufficient condition
for the solvability to the cubic system

A1X = C1, XB1 = C2, A2Y = D1, YB2 = D2, A3Z = E1, ZB3 = E2, XYZ = J (1.3)

overH by the rank equalities. It demonstrates that the simple non-linear matrix equations (1.3) are solvable.

2. Maximal rank of (1.1) subject to system (1.2)

By Lemma 2.1 in [5], we can obtain the following lemma.

Lemma 2.1. Let A1 ∈Hp1×m1 ,A2 ∈Hp2×m2 ,A3 ∈Hp3×m3 ,B1 ∈Hn3×q1 ,B2 ∈Hn2×q2 ,B3 ∈Hn1×q3 ,
C1 ∈ Hp1×n3 ,C2 ∈ Hm1×q1 ,D1 ∈ Hp2×n2 ,D2 ∈ Hm2×q2 ,E1 ∈ Hp3×n1 , E2 ∈ Hm3×q3 be known, and X ∈ Hm1×n3 ,Y ∈
Hm2×n2 , Z ∈Hm3×n1 be unknown. Then the following statements are equivalent:
(1) The system (1.2) is consistent.
(2)

RA1 C1 = 0, C2LB1 = 0, A1C2 = C1B1.

RA2 D1 = 0, D2LB2 = 0, A2D2 = D1B2.

RA3 E1 = 0, E2LB3 = 0, A3E2 = E1B3.

(3)

A1C2 = C1B1, r [A1,C1] = r(A1), r
[

B1
C2

]
= r(B1).

A2D2 = D1B2, r [A2,D1] = r(A2), r
[

B2
D2

]
= r(B2).

A3E2 = E1B3, r [A3,E1] = r(A3), r
[

B3
E2

]
= r(B3).

In that case, the general solution of (1.2) can be expressed as

X = A+1 C1 + LA1 C2B+1 + LA1 URB1 , (2.4)

Y = A+2 D1 + LA2 D2B+2 + LA2 VRB2 , (2.5)

Z = A+3 E1 + LA3 E2B+3 + LA3 WRB3 , (2.6)

where U,V,and W are arbitrary matrices overH with compatible dimensions.
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Lemma 2.2. (Lemma 2.4 in [6]) Let A ∈Hm×n, B ∈Hm×k,C ∈Hl×n,D ∈H j×k, E ∈Hl×i, U ∈Hp×q,and V ∈Hq×t.
Then the following rank equalities are true:
(a)

r(CLA) = r
[

A
C

]
− r(A), r [RBA] = r

[
B A

]
− r(B),

(b)

r[B,ALC] = r
[

B A
0 C

]
− r(C), r

[
C

RBA

]
= r
[

C 0
A B

]
− r(B),

(c)

r [RBALC] = r
[

A B
C 0

]
− r(B) − r(C),

r
[

A BLD
REC 0

]
= r

 A B 0
C 0 E
0 D 0

 − r(D) − r(E).

Lemma 2.2 below plays an important role in simplifying ranks of various kinds of block matrices.
Tian in [10] has given the following Lemma over a field. The result can be generalized toH.

Lemma 2.3. Let f (X1,X2,X3) = A+B1X1C1+B2X2C2+B3X3C3 be a matrix expression overH. Then the maximal
rank of f (X1,X2,X3) can be shown as the following:

max
X1,X2,X3

r[ f (X1,X2,X3)] = min



r
[

A B1 B2 B3

]
, r


A
C1
C2
C3

 , r
[

A B2 B3
C1 0 0

]
, r
[

A B1 B3
C2 0 0

]
,

r
[

A B1 B2
C3 0 0

]
, r

 A B1
C2 0
C3 0

 , r

 A B2
C1 0
C3 0

 , r

 A B3
C1 0
C2 0




.

Now we consider the maximal rank of M(X,Y,Z) subject to the consistent systems (1.2) and (1.3). For
convenience of representation, the following notations are adopted:

J1 = {X ∈Hm1×n3 |A1X = C1, XB1 = C2 }
J2 = {Y ∈Hm2×n2 |A2Y = D1, YB2 = D2 }
J3 = {Z ∈Hm3×n1 |A3Z = E1, ZB3 = E2 }

 . (2.7)

Theorem 2.4. The maximal rank of the matrix expression (1.1) subject to the consistent system (1.2) is given in the
following:

max
(X∈J1, Y∈J2, Z∈J3)

r[M(X,Y,Z)] = min {s1, s2, s3, s4, s5, s6, s7, s8} ,

where

s1 = r

 A1M11 A1M12 C1
A2M21 D1 A2M23

E1 A3M32 A3M33

 − r(A1) − r(A2) − r(A3) +m1 +m2 +m3,

s2 = r

 M11B3 M12B2 C2
M21B3 D2 M23B1

E2 M32B2 M33B1

 − r(B1) − r(B2) − r(B3) + n1 + n2 + n3,
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s3 = r

 M11 M12 C2
A2M21 D1 A2M23B1

E1 A3M32 A3M33B1

 − r(B1) − r(A2) − r(A3) +m2 +m3 + n3,

s4 = r

 A1M11 A1M12B2 C1
M21 D2 M23
E1 A3M32B2 A3M33

 − r(A1) − r(B2) − r(A3) +m1 + n2 +m3,

s5 = r

 A1M11B3 A1M12 C1
A2M21B3 D1 A2M23

E2 M32 M33

 − r(A1) − r(A2) − r(B3) +m1 +m2 + n1,

s6 = r

 A1M11B3 A1M12B2 C1
M21B3 D2 M23

E2 M32B2 M33

 − r(A1) − r(B2) − r(B3) +m1 + n1 + n2,

s7 = r

 M11B3 M12 C2
A2M21B3 D1 A2M23B1

E2 M32 M33B1

 − r(B1) − r(A2) − r(B3) +m2 + n1 + n3,

and s8 = r

 M11 M12B2 C2
M21 D2 M23B1
E1 A3M32B2 A3M33B1

 − r(B1) − r(B2) − r(A3) +m3 + n2 + n3.

Proof. Substituting (2.4), (2.5) and (2.6) into (1.1)

M(X,Y,Z) =

 M11 M12 0
M21 0 M23

0 M32 M33

 +
 I

0
0

X [ 0 0 I
]
+

 0
I
0

Y [ 0 I 0
]
+

 0
0
I

Z [ I 0 0
]

=

 M11 M12 A+1 C1 + LA1 C2B+1
M21 A+2 D1 + LA2 D2B+2 M23

A+3 E1 + LA3 E2B+3 M32 M33


+

 LA1

0
0

U [ 0 0 RB1

]
+

 0
LA2

0

V [ 0 RB2 0
]
+

 0
0

LA3

W [ RB3 0 0
]
.

Let  M11 M12 A+1 C1 + LA1 C2B+1
M21 A+2 D1 + LA2 D2B+2 M23

A+3 E1 + LA3 E2B+3 M32 M33

 = Â,

 LA1

0
0

 = B̂1,

 0
LA2

0

 = B̂2,

 0
0

LA3

 = B̂3,

[
0 0 RB1

]
= Ĉ1,

[
0 RB2 0

]
= Ĉ2, and

[
RB3 0 0

]
= Ĉ3.

Then

max
(X∈J1, Y∈J2, Z∈J3)

r[M(X,Y,Z)] = max
U,V,W

r
[
Â + B̂1UĈ1 + B̂2VĈ2 + B̂3WĈ3

]
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= min



r
[

Â B̂1 B̂2 B̂3

]
, r


Â
Ĉ1

Ĉ2

Ĉ3

 , r
[

Â B̂2 B̂3

Ĉ1 0 0

]
, r
[

Â B̂1 B̂3

Ĉ2 0 0

]
,

r
[

Â B̂1 B̂2

Ĉ3 0 0

]
, r


Â B̂1

Ĉ2 0
Ĉ3 0

 , r


Â B̂2

Ĉ1 0
Ĉ3 0

 , r


Â B̂3

Ĉ1 0
Ĉ2 0




,

where

r


Â B̂3

Ĉ1 0
Ĉ2 0

 = r


M11 M12 A+1 C1 + LA1 C2B+1 0
M21 A+2 D1 + LA2 D2B+2 M23 0

A+3 E1 + LA3 E2B+3 M32 M33 LA3

0 0 RB1 0
0 RB2 0 0



= r



M11 M12 A+1 C1 + LA1 C2B+1 0 0 0
M21 A+2 D1 + LA2 D2B+2 M23 0 0 0

A+3 E1 + LA3 E2B+3 M32 M33 Im3 0 0
0 0 In3 0 B1 0
0 In2 0 0 0 B2
0 0 0 A3 0 0


− r(B1) − r(B2) − r(A3)

= r



M11 0 0 0 −
(
A+1 C1 + LA1 C2B+1

)
B1 −M12B2

M21 0 0 0 −M23B1 −
(
A+2 D1 + LA2 D2B+2

)
B2

0 0 0 Im3 0 0
0 0 In3 0 B1 0
0 In2 0 0 0 B2

−A3

(
A+3 E1 + LA3 E2B+3

)
0 0 A3 A3M33B1 A3M32B2


− r(B1) − r(B2) − r(A3).

Note that(
A+1 C1 + LA1 C2B+1

)
B1 = C2,(

A+2 D1 + LA2 D2B+2
)

B2 = D2,

A3

(
A+3 E1 + LA3 E2B+3

)
= E1,

so

r


Â B̂3

Ĉ1 0
Ĉ2 0

 = s8.

Similarly,

r
[

Â B̂1 B̂2 B̂3

]
= s1, r


Â
Ĉ1

Ĉ2

Ĉ3

 = s2, r
[

Â B̂2 B̂3

Ĉ1 0 0

]
= s3, r

[
Â B̂1 B̂3

Ĉ2 0 0

]
= s4,
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r
[

Â B̂1 B̂2

Ĉ3 0 0

]
= s5, r


Â B̂1

Ĉ2 0
Ĉ3 0

 = s6, r


Â B̂2

Ĉ1 0
Ĉ3 0

 = s7.

This completes the proof of Theorem 2.4.

3. Some solvability conditions of system (1.3)

In order to demonstrate the power of Theorem 2.4, in this section, we apply it to the solvability conditions
to cubic matrix equations (1.3).

Theorem 3.1. Let the linear matrix equations (1.2) be consistent and the solution set of (1.2) be (2.7). Then only one
of following conclusions

r

 A1 J 0 C1
0 D1 −A2

E1 A3 0

 = r [A2] + r [A3]

r [A1] = m1

 , (3.8)


r

 JB3 0 C2
0 D2 −B1

E2 B2 0

 = r [B1] + r [B2]

r [B3] = n1

 , (3.9)


r

 J 0 C2
0 D1 −A2B1

E1 A3 0

 = r [A2] + r [A3]

r [B1] = n3

 , (3.10)


r
[

A1 J C1D2
E1 A3B2

]
= r [B2]

r [A1] = m1
r [A3] = m3

 , (3.11)


r
[

A1 JB2 C1
D1E2 A2

]
= r [A2]

r [A1] = m1
r [B3] = n1

 , (3.12)


r
[

A1 JB3 C1D2
E2 B2

]
= r [B2]

r [A1] = m1
r [B3] = n1

 , (3.13)


r
[

JB3 C2
D1E2 A2B1

]
= r [B1]

r [A2] = m2
r [B3] = n1

 , (3.14)

or


r

 J 0 C2
0 D2 −B1

E1 A3B2 0

 = r [B1] + r [B2]

r [A3] = m3

 (3.15)

is true, the cubic matrix equations (1.3) are consistent too, and the solution set of (1.3) is equal to that of (1.2).
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Proof. Use the following rank formula

r (J − XYZ) = r

 J 0 X
0 Y −In3

Z Im3 0

 −m3 − n3.

Let M11 in Theorem 2.4 be replaced by J, M23 by −In3 ,M32 by Im3 ,M12,M21,M33 by zero matrices with dimensions,
m2 = n3,n2 = m3 respectively. According to Theorem 2.4, we can obtain the following equality:

max
(X∈J1, Y∈J2, Z∈J3)

r (J − XYZ) = min



r

 A1 J 0 C1
0 D1 −A2

E1 A3 0

 − r [A1] − r [A2] − r [A3] +m1,

r

 JB3 0 C2
0 D2 −B1

E2 B2 0

 − r [B1] − r [B2] − r [B3] + n1,

r

 J 0 C2
0 D1 −A2B1

E1 A3 0

 − r [B1] − r [A2] − r [A3] +m2,

r
[

A1J C1D2
E1 A3B2

]
− r [A1] − r [B2] − r [A3] +m1 +m3,

r
[

A1 JB3 C1
D1E2 A2

]
− r [A1] − r [A2] − r [B3] +m1 + n1,

r
[

A1 JB3 C1D2
E2 B2

]
− r [A1] − r [B2] − r [B3] +m1 + n1,

r
[

JB3 C2
D1E2 A2B1

]
− r [B1] − r [A2] − r [B3] +m2 + n1,

r

 J 0 C2
0 D2 −B1

E1 A3B2 0

 − r [B1] − r [B2] − r [A3] +m3



.

It is obvious that

max
(X∈J1, Y∈J2, Z∈J3)

r (J − XYZ) ≥ 0.

If one of the conditions from (3.8) to (3.15) is satisfied, then

max
(X∈J1, Y∈J2, Z∈J3)

r (J − XYZ) = 0.

Conversely, assume that

r

 A1 J 0 C1
0 D1 −A2

E1 A3 0

 − r [A1] − r [A2] − r [A3] +m1 = 0.

Note that

r

 A1 J 0 C1
0 D1 −A2

E1 A3 0

 ≥ r [A2] + r [A3]

and

r [A1] ≤ m1.
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Therefore, the condition (3.8) is satisfied.
Similarly, assume that one of conditions from (3.9) to (3.15) is satisfied, then

max
(X∈J1, Y∈J2, Z∈J3)

r (J − XYZ) = 0.

This corresponds to

XYZ
(X∈J1, Y∈J2, Z∈J3)

≡ J.

It demonstrates that the cubic matrix equations (1.3) are consistent, and the solution set of (1.3) covers that of (2.7).
On the other hand, the cubic matrix equations (1.3) contain the linear matrix equations (1.2), and the solution set of
(1.3) covers that of (2.7), Therefore, the solution set of (1.3) is equal to that of (2.7).

4. Conclusion

In this paper, we derive the maximal rank of a kind of 3×3 partial banded block variant matrix (1.1)
subject to the consistent system (1.2). Moreover, in order to demonstrate the feasibility of the result
obtained, Theorem 2.4 is applied to derive the necessary and sufficient conditions for the solvability to the
cubic system (1.3) by the rank equalities. It means the non-linear matrix equations (1.3) are solvable.
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