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Abstract. We study images of the unit ball under certain special classes of quasiregular mappings. For
homeomorphic, i.e., quasiconformal mappings problems of this type have been studied extensively in
the literature. In this paper we also consider non-homeomorphic quasiregular mappings. In particular,
we study (topologically) closed quasiregular mappings originating from the work of J. Väisälä and M.
Vuorinen in 1970’s. Such mappings need not be one-to-one but they still share many properties of quasi-
conformal mappings. The global behavior of closed quasiregular mappings is similar to the local behavior
of quasiregular mappings restricted to a so-called normal domain.

1. Introduction

We consider quasiregular mappings in the n-dimensional Euclidean space Rn. Quasiconformal and
quasiregular mappings in Rn, n ≥ 3 are natural generalizations of conformal and analytic functions of one
complex variable, respectively. For basic properties of these classes of mappings, we refer to [15, 18, 22].
In the complex plane, it follows from the Riemann mapping theorem that any simply connected domain is
the image of the unit disk in a conformal, and thus quasiconformal, mapping. The so-called measurable
Riemann mapping theorem further generalizes this result by allowing one to find a quasiconformal mapping
of given dilatation. However, the problem of characterizing the quasidisks, i.e., quasiconformal images of
the unit disk in the quasiconformal mappings of the the whole plane onto itself is interesting (see e.g. [2, 6]).
For n ≥ 3 the question of characterizing the quasiconformal images of the unit ball Bn is highly non-trivial,
and it has been studied by many authors [7, 8, 16]. In this paper, we present several examples related to
this topic, and new results concerning the so-called closed quasiregular mappings.

The topological properties of quasiregular mappings are similar to those of analytic functions. It is
well-known that a nonconstant quasiregular mapping is discrete (i.e. sets f−1(y) are discrete) and open (see
e.g. [15, I.4.1]). We study a subclass of the quasiregular mappings which are characterized by the property
that they preserve closed sets. This class of mappings is more general than the quasiconformal mappings,
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as closed mappings need not be homeomorphic. The class of closed quasiregular mappings originates from
the work of J. Väisälä [17] and M. Vuorinen [19–21].

The global behavior of closed quasiregular mappings is similar to the behavior of quasiregular mappings
restricted to the so-called normal domains. The existence of such neighborhoods is well-known, but usually
nothing is known of their diameter. The importance of the assumption that mappings are closed arises
from the fact that it allows us to extend local estimates which are based on the conformal modulus to global
ones.

2. Preliminaries

We shall follow standard notation and terminology adopted from [18], [22] and [15]. For x ∈ Rn, n ≥ 2,
and r > 0, letBn(x, r) = {z ∈ Rn : |z−x| < r}, Sn−1(x, r) = ∂Bn(x, r),Bn(r) = Bn(0, r), Sn−1(r) = ∂Bn(r),Bn = Bn(1)
and Sn−1 = ∂Bn. The space R

n
= Rn ∪ {∞} is the one-point compactification of Rn. The surface area of Sn−1

is denoted by ωn−1 and Ωn is the volume of Bn. It is well-known that ωn−1 = nΩn and that

Ωn =
πn/2

Γ(1 + n/2)

for n = 2, 3, . . ., where Γ is Euler’s gamma function. The standard coordinate unit vectors are denoted by
e1, . . . , en. The Lebesgue measure on Rn is denoted by m.

Quasiregular mappings
A continuous mapping f : G→ Rn, n ≥ 2, of a domain G inRn is called quasiregular if f is in the Sobolev

space W1,n
loc (G), and there exists a constant K, 1 ≤ K < ∞, such that the inequality

| f ′(x)|n ≤ KJ f (x)

holds a.e. in G, where f ′(x) is the formal derivative of f , and | f ′(x)| = max|h|=1 | f ′(x)h|. The smallest K ≥ 1
for which this inequality is true is called the outer dilatation of f and denoted by KO( f ). If f is quasiregular,
then the smallest K ≥ 1 for which the inequality

J f (x) ≤ Kl( f ′(x))n

holds a.e. in G is called the inner dilatation of f and denoted by KI( f ), where l( f ′(x)) = min|h|=1 | f ′(x)h|. The
maximal dilatation of f is the number K( f ) = max{KI( f ),KO( f )}. If K( f ) ≤ K, f is said to be K-quasiregular.
A quasiregular homeomorphism f : G→ f G is called quasiconformal.

By generalized Liouville’s theorem for n ≥ 3, every 1-quasiregular mapping in Rn is a restriction
of a Möbius transformation or a constant. The Möbius transformations are very useful in the study of
quasiregular mappings. In particular, we make use of the mapping Ta, a ∈ Bn, which is the Möbius
transformation with Ta(Bn) = Bn, Ta(a) = 0 and for ea = a/|a|, Ta(ea) = ea and Ta(−ea) = −ea. For a = 0, we set
T0 = id (see [22, p. 11] or [1, II 2.6]).

Modulus of a path family
Let Γ be a path family in Rn, n ≥ 2. Let F (Γ) be the set of all Borel functions ρ : Rn → [0,∞] such that∫

γ
ρ ds ≥ 1

for every locally rectifiable path γ ∈ Γ. The functions in F (Γ) are called admissible for Γ. For 1 ≤ n < ∞, we
define

M(Γ) = inf
ρ∈F (Γ)

∫
Rn
ρn dm (1)
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and call M(Γ) the (conformal) modulus of Γ. If F (Γ) = ∅, which is true only if Γ contains constant paths, we
set M(Γ) = ∞. If Γ1,Γ2 are path families in Rn, and every γ ∈ Γ2 has a subcurve in Γ1, we say that Γ2 is
minorized by Γ1 and write Γ2 > Γ1. If Γ1 < Γ2, then M(Γ1) ≥ M(Γ2). For the basic properties of the modulus
of the path family, we refer to [15, 18, 22]. It is well-known that the modulus of a path family is invariant
under conformal mappings. We denote by ∆(A,B; G) the family of paths joining A and B in G.

We use the following well-known identity of the modulus of the spherical annulus: Let 0 < a < b. Then,

M
(
∆(Bn(a), Sn−1(b);Bn(b))

)
= ωn−1

(
log

b
a

)1−n
. (2)

Canonical ring domains
The complementary components of the Grötzsch ring RG,n(s) in R

n
are B

n
and [se1,∞], s > 1, and those

of the Teichmüller ring RT,n(s) are [−e1, 0] and [se1,∞], s > 0. We define two special functions γn(s), s > 1, and
τn(s), s > 0, by  γn(s) =M

(
∆(B

n
, [se1,∞])

)
= γ(s),

τn(s) =M
(
∆([−e1, 0], [se1,∞])

)
= τ(s),

respectively. The subscript n is omitted if there is no danger of confusion. We shall refer to these functions
as the Grötzsch capacity and the Teichmüller capacity. It is well-known that for all s > 1

γn(s) = 2n−1τn(s2 − 1),

and that τn : (0,∞)→ (0,∞) is a decreasing homeomorphism. For s > 1 we have the following inequalities
(see e.g. [22, 7.24]):

ωn−1

(
logλns

)1−n
≤ γ(s) ≤ ωn−1

(
log s
)1−n
, (3)

where λn is the Grötzsch ring constant depending only on n. The value of λn is known only for n = 2,
namely λ2 = 4. For n ≥ 3 it is known that 2e0.76(n−1) < λn ≤ 2en−1. For more information on the constant λn,
see [3, Chapter 12].

We will use the following estimate from [5] (see also [11, 2.11]). Suppose that G = A \C is a ring domain
such that A ⊂ Bn and C is a connected set with 0, x ∈ C. Then

M(∆(C, ∂A; G)) ≥ γ(1/|x|). (4)

KI- and KO-inequalities
Next we give two very useful inequalities, known as KI- and KO-inequalities, respectively. The KI-

inequality is also known as Väisälä’s inequality.

Theorem 2.1. ([15, Theorem II.9.1]) Let f : G→ Rn be a nonconstant quasiregular mapping, Γ be a path family in
G, Γ′ be a path family in Rn, and m be a positive integer such that the following is true. For every path β : I→ Rn in
Γ′ there are paths α1, . . . , αm in Γ such that f ◦ α j ⊂ β for all j and such that for every x ∈ G and t ∈ I the equality
α j(t) = x holds for at most i(x, f ) indices j. Then

M(Γ′) ≤ KI( f )
m

M(Γ).

In particular, we have the Poleckiı̆ inequality:

Theorem 2.2. ([15, Theorem 8.1]) Let f : G→ Rn be a nonconstant quasiregular mapping and let Γ be a path family
in G. Then

M( fΓ) ≤ KI( f )M(Γ).

Theorem 2.3. ([15, Theorem II.2.4]) Let f : G → Rn be a nonconstant K-quasiregular mapping. Let A ⊂ G be a
Borel set with N( f ,A) < ∞, and let Γ be a family of paths in A. Then

M(Γ) ≤ KO( f )N( f ,A)M( fΓ).
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3. Topological properties

Next we recall some topological properties of quasiregular mappings.

Discrete and open mappings.

It is well-known that a nonconstant quasiregular mapping is discrete and open. We denote by B f
the branch set of f , i.e. the set of points where f fails to be a local homeomorphism. A result by V.
A. Chernavskii states that dim B f ≤ n− 2 for a discrete and open f : G→ Rn. The properties of discrete and
open mappings were further studied in by J. Väisälä in [17], where also the multiplicity of discrete, open
and closed mappings was studied.

Normal domains.

Let f : G → Rn be a discrete and open mapping. A domain D ⊂⊂ G is called a normal domain for f if
f∂D = ∂ f D. A normal neighborhood of x is a normal domain D such that D ∩ f−1( f (x)) = {x}.

Multiplicity and normal domains

Let f : G→ Rn be a discrete and open mapping. We denote

i(x, f ) = inf
U

sup
y

card f−1(y) ∩U,

where U runs through the neighborhoods of x. The number i(x, f ) is called the local (topological) index of
f at x. Let C ⊂ G. The minimal multiplicity M( f ,C) and the maximal multiplicity N( f ,C) are defined by

M( f ,C) = inf
y∈ f C

∑
x∈ f−1(y)∩C

i(x, f ), (5)

N( f ,C) = sup
y∈ f C

∑
x∈ f−1(y)∩C

i(x, f ), (6)

respectively.
The following result holds for discrete, open and sense-preserving mappings:

Lemma 3.1. ([15, Corollary II.3.4]) Let f : G→ Rn be discrete, open and sense-preserving, D ⊂ G a normal domain
for f , β : [a, b)→ f D a path and m = N( f ,D). Then there exist paths α j : [a, b)→ D, 1 ≤ j ≤ m, such that

(1) f ◦ α j = β,

(2) card{ j : α j(t) = x} = i(x, f ) for x ∈ D ∩ f−1β(t),

(3) |α1| ∪ . . . ∪ |αm| = D ∪ f−1|β|,

where |α| stands for the locus of α, i.e. the image set α[a, b), and a ≤ t < b.

Cluster sets

The cluster set of f : G→ Rn at a point b ∈ ∂G is the set C( f , b) of all points z ∈ Rn
for which there exists

a sequence (bk) in G such that bk → b, and f (bk)→ z. Let

C( f ,E) =
∪
b∈E

C( f , b)

for a non-empty set E ⊂ ∂G, and C( f ) = C( f , ∂G). A mapping f is closed if f A is closed in f G whenever A
is closed in G and proper if f−1Q is compact in G, where Q is compact in f G. If C( f ) ⊂ ∂ f G, f is said to be
boundary-preserving.
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Discrete, open and closed mappings

Next we recall some useful topological results for discrete, open, and closed mappings.

Theorem 3.2. (See [17, 5.5], [12, 3.3] and [19, 3.2–3.3]) Let f : G → Rn be discrete and open. Then the following
conditions are equivalent:

(1) f is proper.

(2) f is closed.

(3) f is boundary-preserving.

(4) Each sequence of points of G converging to a point of ∂G is transformed by f onto a sequence no subsequence
of which converges to a point of f G.

(5) N( f ,G) = p < ∞ and for all y ∈ f G, we have

p =
k∑

j=1

i(x j, f ), {x1, . . . , xk} = f−1(y).

Corollary 3.3. If f : G→ Rn is discrete, open, and closed, then C( f ) = ∂ f G.

Lemma 3.4. [19, Lemma 3.6] Let f : G→ Rn be discrete, open, and closed, let U ⊂ f G be a domain, and let D be a
component of f−1U. Then f D = U and f |D is closed. Moreover, C( f |D) = ∂U. If f has a continuous extension f to
D, then f∂D = ∂U.

Remark 3.5. In the plane each closed quasiregular mapping f : B2 → B2 has a representation

f = 1 ◦ h,

where h : B2 → B2 is a quasiconformal mapping and 1 : B2 → Bn is a finite Blaschke product or a constant (see [19,
Theorem 4.1]). This result follows immediately from the Stoı̈lov decomposition and the fact that each closed analytic
function is a finite Blaschke product.

4. Unions of balls

In this section, we prove a result which shows that a domain which is a union of a finite number of balls
is always a K-quasiconformal image of a ball. The proof of this result also gives an explicit upper bound
for the dilatation K.

We say that a domain G ⊂ Rn
is a K-quasiball, or simply quasiball, if there exists a K-quasiconformal

mapping f of R
n

onto itself such that G = f (Bn), where R
n
= Rn ∪ {∞}.

Theorem 4.1. Let B1,B2, . . . ,Bm be balls in Rn such that for 1 ≤ j < m, |r j+1 − r j| < |x j+1 − x j| < r j + r j+1 and
B j ∩ Bk = ∅ for | j − k| > 1. Then D = B1 ∪ B2 ∪ . . . ∪ Bm is a quasiball.

Wedge-shaped domains

Let (r, φ, z) be the cylindrical coordinates of a point x ∈ Rn, n ≥ 3. For r ≥ 0, 0 ≤ φ < 2π ( or −π ≤ φ < π)
and z ∈ Rn−2 = {(0, 0, z3, · · · , zn) : zi ∈ R, i = 3, · · · ,n}we define

x1 = r cosφ,
x2 = r sinφ,
xi = zi for 3 ≤ i ≤ n.
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The domain W(γ, γ+α), defined by γ < φ < γ + α, is called a wedge of angle α, where 0 ≤ γ < 2π, 0 < α < 2π
and 0 < γ+α ≤ 2π (or −π ≤ γ < π, 0 < α < 2π and −π < γ+α ≤ π). We also say that the domain W(γ, γ+α) is
a wedge of angle α with the starting angle γ. For any rotation σ around the subspace Rn−2, σ(Wγ, γ+α) is still
a wedge of angle α. In particular, W(γ, γ+π) is a half-space in Rn for any γ.

Given two wedges W(γ1, γ1+α) and W(γ2, γ2+β), the quasiconformal diffeomorphism f : W(γ1, γ1+α) →W(γ2, γ2+β),
defined by

f (r, φ, z) = (r, βφ/α + γ2 − γ1, z),

is called a folding. Assuming that 0 < α ≤ β < 2πwe have

KI( f ) = β/α, KO( f ) = (β/α)n−1.

Then f is a (β/α)n−1-quasiconformal mapping. See [18, 16.3] for more details.
In what follows, we always denote by Bn(xi, ri) the ball in Rn with the center xi and the radius ri.

Lemma 4.2. Suppose that B1 and B2 are two balls which satisfy |r2− r1| < |x1−x2| < r1+ r2 inRn. Then there exists
α ∈ (π, 2π) such that the domain D = B1 ∪ B2 can be mapped onto a wedge W(γ, γ+α) by a Möbius transformation.

Proof. Choose three distinct points y1, y2, y3 ∈ S = ∂B1 ∩ ∂B2. Then there exists (see e.g. [3, 7.21]) a Möbius
transformation 1 such that 1(y1) = 0, 1(y2) = en and 1(y3) = ∞. It follows that H1 = 1(B1) and H2 = 1(B2) are
half spaces in Rn and 0 ∈ S′ = ∂H1 ∩ ∂H2. We may assume that S′ is orthogonal to the x1x2-plane. Clearly
1(D) is a wedge W(γ, γ+α) for some α ∈ (π, 2π).

Angle of intersection

Suppose that B1,B2 are two balls in Rn with |r2 − r1| < |x1 − x2| < r1 + r2. Then the angle of intersection,
α(B1,B2), of B1 and B2 is the number α ∈ (π, 2π) such that there exists a Möbius transformation 1 such that
1(B1 ∪ B2) is a wedge W(γ, γ+α) of angle α.

Corollary 4.3. Suppose that B1, B2 are balls in Rn with |r2 − r1| < |x1 − x2| < r1 + r2. Then D = B1 ∪ B2 is a
K-quasiball, where K < ∞ is a constant depending only on α(B1,B2) and n.

Proof. By Lemma 4.2, it is sufficient to prove that for any α ∈ (π, 2π), the wedge W(γ, γ+α) of angle α is a
quasiball. Without loss of generality, we may assume that W(γ, γ+α) = W(0, α). Then the interior of Rn\W(0, α)
is the wedge W(α, 2π). Let

f (r, φ, z) =
{

(r, πφ/α, z) for 0 ≤ φ ≤ α,
(r, π(1 + (φ − α)/(2π − α)), z) for α < φ < 2π,

and let f (∞) = ∞. Then f is clearly a homeomorphism of R
n

onto itself. It follows that f : R
n → Rn

is quasiconformal with K( f ) = max{K( f1),K( f2)}, where the mappings f1 : W(0, α) → Wπ = f1(W(0, α)) and
f2 : W(α, 2π) →W(π, 2π) = f2(W(α, 2π)), are foldings.

Proof. [Proof of Theorem 4.1] By Lemma 4.2 we may find a Möbius transformation 1 taking B1 ∪ B2
onto a wedge W(γ, γ+α1) of angle α1 for some α1 ∈ (π, 2π). Further, we assume that 1(B2) = W(0, π) and
1(B1) = W(π−α1, 2π−α1), i.e., W(γ, γ+α1) = W(π−α1, π). Let Dm−i+1 = Bi ∪ Bi+1 ∪ · · · ∪ Bm and D′m−i+1 = 1(Dm−i+1)
(i = 1, 2, · · · ,m). Define

φ0 = min{φ : D′m−2\W(π−α1, π) ⊂W(π, π+φ)}.

Obviously, 0 < φ0 < 2π − α1. We define a function f0 : R
n → Rn

by

f0(r, φ, z) =


(r, πα1

(φ + (α1 − π)), z) for π − α1 < φ ≤ π,
(r, φ, z) for π < φ ≤ π + φ0,

(r, (π−φ0)φ+(π+φ0)(π−α1)
(π−α1)+(π−φ0) , z) for π + φ0 < φ ≤ 3π − α1.
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Then f0 is a K1-quasiconformal mapping, and K1 < ∞ depends only on α1, φ0 and n. Let f1 = 1−1 ◦ f0 ◦ 1.
Then f1 : R

n → Rn
is K1-quasiconformal and f1(Dm) = Dm−1.

Similarly, for j = 2, . . . ,m−1 we may define a K j-quasiconformal mapping f j : R
n → Rn

with f j(Dm− j+1) =
Dm− j. Then f = fm−1 ◦ fm−2 ◦ · · · ◦ f1 ◦ h is a K-quasiconformal mapping of the whole space onto itself and
f (Dm) = Bn, where h is a suitable Möbius transformation and K =

∏m−1
j=1 K j. The claim follows.

5. Closed quasiregular mappings

In this section, we study some of boundary regularity conditions, introduced by J. Väisälä, under closed
quasiregular mappings. These conditions are closely related to the boundary the mapping problems. We
show that under certain assumptions boundary regularity conditions are preserved under closed quasireg-
ular mappings. Indeed, without additional assumptions, the mapping properties of quasiregular mappings
can be very different from quasiconformal ones, as illustrated by the following simple example.

Example 5.1. It is well-known that one may map the unit ballBn quasiconformally onto the half-ballBn
+ = {x : |x| <

1 and x1 > 0}. Denote by f1 a quasiconformal mapping such that f1 : Bn → Bn
+ = f1(Bn). Let f2 be the winding

mapping defined by

f2(x1, . . . , xn) =
(
r2 cos(2φ2), r2 sin(2φ2), x3, . . . , xn

)
,

defined in the cylindrical coordinates such that r2 =
√

x2
1 + x2

2 and φ2 = arctan(x2/x1) for x ∈ Rn. The mapping
f2 : Rn → Rn is a well-known example of a quasiregular mapping (see e.g. [15, 3.1]). In particular, we have
f2(Bn

+) = Bn \ {x : x1 ≤ 0, x2 = 0}. Similarly, let f3 : Rn → Rn be the winding mapping defined by

f3(x1, . . . , xn) =
(
r3 cos(2φ3), x2, r3 sin(2φ3), x4, . . . , xn

)
,

where r3 =
√

x2
1 + x2

3 and φ3 = arctan(x3/x1) for x ∈ Rn. Then the quasiregular mapping f = f3 ◦ f2 ◦ f1 maps the
unit ball onto the domain Bn \ {x ∈ Rn : x1 ≤ 0, x2 = x3 = 0}.
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32
f

In particular, for n = 3 the image set is the unit ball with the negative x1-axis removed. However, the cluster set
of this mapping clearly consists of the unit sphere S2 and the two-dimensional disk

D = {x ∈ R3 :
√

x2
1 + x2

3 ≤ 1 and x2 = 0},

and thus the mapping f is not closed.

Our results in this section, Theorems 5.3 and 5.4, are generalizations of similar results for quasiconformal
mappings (see [18]).
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Boundary regularity conditions

Recall that a quasiconformal map of Bn onto Bn has a homeomorphic extension to B
n
, see [16, Theorem

2]. The following definition is from [18, 17.5].

Definition 5.2. Let G be a domain in R
n

and let b ∈ ∂G.

(1) The domain G is locally connected at b if b has arbitrarily small neighborhoods U such that U∩G is connected.

(2) The domain G is finitely connected at b if b has arbitrarily small neighborhoods U such that U ∩ G has a finite
number of components.

(3) The domain G has property P1 at b if the following condition is satisfied: Whenever E and F are connected
subsets of G such that b ∈ E ∩ F we have M(∆(E,F; G)) = ∞.

(4) The domain G has property P2 at b if: For each point b1 ∈ ∂G, b1 , b, there is a compact set F ⊂ G, and a
constant δ > 0, such that M(∆(E,F; G)) ≥ δ whenever E is a connected set in G such that E contains b and b1.

(5) The domain G is locally quasiconformally collared at b if there is a neighborhood U of b and a homeomorphism
1 of U ∩ G onto the set {x ∈ Rn

: |x| < 1 and xn ≥ 0} such that 1|U ∩ G is quasiconformal.

(6) The domain G is said to have one of the above properties at the boundary if it has it at every boundary point.

Theorem 5.3. Suppose that G and G′ are domains in R
n
, and let f : G → G′ be a continuous function such that

f G = G′, and the mapping f1 = f |G is quasiregular and closed. If G is a P1 domain, and G′ is locally connected on
the boundary, then G′ is P1.

Theorem 5.4. Suppose that G and G′ are domains in R
n
, and let f : G → G′ be a continuous function such that

f G = G′ and the mapping f1 = f |G is quasiregular and closed. If G is a P2 domain, then G′ also is P2.

Recall the next result from [18, 17.7]:

Theorem 5.5. The following conditions are equivalent:

(1) G is finitely connected at b.

(2) Every neighborhood U of b contains a neighborhood V of b such that V ∩G is contained in the union of a finite
number of components of U ∩ G.

(3) If U is a neighborhood of b and if (x j) is a sequence of points such that x j → b and x j ∈ G, then there is a
subsequence which is contained in a single component of U ∩ G.

The next theorem, due to M. Vuorinen, is a generalization of [18, 17.13].

Theorem 5.6. [19, Theorem 4.2] Suppose that f : G → G′ is a closed quasiregular mapping and that G has the
property P1 at the point b ∈ ∂G. Then the set C( f , b) contains at most one point at which G′ is finitely connected.

The combination of Theorems 5.5 and 5.6 easily implies the following result about the extension of
closed quasiregular mappings.

Corollary 5.7. Let f : G→ G′ be a closed quasiregular mapping, let G be a P1 domain, and let G′ be finitely connected
on the boundary. Then f can be extended to a continuous mapping f : G→ G′.

Now we are ready to prove Theorems 5.3 and 5.4.
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Proof. [Proof of Theorem 5.3] Let b′ ∈ ∂G′. For a point b in ∂G we define a set V(b, r) to be the b-component
of the set

f−1
(
G′ ∩ Bn( f (b), r)

)
.

Because C( f1) = ∂G′ by Corollary 3.3, we may find a point b ∈ ∂G such that f (b) = b′.
Now, let E′, F′ be any continua in G′ such that b′ ∈ E′ ∩ F′. As G′ locally connected on the boundary,

each neighborhood U of b′ is connected and intersects with E′ and F′. Let V be the b-component of f−1U.
We choose E,F to be the b-components of ( f−1E′) ∩ V ∩ G and ( f−1F′) ∩ V ∩ G, respectively. It follows that
E,F are continua in G and b ∈ E ∩ F. As G is a P1 domain, M(∆(E,F; G)) = ∞. By Theorem 3.2(5),

N( f ,G) = p < ∞.

Let Γ = ∆(E,F; G). By Theorem 2.3

M(Γ) ≤ N( f1,G)KO( f1)M( f1Γ),

and thus
∞ =M(Γ) ≤ N( f ,G)KO( f1)M( f1Γ) ≤ pKO( f1)M(∆(E′,F′; G′)).

So, we have concluded that M(∆(E′, F′; G′)) = ∞, and the claim is proved.

Proof. [Proof of Theorem 5.4] Let b′, b′1 ∈ ∂G′ such that b′1 , b′ and E′ ⊂ G′ be a connected set such that
b′, b′1 ∈ E′. By Lemma 3.4 we may choose

E ⊂ ( f−1E′) ∩ G

such that f E = E′ and E is connected. As by Lemma 3.4

f∂E = ∂ f E, f∂G = ∂ f G,

and
b′, b′1 ∈ ∂E′ ∩ ∂G′ = ∂ f E ∩ ∂ f G.

Hence, we may conclude that ∂G ∩ ∂E contains at least two separate points, b ∈ f−1(b′) and b1 ∈ f−1(b′1).
Now b, b1 ∈ ∂G are separate points and E is a continuum such that b, b1 ∈ E. It was assumed, that G is a

P2 domain, and so there exists a compact set F and a constant δ > 0 such that M(∆(E, F; G)) ≥ δ. As f1 is a
closed quasiregular mapping, by Theorem 3.2, N( f1,G) = p < ∞. By Theorem 2.3

δ ≤M
(
∆(E,F; G)

)
≤ N( f1,G)KO( f1)M

(
∆(E′, f1F; G′)

)
.

We may choose F′ = f1F and

δ′ =
δ

pKO( f1)
> 0.

It follows that
M(∆(E′,F′; G′)) ≥ δ′ > 0.

As f1F is a compact set, the set G′ is a P2 domain with the corresponding compact set F′ and the constant
δ′, proving the claim.

The following problem related to the branch set of a closed quasiregular mappings was given by M.
Vuorinen in 1980’s [22, p. 193], and it is still open.

Problem 5.8. Let f : Bn → fBn ⊂ Bn be discrete, open and proper. Assume that n ≥ 3 and B f is compact. Is f
one-to-one? The answer is yes, if fBn = Bn.

Remark 5.9. A mapping f : G→ Rn is called harmonic if all its coordinate functions u j : G→ R satisfy the Laplace
equation ∆u j = 0. In particular, analytic functions are harmonic. Recall that each closed analytic function is a finite
Blaschke product or a constant (see Remark 3.5). The class of harmonic mappings has been extensively studied [4],
and certain topological properties of harmonic mappings have been considered in [10]. However, to our knowledge,
the class of closed harmonic mappings has not been studied.
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6. Boundary behavior

In this section, we prove some boundary behavior results for closed quasiregular mappings.

Existence of arcwise limits.
A classical theorem by P. Koebe states that a conformal mapping of a simply connected domain G in

the complex plane C has arcwise limits along all end-cuts of G. R. Näkki [14] proved a similar result for
quasiconformal mappings in Rn. We show that this result holds for closed quasiregular mappings as well.

Let G a domain Rn. A point b ∈ ∂G is called accessible from G if there is a closed Jordan arc γ contained
in G except for one endpoint, b. Then γ is called an end-cut of G from b. Suppose that f is a mapping of G
into R

n
. The cluster set of f at b along an end-cut γ from b is denoted by Cγ( f , b). If Cγ( f , b) = {b′}, then b′ is

called an arcwise limit of f at b.

Definition 6.1. The spherical (chordal) metric q in R
n

is defined by
q(x, y) =

|x−y|√
1+|x|2

√
1+|y|2
, for x , ∞ , y ,

q(x,∞) = 1√
1+|x|2
.

For a set E in R
n
, we denote by q(E) the diameter of E with respect to the metric q(x, y).

Lemma 6.2. ([13]) Let G be a locally quasiconformally collared domain and let E,F be nondegenerate continua in G.
Then for each r > 0 there exists δ > 0 such that M(∆(E, F; D)) ≥ δ whenever q(E) ≥ r and q(F) ≥ r.

Theorem 6.3. Suppose that G is domain in Rn, f : G → G′ = f G is a closed quasiregular mapping, and G′ is a
locally quasiconformally collared domain. Then f has arcwise limits along all end-cuts of G.

Proof. Let b ∈ ∂G, and suppose that γ is an end-cut from the point b. Fix a continuum C ⊂ G. We choose a
sequence of neighborhoods Uk of b such that

∞∩
k=1

Uk = {b} and γk = Uk ∩ G ∩ γ

is connected for k = 1, 2, . . .. Write C′ = f C. By Theorem 3.2, f−1C′ is compact, and by Lemma 3.1 every
path in ∆(C′, | f (γk)|; G′) has a lifting in G beginning at |γk| and leading to f−1C′. Denote by Γk the family of
these liftings. Then

lim
k→∞

M(Γk) = 0,

and f (Γk) < ∆(C′, | f (γk)|; G′). Hence, by Theorem 2.2, we have

M(∆(C′, | f (γk)|; G′)) ≤M( f (Γk)) ≤ KI( f )M(Γk)→ 0

as k→∞. Then it follows by Lemma 6.2 that limk→∞ q(| f (γk)|) = 0 and hence f has a limit at b along γ.

Relative size of preimages
By Theorem 3.2, a set D has at most p < ∞ preimages under a closed quasiregular mapping. Next we

give an upper bound for the diameter of a preimage in terms of the diameter of another preimage, i.e., we
will prove that only the images of the sets of roughly similar size can coincide in a closed quasiregular
mapping. Our result reads as follows.

Theorem 6.4. Let f : G→ Rn be a closed K-quasiregular mapping. Suppose that 0 < t < 1, and A1,A2 ⊂ Bn(x, tr)
are nondegenerate continua with A1∩A2 = ∅ such that f A1 = f A2 andB

n
(x, r) ⊂ G. Then there is a homeomorphism

h : [0,∞)→ [0,∞) depending only on n,K, t and N( f ,Bn(x, r)) such that d(A1) ≥ h(d(A2)).
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Before the proof of Theorem 6.4, we introduce two lemmas.

Lemma 6.5. [9, Lemma 2.31.] Let 0 < r0 < 1. Then

C(n, r0)M
(
∆(Bn(r), Sn−1)

)
≤ γn(1/r) ≤M

(
∆(Bn(r), Sn−1)

)
for r0 > r > 0, where

C(n, r0) =
(
1 −

logλn

log r0

)1−n

.

Lemma 6.6. [22, 1.43] Let 0 < s < 1. Then for all a, x, y ∈ Bn
(s)

1 − s2

(1 + s2)2 |x − y| ≤ |Tax − Tay| ≤ 1
1 − s2 |x − y|.

Proof. [Proof of Theorem 6.4] Let p = N( f ,Bn(x, r)) < ∞. By replacing f with the mapping f ◦ 1, where
1 : z 7→ (z − x)/r, if necessary, we may assume that Bn(x, r) = Bn. We choose the points z1, z2 ∈ A1 and
y1, y2 ∈ A2 such that d(A1) ≤ 2|z1 − z2| and d(A2) ≤ 2|y1 − y2|, respectively. Next we estimate the modulus of
curve family ∆(A1, Sn−1) with the capacity of spherical annulus (2), and then apply Theorem 2.2 to obtain
the estimate:

ωn−1

[
log
( 1

2|Tz1 (z2)|

)]1−n

≥ M
(
∆(A1, S

n−1)
)
≥

M
(

f (∆(A1, Sn−1))
)

KI( f )

=
M
(
∆( f A1, fSn−1)

)
KI( f )

=
M
(

f (∆(A2, Sn−1))
)

KI( f )
.

Now we apply the KO-inequality, and then estimate the modulus in terms of the capacity of the Grötzsch
ring domain

M
(

f (∆(A2, Sn−1))
)

KI( f )
≥

M
(
∆(A2, Sn−1)

)
pKI( f )KO( f )

≥
γ
(
|Ty1 (y2)|−1

)
pKI( f )KO( f )

.

By combining these estimates with Lemma 6.5 and (3) we obtain

ωn−1

[
log
( 1

2|Tz1 (z2)|

)]1−n

≥
γ
(
|Ty1 (y2)|−1

)
pKI( f )KO( f )

≥ C(n, t)ωn−1

pKI( f )KO( f )

[
log
( λn

|Ty1 (y2)|
)]1−n

.

We have

(2λn|Tz1 (z2)|
)C(K,n,p,t)

≥ |Ty1 (y2)|,

and by applying Lemma 6.6 we obtain

[
2λn

1 − t2

(1 + t2)2 |z1 − z2|
]C(K,n,p,t)

≥ 1
1 − t2 |y1 − y2|,

proving the claim.
Acknowledgments. We are indebted to the anonymous referee for very valuable suggestions concerning

the presentation of this paper.



M. Huang et al. / Filomat 27:2 (2013), 391–402 402

References
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