Harmonic Bergman spaces on the complement of a lattice

Abejela Shkheam ${ }^{\text {a }}$, Ali Abaob $^{\text {b }}$, Miloš Arsenovićc ${ }^{\text {c }}$
${ }^{a}$ University of Belgrade, Serbia
${ }^{b}$ University of Belgrade, Serbia
${ }^{c}$ University of Belgrade, Serbia

Abstract

We investigate harmonic Bergman spaces $b^{p}=b^{p}(\Omega), 0<p<\infty$, where $\Omega=\mathbb{R}^{n} \backslash \mathbb{Z}^{n}$ and prove that $b^{q} \subset b^{p}$ for $n /(k+1) \leq q<p<n / k$. In the planar case we prove that b^{p} is non empty for all $0<p<\infty$. Further, for each $0<p<\infty$ there is a non-trivial $f \in b^{p}$ tending to zero at infinity at any prescribed rate.

1. Introduction

We denote the space of all complex valued harmonic functions on a domain $V \subset \mathbb{R}^{n}$ by $h(V)$, with topology of locally uniform convergence. For $0<p<\infty$ we set $b^{p}(V)=L^{p}(V) \cap h(V)$. With respect to L^{p} (quasi)norm these spaces are Frechet spaces for $0<p<1$ and Banach spaces for $p \geq 1$. Let $\Gamma=\mathbb{Z}^{n}$, $\Omega=\mathbb{R}^{n} \backslash \Gamma$. In the planar case the analytic Bergman spaces $B^{p}(\Omega)$ were studied in [1], in this paper we investigate harmonic Bergman spaces $b^{p}(\Omega)$.

For $x \in \mathbb{R}^{n}$ and $r>0 B(x, r)$ denotes the open ball of radius r centered at x. We set, for $x \in \mathbb{R}^{n}$, $\|x\|_{\infty}=\max _{1 \leq j \leq n}\left|x_{j}\right|$. Also, $Q(z, a)=\left\{w:\|w-z\|_{\infty}<a / 2\right\}$ denotes an open cube centered at $z \in \mathbb{R}^{n}$ of side length $a>0$ and $\dot{Q}(z, a)=Q(z, a) \backslash\{z\}$. In the planar case we also use notation $D(z, r)=\{w:|z-w|<r\}$, $D_{r}=D(0, r)$. The n dimensional Lebesgue measure is denoted by $d m$. Letter C denotes a constant, its value can vary from one occurrence to the next. For future reference we state some known facts.

Proposition 1.1. If $f: \mathbb{R}^{n} \rightarrow \mathbb{C}$ is a harmonic function, not identically equal to zero, then $f \notin b^{p}\left(\mathbb{R}^{n}\right), p>0$. Moreover:

$$
\begin{equation*}
\left(\int_{B(x, R)}|f(y)|^{p} d y\right)^{1 / p} \geq C_{p, n} R^{n / p}|f(x)|, \quad x \in \mathbb{R}^{n} \tag{1}
\end{equation*}
$$

Proof. Indeed, (1) follows from subharmonic behavior of $|f|^{p}$ for $0<p<\infty$, see [3]. Therefore

$$
\left(\int_{\mathbb{R}^{n}}|f(y)|^{p} d y\right)^{1 / p} \geq \lim _{R \rightarrow+\infty} C_{p, n}|f(x)| R^{n / p}=+\infty
$$

[^0]whenever $f(x) \neq 0$ for some $x \in \mathbb{R}^{n}$.
It is a standard fact that for $f \in b^{p}(V), V \subset \mathbb{R}^{n}, 0<p<+\infty$ we have
\[

$$
\begin{equation*}
|f(x)| \leq C_{p, n} \frac{\|f\|_{p}}{r^{n / p}}, \quad \text { where } \quad r=d\left(x, V^{c}\right) \tag{2}
\end{equation*}
$$

\]

In fact, using (1.1), we get

$$
|f(x)|^{p} \leq \frac{C_{n, p}}{m(B(x, r))} \int_{B(x, r)}|f|^{p} d m \leq C_{n, p} r^{-n}\|f\|_{p}^{p}
$$

and (2) easily follows. Note that the this allows one to conclude that convergence in $b^{p}(V)$ implies locally uniform convergence on V.

We need certain facts about expansions of harmonic functions near singularities, for details see [2].
Suppose $n \geq 3, a \in V \subset \mathbb{R}^{n}$, and $f \in h(V \backslash\{a\})$. Then there are homogeneous harmonic polynomials p_{m} and q_{m} of degree m such that

$$
\begin{equation*}
f(x)=\sum_{m=0}^{\infty} p_{m}(x-a)+\sum_{m=0}^{\infty} \frac{q_{m}(x-a)}{|x-a|^{2 m+n-2}} . \tag{3}
\end{equation*}
$$

A classification of singularities follow from this expansion: f has a removable singularity at a if and only if $\lim _{x \rightarrow a}|x-a|^{n-2}|f(x)|=0, f$ has a pole at a of order $M+n-2$ if and only if $0<\limsup _{x \rightarrow a}|x-a|^{M+n-2}|f(x)|<\infty$ and finally point a is an essential singularity if and only if $\limsup _{x \rightarrow a}|x-a|^{N}|f(x)|^{x \rightarrow a}=\infty$ for every positive integer N.

When $n=2$ the situation is slightly different, in that case there are homogeneous harmonic polynomials p_{m} and q_{m} of degree m on \mathbb{R}^{2} such that

$$
\begin{equation*}
f(z)=\sum_{m=0}^{\infty} p_{m}(z-a)+q_{0} \log |z-a|+\sum_{m=1}^{\infty} \frac{q_{m}(z-a)}{|z-a|^{2 m}} \tag{4}
\end{equation*}
$$

The presence of the logarithmic factor makes a difference between analytic and harmonic case, see for example Proposition 2.3 below.

In the above situation f has a removable singularity at a iff $\lim _{z \rightarrow a} \frac{f(z)}{\log |z-a|}=0$, it has a fundamental pole at a if and only if $0<\lim _{z \rightarrow a}\left|\frac{f(z)}{\log |z-a|}\right|<\infty$, it has a pole at a of order M if and only if $0<\limsup _{z \rightarrow a}|z-a|^{M}|f(z)|<\infty$ and finally f has an essential singularity at a if and only if $\limsup _{z \rightarrow a}|z-a|^{N}|f(z)|=\infty$ for every positive integer N.

There is an alternative, but equivalent way to expand $u \in h(V \backslash\{a\}), V \subset \mathbb{C}$, namely to use analytic and conjugate analytic functions. We assume, for simplicity, that $a=0$. Then we have

$$
\begin{equation*}
u(z)=a_{0}+b_{0} \log |z|+\sum_{n \neq 0}\left(c_{n} z^{n}+d_{n} \bar{z}^{n}\right), \quad 0<|z|<r \tag{5}
\end{equation*}
$$

Note that $a_{0}=a_{0}(u), b_{0}=b_{0}(u), c_{n}=c_{n}(u)$ and $d_{n}=d_{n}(u)$.
Proposition 1.2. The functionals a_{0}, b_{0}, c_{n} and $d_{n}, n \neq 0$, are continuous on the Frechet space $h\left(V^{\prime}\right), V^{\prime}=V \backslash\{0\}$.
Proof. Using

$$
\begin{equation*}
b_{0}(u)=\frac{1}{2 \pi} \int_{C_{\rho}} \frac{\partial u}{\partial n} d s, \quad 0<\rho<\operatorname{dist}(0, \partial V) \tag{6}
\end{equation*}
$$

where C_{ρ} is the circle centered at 0 of radius ρ, we conclude, using continuity of derivatives on the space $h\left(V^{\prime}\right)$ that b_{0} is continuous on $h\left(V^{\prime}\right)$. Now we fix $0<\rho_{1}<\rho_{2}<\operatorname{dist}(0, \partial V)$. For any $k \neq 0$ we have

$$
\begin{equation*}
\phi_{k}(u)=\frac{1}{2 \pi \rho_{1}} \int_{C_{\rho_{1}}} u(z) z^{-k} d s=c_{k}(u)+\rho_{1}^{-2 k} d_{-k}(u) \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi_{k}(u)=\frac{1}{2 \pi \rho_{2}} \int_{C_{\rho_{2}}} u(z) \overline{z^{k}} d s=\rho_{2}^{2 k} C_{k}(u)+d_{-k}(u) \tag{8}
\end{equation*}
$$

Both ϕ_{k} and ψ_{k} are continuous on $h\left(V^{\prime}\right)$, since (7) and (8) represent a system of linear equations with determinant $1-\left(\rho_{2} / \rho_{1}\right)^{k} \neq 0$ it follows immediately that c_{k} and d_{k} are continuous. The case of a_{0} is left to the reader.

2. Inclusions between b^{p} spaces

We start with an auxiliary proposition.
Proposition 2.1. Assume $f \in b^{p}\left(V^{\prime}\right)$, where $V^{\prime}=V \backslash\{a\}$ for some $a \in V \subset \mathbb{R}^{n}$. Then

$$
\begin{equation*}
|f(x)|=o\left(|x-a|^{-n / p}\right), \quad x \rightarrow a \tag{9}
\end{equation*}
$$

In particular, a is either a removable singularity of f or a pole of order $k<n / p$. If $n \geq 3$ and $p \geq \frac{n}{n-2}$, then a is a removable singularity.

Proof. Applying (2) to $V=B(x,|x-a|)$ one gets (9) and that suffices in view of the above classification of isolated singularities.

Combining the last proposition and Proposition 1.1 we obtain the following:
Corollary 2.2. If $f \in b^{p}(\Omega), p \geq \frac{n}{n-2}$ and $n \geq 3$, then f is identically zero.
Our first result demonstrates a basic difference between harmonic and analytic Bergman spaces on Ω in the planar case, namely $B^{p}(\Omega)=\{0\}$ for $p \geq 2$, see [1]. However we have:

Proposition 2.3. If $n=2$, then $b^{p}(\Omega) \neq\{0\}$ for $0<p<\infty$.
Proof. The function $f(z)=\log |z-1|-2 \log |z|+\log |z+1|$ is harmonic in Ω and, by Lagrange's theorem, $|f(z)|=O\left(|z|^{-2}\right)$ as $z \rightarrow \infty$. Therefore $f \in b^{2}(\Omega)$.

Similarly, $f(z)=\log |z+1|-\log |z|$ is harmonic in Ω and, by Lagrange's theorem, $|f(z)|=O\left(|z|^{-1}\right)$. Therefore $f \in b^{p}(\Omega)$ for $2<p<\infty$.

Finally, for $0<p<2$ the analytic Bergman spaces $B^{p}(\Omega)$ are non-empty, in fact they contain nontrivial rational functions, see [1].

Lemma 2.4. Let $k \in \mathbb{N}$ and $n /(k+1) \leq q<p<n / k$. Then there is a constant $C=C_{p, q, n}$ such that

$$
\|u\|_{b^{p}(\dot{Q}(a, 1))} \leq C\|u\|_{b^{q}(\dot{Q}(a, 3 / 2))} \quad \text { for every } \quad u \in b^{q}(\dot{Q}(a, 3 / 2)), \quad a \in \Gamma .
$$

Proof. This lemma states that the restriction operator $R: b^{q}(\dot{Q}(a, 3 / 2)) \rightarrow b^{p}(\dot{Q}(a, 1))$ given by $R u=\left.u\right|_{\dot{Q}(a, 1)}$ is continuous. Since both spaces $b^{q}(\dot{Q}(a, 3 / 2))$ and $b^{p}(\dot{Q}(a, 1))$ are complete it suffices, by the closed graph theorem, to prove that R maps $b^{q}(\dot{Q}(a, 3 / 2))$ into $b^{p}(\dot{Q}(a, 1))$. Let $u \in b^{q}(\dot{Q}(a, 3 / 2))$. Since $q \geq n /(k+1)$ Proposition 3 implies that the order of pole of u at a is at most k. Therefore, $|u(z)|^{p}=O\left(|a-z|^{-k p}\right)$ where $k p<n$. Hence $|u|^{p}$ is integrable in a neighborhood of a and that implies $u \in b^{p}(\dot{Q}(a, 1))$.

The main result of this section is the following result.

Theorem 2.5. If $n /(k+1) \leq q<p<n / k(k=1,2, \ldots)$, then $b^{q}(\Omega) \subset b^{p}(\Omega)$.
Proof. Set $Q_{\omega}=Q(\omega, 1)$ for $\omega \in \Gamma$. Let $u \in b^{q}(\Omega)$. The poles of u have orders at most k hence $u(z)=O\left(|z-\omega|^{-k}\right)$ as $z \rightarrow \omega$. Therefore $\left.u\right|_{Q_{\omega}} \in L^{p}\left(Q_{\omega}\right)$. Using Lemma 1 we get

$$
\begin{aligned}
\|u\|_{p}^{p} & =\int_{\Omega}|u|^{p} d m=\sum_{\omega \in \Gamma} \int_{\dot{Q}_{\omega}}|u|^{p} d m \leq C \sum_{\omega \in \Gamma}\left(\int_{\dot{Q}(\omega, 3 / 2)}|u|^{q} d m\right)^{p / q} \\
& \leq C\left(\sum_{\omega \in \Gamma} \int_{\dot{Q}(\omega, 3 / 2)}|u|^{q} d m\right)^{p / q} \\
& \leq 4^{p / q} C\left(\sum_{\omega \in \Gamma} \int_{\dot{Q}_{\omega}}|u|^{q} d m\right)^{p / q}=4^{p / q} C\|u\|_{q}^{p}
\end{aligned}
$$

because $p / q \geq 1$ and almost every point in \mathbb{C} lies in precisely 4 squares $Q(\omega, 3 / 2)$.
We note that the above proof can be used to prove Theorem 1 from [1], in fact it presents a simplification of the proof given in [1].

3. Asymptotics at infinity of functions in $b^{p}(\Omega)$

One might conjecture that on the set $\Omega_{\epsilon}=\{z \in \mathbb{C}: d(z, \Gamma)>\epsilon\}$ we can control the size of functions $f \in b^{p}(\Omega)$, for example that we can prove $f(z)=O\left(|z|^{-2 / p}\right),|z| \rightarrow \infty, z \in \Omega_{\epsilon}$. However, this is never true in general. The following theorem was proved in the case $0<p<2$ for analytic Bergman spaces $B^{p}(\Omega)$ in [1], and the same method of proof works in the present situation. We present this proof for reader's convenience.

Theorem 3.1. Implication $f \in b^{p}(\Omega) \Rightarrow f(z)=O\left(|z|^{-\alpha}\right)$ as $|z| \rightarrow \infty, z \in \Omega_{\epsilon}$ does not hold for any $0<p<\infty, \alpha>0$, $0<\epsilon<1 / \sqrt{2}$.

Proof. Assume this implication holds for some $0<p<\infty, \alpha>0$ and $0<\epsilon<1 / \sqrt{2}$. One easily proves that

$$
h_{\epsilon, \alpha}=\left\{f \in h\left(\Omega_{\epsilon}\right):\|f\|_{\epsilon, \alpha}=\sup _{z \in \Omega_{e}}|z|^{\alpha}|f(z)|<+\infty\right\}
$$

is a Banach space. The restriction operator $R: b^{p}(\Omega) \rightarrow h_{\epsilon, \alpha}$ has closed graph because convergence in both (quasi)-norms $\|\cdot\|_{p}$ and $\|\cdot\|_{\varepsilon, \alpha}$ implies pointwise convergence. Hence R is bounded, that is $\|f\|_{\varepsilon, \alpha} \leq C\|f\|_{p}$ for all $f \in b^{p}(\Omega)$. Let us pick a non-trivial $f \in b^{p}(\Omega)$. Then

$$
\begin{aligned}
\left|f\left(z_{0}\right)\right| & =\left|f_{n}\left(z_{0}-n\right)\right| \leq\left|z_{0}-n\right|^{-\alpha}\left\|f_{n}\right\|_{\varepsilon, \alpha} \leq C\left|z_{0}-n\right|^{-\alpha}\left\|f_{n}\right\|_{p} \\
& =C\left|z_{0}-n\right|^{-\alpha}\|f\|_{p}
\end{aligned}
$$

for all $n \in \mathbb{N}, z_{0} \in \Omega_{\epsilon}\left(f_{n}\right.$ denotes a function $\left.f_{n}(z)=f(z+n)\right)$. This gives, as $n \rightarrow \infty, f\left(z_{0}\right)=0$, hence $f(z)=0$ on Ω_{ϵ} and therefore on Ω as well. Contradiction.

Remark 3.2. The same proof works for a function $\phi(|z|)$ instead of $|z|^{-\alpha}$, where $\phi(r)$ is strictly positive and $\lim _{r \rightarrow+\infty} \phi(r)=0$.

4. Some generalizations and open problems

We alert reader to possible generalizations and open problems, these are parallel to those mentioned in [1]. One can define mixed norm spaces $b^{p, q}(\Omega)$ using (quasi)-norms

$$
\|f\|_{p, q}=\left\{\sum_{\omega \in \Gamma}\left(\iint_{Q(\omega, 1)}|f(z)|^{p} d x d y\right)^{q / p}\right\}^{1 / q}, \quad 0<p, q<\infty .
$$

Note that $b^{p, p}(\Omega)=b^{p}(\Omega)$. Some of our results generalize to the $b^{p, q}$ spaces, without any substantial changes in the proofs. For example:

$$
\begin{equation*}
b^{q, r} \subset b^{p, r}, \quad \frac{2}{n+1} \leq q<p<\frac{2}{n} \quad 0<r<+\infty \tag{10}
\end{equation*}
$$

Finally, we mention some natural questions on $b^{p}(\Omega)$ spaces.

1. Is there a bounded projection from $L^{p}(\Omega)$ onto $b^{p}(\Omega)$? This problem is related to the problem of finding the dual space of $b^{p}(\Omega)$, see [5] for the problem in the context of analytic functions.
2. Describe the dual of $b^{p}(\Omega)$.
3. Is $b^{p}(\Omega)$ isomorphic to l^{p} ? We note that there is a vast amount of literature related to classical Banach spaces, see [4].
4. Are there sequences z_{n} in Ω such that $\|f\|_{p}^{p} \sim \sum_{n=1}^{\infty} d\left(z_{n}, \Gamma\right)^{2}\left|f\left(z_{n}\right)\right|^{p}$?

References

[1] M. Arsenović, D. Kečkić, Bergman spaces on the complement of a lattice, Arch. Math. 81, (2003), 575-584.
[2] S. Axler, P. Bourdon, W. Ramey, Harmonic Function Theory, Springer, New York, 2000.
[3] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970.
[4] J. Lindestrauss, L. Tzafriri, Classical Banach Spaces I and II, Springer-Verlag, 1996.
[5] K. Zhu, Operator Theory in Function Spaces, New York, 1990.

[^0]: 2010 Mathematics Subject Classification. Primary 30H20
 Keywords. Bergman spaces, harmonic functions, integer lattice
 Received: 10 December 2011; Accepted: 5 April 2012
 Communicated by Prof. M. Mateljević
 Research supported by Ministry of Science, Serbia, project OI174017
 Email addresses: (Abejela Shkheam), (Ali Abaob), arsenovic@matf.bg.ac.rs (Miloš Arsenović)

