Harmonic Bergman spaces on the complement of a lattice

Abejela Shkheam^a, Ali Abaob^b, Miloš Arsenović^c

^a University of Belgrade, Serbia ^b University of Belgrade, Serbia ^c University of Belgrade, Serbia

Abstract. We investigate harmonic Bergman spaces $b^p = b^p(\Omega)$, $0 , where <math>\Omega = \mathbb{R}^n \setminus \mathbb{Z}^n$ and prove that $b^q \subset b^p$ for $n/(k+1) \le q . In the planar case we prove that <math>b^p$ is non empty for all $0 . Further, for each <math>0 there is a non-trivial <math>f \in b^p$ tending to zero at infinity at any prescribed rate.

1. Introduction

We denote the space of all complex valued harmonic functions on a domain $V \subset \mathbb{R}^n$ by h(V), with topology of locally uniform convergence. For $0 we set <math>b^p(V) = L^p(V) \cap h(V)$. With respect to L^p (quasi)norm these spaces are Frechet spaces for $0 and Banach spaces for <math>p \ge 1$. Let $\Gamma = \mathbb{Z}^n$, $\Omega = \mathbb{R}^n \setminus \Gamma$. In the planar case the analytic Bergman spaces $B^p(\Omega)$ were studied in [1], in this paper we investigate harmonic Bergman spaces $b^p(\Omega)$.

For $x \in \mathbb{R}^n$ and r > 0 B(x, r) denotes the open ball of radius r centered at x. We set, for $x \in \mathbb{R}^n$, $||x||_{\infty} = \max_{1 \le j \le n} |x_j|$. Also, $Q(z, a) = \{w : ||w - z||_{\infty} < a/2\}$ denotes an open cube centered at $z \in \mathbb{R}^n$ of side length a > 0 and $\dot{Q}(z, a) = Q(z, a) \setminus \{z\}$. In the planar case we also use notation $D(z, r) = \{w : |z - w| < r\}$, $D_r = D(0, r)$. The n dimensional Lebesgue measure is denoted by dm. Letter C denotes a constant, its value can vary from one occurrence to the next. For future reference we state some known facts.

Proposition 1.1. If $f : \mathbb{R}^n \to \mathbb{C}$ is a harmonic function, not identically equal to zero, then $f \notin b^p(\mathbb{R}^n)$, p > 0. *Moreover:*

$$\left(\int_{B(x,R)} |f(y)|^p dy\right)^{1/p} \ge C_{p,n} R^{n/p} |f(x)|, \qquad x \in \mathbb{R}^n.$$
(1)

Proof. Indeed, (1) follows from subharmonic behavior of $|f|^p$ for 0 , see [3]. Therefore

$$\left(\int_{\mathbb{R}^n} |f(y)|^p dy\right)^{1/p} \ge \lim_{R \to +\infty} C_{p,n} |f(x)| R^{n/p} = +\infty$$

Keywords. Bergman spaces, harmonic functions, integer lattice

Communicated by Prof. M. Mateljević

²⁰¹⁰ Mathematics Subject Classification. Primary 30H20

Received: 10 December 2011; Accepted: 5 April 2012

Research supported by Ministry of Science, Serbia, project OI174017

Email addresses: (Abejela Shkheam), (Ali Abaob), arsenovic@matf.bg.ac.rs (Miloš Arsenović)

whenever $f(x) \neq 0$ for some $x \in \mathbb{R}^n$. \Box

It is a standard fact that for $f \in b^p(V)$, $V \subset \mathbb{R}^n$, 0 we have

$$|f(x)| \le C_{p,n} \frac{||f||_p}{r^{n/p}}, \quad \text{where} \quad r = d(x, V^c).$$
 (2)

In fact, using (1.1), we get

$$|f(x)|^{p} \leq \frac{C_{n,p}}{m(B(x,r))} \int_{B(x,r)} |f|^{p} dm \leq C_{n,p} r^{-n} ||f||_{p}^{p},$$

and (2) easily follows. Note that the this allows one to conclude that convergence in $b^p(V)$ implies locally uniform convergence on *V*.

We need certain facts about expansions of harmonic functions near singularities, for details see [2].

Suppose $n \ge 3$, $a \in V \subset \mathbb{R}^n$, and $f \in h(V \setminus \{a\})$. Then there are homogeneous harmonic polynomials p_m and q_m of degree *m* such that

$$f(x) = \sum_{m=0}^{\infty} p_m(x-a) + \sum_{m=0}^{\infty} \frac{q_m(x-a)}{|x-a|^{2m+n-2}}.$$
(3)

A classification of singularities follow from this expansion: f has a removable singularity at a if and only if $\lim_{x \to a} |x - a|^{n-2} |f(x)| = 0$, f has a pole at a of order M + n - 2 if and only if $0 < \limsup_{x \to a} |x - a|^{M+n-2} |f(x)| < \infty$ and finally point a is an essential singularity if and only if $\limsup_{x \to a} |x - a|^N |f(x)| = \infty$ for every positive integer N.

When n = 2 the situation is slightly different, in that case there are homogeneous harmonic polynomials p_m and q_m of degree m on \mathbb{R}^2 such that

$$f(z) = \sum_{m=0}^{\infty} p_m(z-a) + q_0 \log|z-a| + \sum_{m=1}^{\infty} \frac{q_m(z-a)}{|z-a|^{2m}}$$
(4)

The presence of the logarithmic factor makes a difference between analytic and harmonic case, see for example Proposition 2.3 below.

In the above situation *f* has a removable singularity at *a* iff $\lim_{z \to a} \frac{f(z)}{\log|z-a|} = 0$, it has a fundamental pole at *a* if and only if $0 < \lim_{z \to a} \left| \frac{f(z)}{\log|z-a|} \right| < \infty$, it has a pole at *a* of order *M* if and only if $0 < \limsup_{z \to a} |z - a|^M |f(z)| < \infty$ and finally *f* has an essential singularity at *a* if and only if $\limsup_{z \to a} |z - a|^N |f(z)| = \infty$ for every positive integer *N*.

There is an alternative, but equivalent way to expand $u \in h(V \setminus \{a\})$, $V \subset \mathbb{C}$, namely to use analytic and conjugate analytic functions. We assume, for simplicity, that a = 0. Then we have

$$u(z) = a_0 + b_0 \log |z| + \sum_{n \neq 0} (c_n z^n + d_n \overline{z}^n), \qquad 0 < |z| < r.$$
(5)

Note that $a_0 = a_0(u)$, $b_0 = b_0(u)$, $c_n = c_n(u)$ and $d_n = d_n(u)$.

Proposition 1.2. The functionals a_0 , b_0 , c_n and d_n , $n \neq 0$, are continuous on the Frechet space h(V'), $V' = V \setminus \{0\}$.

Proof. Using

$$b_0(u) = \frac{1}{2\pi} \int_{C_\rho} \frac{\partial u}{\partial n} ds, \qquad 0 < \rho < \operatorname{dist}(0, \partial V), \tag{6}$$

246

where C_{ρ} is the circle centered at 0 of radius ρ , we conclude, using continuity of derivatives on the space h(V') that b_0 is continuous on h(V'). Now we fix $0 < \rho_1 < \rho_2 < \text{dist}(0, \partial V)$. For any $k \neq 0$ we have

$$\phi_k(u) = \frac{1}{2\pi\rho_1} \int_{C_{\rho_1}} u(z) z^{-k} ds = c_k(u) + \rho_1^{-2k} d_{-k}(u)$$
(7)

and

$$\psi_k(u) = \frac{1}{2\pi\rho_2} \int_{C_{\rho_2}} u(z)\overline{z^k} ds = \rho_2^{2k} c_k(u) + d_{-k}(u).$$
(8)

Both ϕ_k and ψ_k are continuous on h(V'), since (7) and (8) represent a system of linear equations with determinant $1 - (\rho_2/\rho_1)^k \neq 0$ it follows immediately that c_k and d_k are continuous. The case of a_0 is left to the reader. \Box

2. Inclusions between *b^p* spaces

We start with an auxiliary proposition.

Proposition 2.1. Assume $f \in b^p(V')$, where $V' = V \setminus \{a\}$ for some $a \in V \subset \mathbb{R}^n$. Then

$$|f(x)| = o(|x-a|^{-n/p}), \qquad x \to a.$$
 (9)

In particular, a is either a removable singularity of f or a pole of order k < n/p. If $n \ge 3$ and $p \ge \frac{n}{n-2}$, then a is a removable singularity.

Proof. Applying (2) to V = B(x, |x - a|) one gets (9) and that suffices in view of the above classification of isolated singularities. \Box

Combining the last proposition and Proposition 1.1 we obtain the following:

Corollary 2.2. If $f \in b^p(\Omega)$, $p \ge \frac{n}{n-2}$ and $n \ge 3$, then f is identically zero.

Our first result demonstrates a basic difference between harmonic and analytic Bergman spaces on Ω in the planar case, namely $B^p(\Omega) = \{0\}$ for $p \ge 2$, see [1]. However we have:

Proposition 2.3. *If* n = 2, *then* $b^{p}(\Omega) \neq \{0\}$ *for* 0 .

Proof. The function $f(z) = \log |z - 1| - 2 \log |z| + \log |z + 1|$ is harmonic in Ω and, by Lagrange's theorem, $|f(z)| = O(|z|^{-2})$ as $z \to \infty$. Therefore $f \in b^2(\Omega)$.

Similarly, $f(z) = \log |z + 1| - \log |z|$ is harmonic in Ω and, by Lagrange's theorem, $|f(z)| = O(|z|^{-1})$. Therefore $f \in b^p(\Omega)$ for 2 .

Finally, for $0 the analytic Bergman spaces <math>B^p(\Omega)$ are non-empty, in fact they contain nontrivial rational functions, see [1]. \Box

Lemma 2.4. Let $k \in \mathbb{N}$ and $n/(k+1) \le q . Then there is a constant <math>C = C_{p,q,n}$ such that

$$\|u\|_{b^{p}(\dot{Q}(a,1))} \leq C\|u\|_{b^{q}(\dot{Q}(a,3/2))} \quad \text{for every} \quad u \in b^{q}(Q(a,3/2)), \quad a \in \Gamma$$

Proof. This lemma states that the restriction operator $R : b^q(\dot{Q}(a, 3/2)) \rightarrow b^p(\dot{Q}(a, 1))$ given by $Ru = u|_{\dot{Q}(a,1)}$ is continuous. Since both spaces $b^q(\dot{Q}(a, 3/2))$ and $b^p(\dot{Q}(a, 1))$ are complete it suffices, by the closed graph theorem, to prove that R maps $b^q(\dot{Q}(a, 3/2))$ into $b^p(\dot{Q}(a, 1))$. Let $u \in b^q(\dot{Q}(a, 3/2))$. Since $q \ge n/(k + 1)$ Proposition 3 implies that the order of pole of u at a is at most k. Therefore, $|u(z)|^p = O(|a - z|^{-kp})$ where kp < n. Hence $|u|^p$ is integrable in a neighborhood of a and that implies $u \in b^p(\dot{Q}(a, 1))$. \Box

The main result of this section is the following result.

Theorem 2.5. If $n/(k + 1) \le q <math>(k = 1, 2, ...)$, then $b^q(\Omega) \subset b^p(\Omega)$.

Proof. Set $Q_{\omega} = Q(\omega, 1)$ for $\omega \in \Gamma$. Let $u \in b^q(\Omega)$. The poles of u have orders at most k hence $u(z) = O(|z - \omega|^{-k})$ as $z \to \omega$. Therefore $u|_{Q_{\omega}} \in L^p(Q_{\omega})$. Using Lemma 1 we get

$$\begin{split} ||u||_{p}^{p} &= \int_{\Omega} |u|^{p} dm = \sum_{\omega \in \Gamma} \int_{\dot{Q}_{\omega}} |u|^{p} dm \leq C \sum_{\omega \in \Gamma} \left(\int_{\dot{Q}(\omega, 3/2)} |u|^{q} dm \right)^{p/q} \\ &\leq C \left(\sum_{\omega \in \Gamma} \int_{\dot{Q}(\omega, 3/2)} |u|^{q} dm \right)^{p/q} \\ &\leq 4^{p/q} C \left(\sum_{\omega \in \Gamma} \int_{\dot{Q}_{\omega}} |u|^{q} dm \right)^{p/q} = 4^{p/q} C ||u||_{q}^{p} \end{split}$$

because $p/q \ge 1$ and almost every point in \mathbb{C} lies in precisely 4 squares $Q(\omega, 3/2)$.

We note that the above proof can be used to prove Theorem 1 from [1], in fact it presents a simplification of the proof given in [1].

3. Asymptotics at infinity of functions in $b^p(\Omega)$

One might conjecture that on the set $\Omega_{\epsilon} = \{z \in \mathbb{C} : d(z, \Gamma) > \epsilon\}$ we can control the size of functions $f \in b^p(\Omega)$, for example that we can prove $f(z) = O(|z|^{-2/p}), |z| \to \infty, z \in \Omega_{\epsilon}$. However, this is never true in general. The following theorem was proved in the case $0 for analytic Bergman spaces <math>B^p(\Omega)$ in [1], and the same method of proof works in the present situation. We present this proof for reader's convenience.

Theorem 3.1. Implication $f \in b^p(\Omega) \Rightarrow f(z) = O(|z|^{-\alpha})$ as $|z| \to \infty$, $z \in \Omega_{\epsilon}$ does not hold for any $0 , <math>\alpha > 0$, $0 < \epsilon < 1/\sqrt{2}$.

Proof. Assume this implication holds for some $0 , <math>\alpha > 0$ and $0 < \epsilon < 1/\sqrt{2}$. One easily proves that

$$h_{\epsilon,\alpha} = \{ f \in h(\Omega_{\epsilon}) : ||f||_{\epsilon,\alpha} = \sup_{z \in \Omega_{\epsilon}} |z|^{\alpha} |f(z)| < +\infty \}$$

is a Banach space. The restriction operator $R : b^p(\Omega) \to h_{\epsilon,\alpha}$ has closed graph because convergence in both (quasi)-norms $\|\cdot\|_p$ and $\|\cdot\|_{\epsilon,\alpha}$ implies pointwise convergence. Hence R is bounded, that is $\|f\|_{\epsilon,\alpha} \leq C\|f\|_p$ for all $f \in b^p(\Omega)$. Let us pick a non-trivial $f \in b^p(\Omega)$. Then

$$\begin{aligned} |f(z_0)| &= |f_n(z_0 - n)| \le |z_0 - n|^{-\alpha} ||f_n||_{\epsilon,\alpha} \le C |z_0 - n|^{-\alpha} ||f_n||_p \\ &= C |z_0 - n|^{-\alpha} ||f||_p \end{aligned}$$

for all $n \in \mathbb{N}$, $z_0 \in \Omega_{\epsilon}$ (f_n denotes a function $f_n(z) = f(z + n)$). This gives, as $n \to \infty$, $f(z_0) = 0$, hence f(z) = 0on Ω_{ϵ} and therefore on Ω as well. Contradiction. \Box

Remark 3.2. The same proof works for a function $\phi(|z|)$ instead of $|z|^{-\alpha}$, where $\phi(r)$ is strictly positive and $\lim_{r\to+\infty} \phi(r) = 0$.

4. Some generalizations and open problems

We alert reader to possible generalizations and open problems, these are parallel to those mentioned in [1]. One can define mixed norm spaces $b^{p,q}(\Omega)$ using (quasi)-norms

A. Shkheam, A. Abaob, M. Arsenović / Filomat 27:2 (2013), 245-249

$$||f||_{p,q} = \left\{ \sum_{\omega \in \Gamma} \left(\int \int_{Q(\omega,1)} |f(z)|^p dx dy \right)^{q/p} \right\}^{1/q}, \qquad 0 < p,q < \infty.$$

Note that $b^{p,p}(\Omega) = b^p(\Omega)$. Some of our results generalize to the $b^{p,q}$ spaces, without any substantial changes in the proofs. For example:

$$b^{q,r} \subset b^{p,r}, \qquad \frac{2}{n+1} \le q (10)$$

Finally, we mention some natural questions on $b^p(\Omega)$ spaces.

1. Is there a bounded projection from $L^{p}(\Omega)$ onto $b^{p}(\Omega)$? This problem is related to the problem of finding the dual space of $b^p(\Omega)$, see [5] for the problem in the context of analytic functions.

2. Describe the dual of $b^p(\Omega)$.

3. Is $b^p(\Omega)$ isomorphic to l^p ? We note that there is a vast amount of literature related to classical Banach spaces, see [4].

4. Are there sequences z_n in Ω such that $||f||_p^p \sim \sum_{n=1}^{\infty} d(z_n, \Gamma)^2 |f(z_n)|^p$?

References

M. Arsenović, D. Kečkić, *Bergman spaces on the complement of a lattice*, Arch. Math. 81, (2003), 575-584.
 S. Axler, P. Bourdon, W. Ramey, *Harmonic Function Theory*, Springer, New York, 2000.

- [3] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970.
- [4] J. Lindestrauss, L. Tzafriri, Classical Banach Spaces I and II, Springer-Verlag, 1996.
- [5] K. Zhu, Operator Theory in Function Spaces, New York, 1990.