General approach of the root of a p-adic number

Kecies Mohamed ${ }^{\text {a }}$, Zerzaihi Tahar ${ }^{\text {b }}$
${ }^{a}$ Laboratoire de mathématiques pures et appliquées.Université de Jijel. BP 98 Ouled Aissa, 18000 Jijel, Algérie
${ }^{b}$ Laboratoire de mathématiques pures et appliquées.Université de Jijel. BP 98 Ouled Aissa, 18000 Jijel, Algérie

Abstract

In this work, we applied the Newton method in the p-adic case to calculate the cubic root of a p-adic number $a \in \mathbb{Q}_{p}^{*}$ where p is a prime number, and through the calculation of the approximate solution of the equation $x^{3}-a=0$. We also determined the rate of convergence of this method and evaluated the number of iterations obtained in each step of the approximation.

1. Introduction

The p-adic numbers were discovered by K. Hensel around the end of the nineteenth century. In the course of one hundred years, the theory of p-adic numbers has penetrated into several areas of mathematics, including number theory, algebraic geometry, algebraic topology and analysis (and rather recently to physics). In papers [6], the authors used classical rootfinding methods to calculate the reciprocal of integer modulo p^{n}, where p is prime number. But in [1], the author used the Newton method to find the reciprocal of a finite segment padic number, also referred to as Hensel codes. The Hensel codes and their properties are studied in [2-4]. In [8], the authors used fixed point method to calculate the Hensel code of square root of a p-adic number $a \in \mathbb{Q}_{p}$, it means the first numbers of the p -adic development of the \sqrt{a}.

In this work, we will see how we can use classical root-finding method and explore a very interesting application of tools from numerical analysis to number theory.

One considers the following equation

$$
\begin{equation*}
x^{3}-a=0 \tag{1}
\end{equation*}
$$

The solution of (1) is approximated by a p-adic number sequence $\left(x_{n}\right)_{n} \subset \mathbb{Q}_{p}^{*}$ constructed by the Newton method.

2. Preliminaries

Definition 2.1. Let p be a prime number.

1) The field \mathbb{Q}_{p} of p-adic numbers is the completion of the field \mathbb{Q} of rational numbers with respect to the p-adic norm $|\cdot|_{p}$ defined by

$$
\forall x \in \mathbb{Q}_{p}:|x|_{p}=\left\{\begin{array}{l}
p^{-v_{p}(x)}, \text { if } x \neq 0 \\
0, \text { if } x=0
\end{array}\right.
$$

[^0]where v_{p} is the p-adic valuation defined by
$$
v_{p}(x)=\max \left\{r \in \mathbb{Z}: p^{r} \mid x\right\}
$$
2) The p-adic norm induces a metric d_{p} given by
\[

$$
\begin{array}{lll}
d_{p}: & \mathbb{Q}_{p} \times \mathbb{Q}_{p} & \longrightarrow \mathbb{R}^{+} \\
(x, y) & \longmapsto d_{p}(x, y)=|x-y|_{p}
\end{array}
$$
\]

this metric is called the p-adic metric.
Theorem 2.2. [5] Given a p-adic number $a \in \mathbb{Q}_{p}$, there exists a unique sequence of integers $\left(\beta_{n}\right)_{n \geq N}$, with $N=v_{p}(a)$, such that $0 \leq \beta_{n} \leq p-1$ for all n and

$$
a=\beta_{N} p^{N}+\beta_{N+1} p^{N+1}+\ldots+\beta_{n} p^{n}+\ldots=\sum_{k=N}^{\infty} \beta_{k} p^{k}
$$

The short representation of a is $\beta_{N} \beta_{N+1} \ldots \beta_{-1} \cdot \beta_{0} \beta_{1} \ldots$, where only the coefficients of the powers of p are shown. We can use the p -adic point \cdot as a device for displaying the sign of N as follows:

$$
\begin{gathered}
\beta_{N} \beta_{N+1} \ldots \beta_{-1} \cdot \beta_{0} \beta_{1} \ldots, \text { for } N<0 \\
\cdot \beta_{0} \beta_{1} \beta_{2} \ldots, \text { for } N=0 \\
\cdot 00 \ldots 0 \beta_{0} \beta_{1} \ldots, \text { for } N>0
\end{gathered}
$$

Definition 2.3. A p-adic number $a \in \mathbb{Q}_{p}$ is said to be a p-adic integer if this canonical expansion contains only non negative power of p.
The set of p-adic integers is denoted by \mathbb{Z}_{p}. We have

$$
\mathbb{Z}_{p}=\left\{\sum_{k=0}^{\infty} \beta_{k} p^{k}, 0 \leq \beta_{k} \leq p-1\right\}=\left\{a \in \mathbb{Q}_{p}: v_{p}(a) \geq 0\right\}=\left\{a \in \mathbb{Q}_{p}:|a|_{p} \leq 1\right\}
$$

Definition 2.4. A p-adic integer $a \in \mathbb{Z}_{p}$ is said to be a p-adic unit if the first digit β_{0} in the p-adic expansion is different of zero. The set of p-adic units is denoted by \mathbb{Z}_{p}^{*}. Hence we have

$$
\mathbb{Z}_{p}^{*}=\left\{\sum_{k=0}^{\infty} \beta_{k} p^{k}, \beta_{0} \neq 0\right\}=\left\{a \in \mathbb{Q}_{p}:|a|_{p}=1\right\}
$$

Lemma 2.5. [5] Given $a \in \mathbb{Q}_{p}$ and $k \in \mathbb{Z}$, then

$$
\left\{y \in \mathbb{Q}_{p}:|y-a|_{p} \leq p^{k}\right\}=a+p^{-k} \mathbb{Z}_{p}
$$

Proposition 2.6. [7] Let x be a p-adic number of norm p^{-n}. Then x can be written as the product $x=p^{n} u$, where $u \in \mathbb{Z}^{*}$.

Proposition 2.7. [7] Let $\left(a_{n}\right)_{n}$ be a p-adic number sequence. If $\lim _{n \rightarrow \infty} a_{n}=a \in \mathbb{Q} \backslash\{0\}$, then $\lim _{n \rightarrow \infty}\left|a_{n}\right|_{p}=|a|_{p}$. The sequence of norms $\left(\left|a_{n}\right|_{p}\right)_{n}$ must stabilize for sufficiently large n.

Theorem 2.8. [7](Hensel's lemma) Let $F(x)=c_{0}+c_{1} x+\ldots+c_{n} x^{n}$ be a polynomial whose coefficients are p-adic integers i.e. $\left(F \in \mathbb{Z}_{p}[x]\right)$. Let

$$
F^{\prime}(x)=c_{1}+2 c_{2} x+3 c_{3} x^{2}+\ldots+n c_{n} x^{n-1}
$$

be the derivative of $F(x)$. Suppose $\overline{a_{0}}$ is a p-adic integer which satisfies $F\left(\overline{0_{0}}\right) \equiv 0(\bmod p)$ and $F^{\prime}\left(\overline{a_{0}}\right) \not \equiv 0(\bmod p)$. Then there exists a unique p-adic integer a such that $F(a)=0$ and $a \equiv \overline{a_{0}}(\bmod p)$.

Theorem 2.9. [7] A polynomial with integer coefficients has a root in \mathbb{Z}_{p} if and only if it has an integer root modulo p^{k} for any $k \geqslant 1$.

Definition 2.10. A p-adic number $b \in \mathbb{Q}_{p}$ is said to be a cubic root of $a \in \mathbb{Q}_{p}$ of order k if $b^{3} \equiv a\left(\right.$ modp $\left.{ }^{k}\right)$, where $k \in \mathbb{N}$.

Proposition 2.11. [9] A rational integer a not divisible by p has a cubical root in $\mathbb{Z}_{p}(p \neq 3)$ if and only if a is a cubic residue modulo p.

Corollary 2.12. [9] Let p be a prime number, then

1. If $p \neq 3$, then $a=p^{v_{p}(a)} . u \in \mathbb{Q}_{p}\left(u \in \mathbb{Z}_{p}^{*}\right)$ has a cubic root in \mathbb{Q}_{p} if and only if $v_{p}(a)=3 m, m \in \mathbb{Z}$ and $u=v^{3}$ for some unit $v \in \mathbb{Z}_{p}^{*}$.
2. If $p=3$, then $a=3^{v_{3}(a)} . u \in \mathbb{Q}_{3}\left(u \in \mathbb{Z}_{3}^{*}\right)$ has a cubic root in \mathbb{Q}_{3} if and only if $v_{3}(a)=3 m, m \in \mathbb{Z}$ and $u \equiv 1($ $\bmod 9)$ or $u \equiv 2(\bmod 3)$.

3. Main Results

Let $a \in \mathbb{Q}_{p}^{*}$ be a p-adic number such that

$$
\begin{equation*}
|a|_{p}=p^{-v_{p}(a)}=p^{-3 m}, m \in \mathbb{Z} \tag{2}
\end{equation*}
$$

We know that if there exists a p -adic number β such that $\beta^{3}=a$ and $\left(x_{n}\right)_{n}$ is a sequence of the p -adic numbers that converges to a p-adic number $\beta \neq 0$, then from a certain rank one has

$$
\begin{equation*}
\left|x_{n}\right|_{p}=|\beta|_{p}=p^{-m} \tag{3}
\end{equation*}
$$

The Newton method: An elementary method to determine zeros of a given function is the Newton method where the iterative formula is defined by

$$
\begin{equation*}
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}, \forall n \in \mathbb{N} . \tag{4}
\end{equation*}
$$

Obtaining the following recurrence relation

$$
\begin{equation*}
x_{n+1}=\frac{1}{3 x_{n}^{2}}\left(a+2 x_{n}^{3}\right), \forall n \in \mathbb{N} \text {. } \tag{5}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
x_{n+1}^{3}-a=\frac{1}{27 x_{n}^{6}}\left(a+8 x_{n}^{3}\right)\left(a-x_{n}^{3}\right)^{2}, \forall n \in \mathbb{N}, \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{n+1}-x_{n}=\frac{1}{3 x_{n}^{2}}\left(a-x_{n}^{3}\right), \forall n \in \mathbb{N} . \tag{7}
\end{equation*}
$$

Determining the rate of convergence of an iterative method is to study the comportment of the sequence $\left(e_{n+n_{0}}\right)_{n}$ defined by $e_{n+n_{0}}=x_{n+n_{0}+1}-x_{n+n_{0}}$ obtained at each step of the iteration where $n_{0} \in \mathbb{N}$.

Roughly speaking, if the rate of convergence of a method is s, then after each iteration the number of correct significant digits in the approximation increases by a factor of approximately s.

Theorem 3.1. If $x_{n_{0}}$ is the cubic root of a of order r. Then

1) If $p \neq 3$, then $x_{n+n_{0}}$ is the cubic root of a of order $2^{n} r-3 m\left(2^{n}-1\right)$.
2) If $p=3$, then $x_{n+n_{0}}$ is the cubic root of a of order $2^{n} r-3(m+1)\left(2^{n}-1\right)$.

Proof. Let $\left(x_{n}\right)_{n}$ the sequence defined by (5) and $x_{n_{0}}$ is the cubic root of a of order r. Then

$$
x_{n_{0}}^{3}-a \equiv 0 \quad \bmod p^{r} \Longrightarrow\left|x_{n_{0}}^{3}-a\right|_{p} \leq p^{-r}
$$

We put

$$
h(x)=a+8 x_{n}^{3}
$$

We have

$$
|h(x)|_{p}=\left|a+8 x_{n}^{3}\right|_{p} \leq \max \left\{|a|_{p},\left|8 x_{n_{0}}^{3}\right|_{p}\right\}=p^{-3 m}
$$

Since

$$
|27|_{p}=\left\{\begin{array}{l}
\frac{1}{27}, \text { if } p=3 \tag{8}\\
1, \text { if } p \neq 3 .
\end{array}\right.
$$

This gives

$$
\left|x_{n_{0}+1}^{3}-a\right|_{p}=\left|\frac{1}{27 x_{n_{0}}^{6}}\right|_{p} \cdot\left|a+8 x_{n_{0}}^{3}\right|_{p} \cdot\left|a-x_{n_{0}}^{3}\right|_{p}^{2} \leq\left|\frac{1}{27 x_{n_{0}}^{6}}\right|_{p} \cdot p^{-3 m} \cdot p^{-2 r}
$$

And so we have

$$
\left\{\begin{array}{l}
\left|x_{n_{0}+1}^{3}-a\right|_{p} \leq p^{6 m} \cdot p^{-3 m} \cdot p^{-2 r}, \text { if } p \neq 3 \tag{9}\\
\left|x_{n_{0}+1}^{3}-a\right|_{3} \leq 3^{3} \cdot 3^{6 m} \cdot 3^{-3 m} \cdot 3^{-2 r}, \text { if } p=3
\end{array}\right.
$$

Or, in virtue of lemma 2.5

$$
\left\{\begin{array}{l}
x_{n_{0}+1}^{3}-a \equiv 0 \quad \bmod p^{2 r-3 m}, \text { if } p \neq 3 \tag{10}\\
x_{n_{0}+1}^{3}-a \equiv 0 \quad \bmod 3^{2 r-3(m+1)}, \text { if } p=3
\end{array}\right.
$$

In this manner, we find that if $p \neq 3$, then

$$
\begin{equation*}
\forall n \in \mathbb{N}: x_{n+n_{0}}^{3}-a \equiv 0 \quad \bmod p^{v_{n}} \tag{11}
\end{equation*}
$$

Where the sequence $\left(v_{n}\right)_{n}$ is defined by

$$
\forall n \in \mathbb{N}:\left\{\begin{array}{l}
v_{0}=r \\
v_{n+1}=2 v_{n}-3 m
\end{array} \Longleftrightarrow \forall n \in \mathbb{N}: v_{n}=2^{n} r-3 m\left(2^{n}-1\right) .\right.
$$

If $p=3$, then

$$
\begin{equation*}
\forall n \in \mathbb{N}: x_{n+n_{0}}^{3}-a \equiv 0 \quad \bmod 3^{v_{n}^{\prime}} \tag{12}
\end{equation*}
$$

Where the sequence $\left(v_{n}^{\prime}\right)_{n}$ is defined by

$$
\forall n \in \mathbb{N}:\left\{\begin{array}{l}
v_{0}^{\prime}=r \\
v_{n+1}^{\prime}=2 v_{n}^{\prime}-3(m+1)
\end{array} \Longleftrightarrow \forall n \in \mathbb{N}: v_{n}^{\prime}=2^{n} r-3(m+1)\left(2^{n}-1\right)\right.
$$

Corollary 3.2. If $x_{n_{0}}$ is the cubic root of a of order r. Then the sequence $\left(e_{n+n_{0}}\right)_{n}$ is defined by

$$
\forall n \in \mathbb{N}: \begin{cases}x_{n+n_{0}+1}-x_{n+n_{0}} \equiv 0 & \bmod p^{\varphi_{n}}, \text { if } p \neq 3 \tag{13}\\ x_{n+n_{0}+1}-x_{n+n_{0}} \equiv 0 & \bmod 3^{\varphi_{n}^{\prime}}, \text { if } p=3,\end{cases}
$$

Where

$$
\forall n \in \mathbb{N}:\left\{\begin{array}{l}
\varphi_{n}=2^{n} r-m\left(3 \cdot 2^{n}-1\right) \tag{14}\\
\varphi_{n}^{\prime}=2^{n} r-\left(m\left(3 \cdot 2^{n}-1\right)+\left(3 \cdot 2^{n}-2\right)\right)
\end{array}\right.
$$

Proof. We have

$$
\begin{equation*}
x_{n+1}-x_{n}=\frac{1}{3 x_{n}^{2}}\left(a-x_{n}^{3}\right), \forall n \in \mathbb{N}, \tag{15}
\end{equation*}
$$

Since

$$
|3|_{p}=\left\{\begin{array}{l}
\frac{1}{3}, \text { if } p=3 \tag{16}\\
1, \text { if } p \neq 3,
\end{array}\right.
$$

This gives

$$
\begin{align*}
& \left|x_{n+n_{0}+1}-x_{n+n_{0}}\right|_{p}=\left|\frac{1}{3 x_{n+n_{0}}^{2}}\left(a-x_{n+n_{0}}^{3}\right)\right|_{P}=p^{2 m} \cdot\left|\frac{1}{3}\right|_{P} \cdot\left|a-x_{n+n_{0}}^{3}\right|_{p} \tag{17}\\
& \Longrightarrow\left\{\begin{array}{l}
\left|x_{n+n_{0}+1}-x_{n+n_{0}}\right|_{p} \leq p^{2 m} \cdot p^{-v_{n}}, \text { if } p \neq 3 \\
\left|x_{n+n_{0}+1}-x_{n+n_{0}}\right|_{3} \leq 3^{2 m+1} \cdot 3^{-v_{n}^{\prime}}, \text { if } p=3,
\end{array}\right. \tag{18}
\end{align*}
$$

Or, in virtue of lemma 2.5

$$
\forall n \in \mathbb{N}:\left\{\begin{array}{c}
x_{n+n_{0}+1}-x_{n+n_{0}} \equiv 0 \quad \bmod p^{v_{n}-2 m}, \text { if } p \neq 3 \tag{19}\\
x_{n+n_{0}+1}-x_{n+n_{0}} \equiv 0 \quad \bmod 3^{v_{n}^{\prime}-(2 m+1)}, \text { if } p=3 .
\end{array}\right.
$$

We put

$$
\forall n \in \mathbb{N}:\left\{\begin{array}{l}
\varphi_{n}=v_{n}-2 m=2^{n} r-m\left(3 \cdot 2^{n}-1\right) \tag{20}\\
\varphi_{n}^{\prime}=v_{n}^{\prime}-(2 m+1)=2^{n} r-\left(m\left(3 \cdot 2^{n}-1\right)+\left(3 \cdot 2^{n}-2\right)\right) .
\end{array}\right.
$$

3.1. Conclusion

According to the results obtained in the previous section, we obtain the following conclusions:

1. If $p \neq 3$,then
(a) The rate of convergence of the sequence $\left(x_{n}\right)_{n}$ is of order φ_{n}.
(b) If $r-3 m>0$, then the number of iterations to obtain M correct digits is

$$
\begin{equation*}
n=\left[\frac{\ln \left(\frac{M-m}{r-3 m}\right)}{\ln 2}\right] \tag{21}
\end{equation*}
$$

2. If $p \neq 3$,then
(a) The rate of convergence of the sequence $\left(x_{n}\right)_{n}$ is of order φ_{n}^{\prime}.
(b) If $r-3(m+1)>0$, then the number of iterations to obtain M correct digits is

$$
\begin{equation*}
n=\left[\frac{\ln \left(\frac{M-(m+2)}{r-3(m+1)}\right)}{\ln 2}\right] . \tag{22}
\end{equation*}
$$

References

[1] A. Vimawala, p-adic Arithmetic Methods for Exact Computation of Rational Numbers, School of Electrical Engineering and Computer Science, Oregon State University. [Online] Available: http://cs.ucsb.edu/ koc/cs290g/project/2003/vimawala.pdf. June 2003.
[2] C.J. Zarowski, H.C. Card, On Addition and Multiplication with Hensel Codes, IEEE transactions on computers 39(12)(1990)14171423.
[3] C.k. Koc, A Tutorial on p-adic Arithmetic, Electrical and Computer Engineering. Oregon State University, Corvallis, Oregon 97331. Technical Report.[Online] Available: http://islab.oregonstate.edu/papers/r09padic.pdf. 2002.
[4] E.V Krishnamurthy, On the Conversion of Hensel Codes to Farey Rationals, IEEE Transactions on Computers 32(4)(1983) 331-337.
[5] F. B. Vej, P-adic Numbers, Aalborg University. Department Of Mathematical Sciences. [Online] Available: http://www.control.auc.dk/ jjl/oldpro/oldstu/mat3.ps. 2000.
[6] M. Knapp, C. Xenophotos, Numerical analysis meets number theory: using rootfinding methods to calculate inverses mod p^{n}, Appl. Anal. Discrete Math. 4 (2010) 23-31.
[7] S. Katok, p-adic analysis compared with real, Student Mathematical Library Vol. 37, American Mathematical Society, 2007.
[8] T. Zerzaihi, M. Kecies, M. Knapp, Hensel codes of square roots of p-adic numbers, Appl. Anal. Discrete Math. 4(2010) 32-44.
[9] T. Zerzaihi, M. Kecies, Computation of the Cubic Root of a p-adic Number, Journal of Mathematics Research 3(3)(2011)40-47.

[^0]: 2010 Mathematics Subject Classification. Primary 11E95 ; Secondary 34K28.
 Keywords. Newton method; Hensel's lemma; rate of convergence.
 Received: 05 November 2012; Revised 12 February 2013; Accepted: 16 February 2013
 Communicated by Eberhard Malkowsky
 Email addresses: kecmohamed@yahoo.fr (Kecies Mohamed), zerzaihi@yahoo.com (Zerzaihi Tahar)

