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Abstract. Matthews [12] introduced a new distance P on a nonempty set X, which he called a partial
metric. The purpose of this paper is to present some fixed point results for weakly contractive type
mappings in ordered partial metric space. An application to nonlinear fractional boundary value problem
is also presented.

1. Introduction and Preliminaries

The Banach contraction mapping principle is one of the pivotal results of analysis. It is widely considered
as the source of metric fixed point theory and its significance lies in its vast applicability in a number of
branches of mathematics.
The weakly contractive single-valued maps were first defined by Alber and Guerre-Delabrire in [2]. Here
we give a brief description of the basic known notations. If (E, ||.||) be a Banach space, a self-map F of E
is said to satisfy the Banach contraction principle if there exists a constant k with 0 ≤ k < 1 such that, for
x, y ∈ E,

||Fx − Fy|| ≤ k||x − y||.
As noted in introduction of [2], this inequality can be written in the form

||Fx − Fy|| ≤ ||x − y|| − q||x − y||,

where k = 1−q with q ∈ (0, 1]. The extension of the above inequality in the context of Banach spaces to what
are called weakly contraction maps is a natural one. A self-map F of E is said to be weakly contractive if

||Fx − Fy|| ≤ ||x − y|| − ψ(||x − y||)

for every x, y ∈ E, where ψ : [0,∞) → [0,∞) is a continuous and nondecreasing function such that it is
positive in (0,∞), ψ(0) = 0 and limt→∞ ψ(t) = ∞. This notation can easily be extended to a metric space E,
that is, a map F : E→ E is said to be weakly contractive if

d(Fx,Fy) ≤ d(x, y) − ψ(d(x, y))
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for all x, y ∈ E, where ψ : [0,∞)→ [0,∞) satisfies the above mentioned conditions.
Recently, there is a trend to weaken the requirement on the contraction by considering metric spaces
endowed with partial order. In [13], [18] the Banach contraction principle was discussed in a metric space
endowed with partial order. Also, existence of fixed point in partially ordered sets has been considered
recently in [1-13]. The study on the existence of fixed points for single valued increasing operators is
successful, the results obtained are widely used to investigate the existence of solutions to the ordinary
and partial differential equations (see[7], [10]). Recently Bhaskar and Lakshmikantham [3], Nieto and
Lopez [13], [14], Lakshmikantham and ćirić [11], Ran and Reurings [18] and Agarwal, El-Gebeily and
O’Regan [1] presented some new results for contraction in partially ordered metric spaces. Bhaskar and
Lakshmikantham [3] noted that their theorem can be used to investigate a large class of problems and have
discussed the existence and uniqueness of solution for a periodic boundary value problem.
In this paper we will define an analogical weakly contractive type condition and obtain some results in
ordered partial metric spaces.
In [4] authors were concerned with the existence and uniqueness of positive solutions for the following
nonlinear fractional boundary value problem

Dα
0+u(t) + f (t,u(t)) = 0, 0 ≤ t ≤ 1, 3 < α ≤ 4

u(0) = u′(0) = u′′(0) = u′′(1) = 0

where Dα
0+ denotes the standard Rieman-Liouville fractional derivative. Their results can be derived from

our fixed point theorems in partially ordered sets.

First, we recall some definitions of partial metric space and some properties of theirs [12], [15], [16] and
[19].
A partial metric on a nonempty set X is a function P : X × X→ R+ such that for all x, y, z ∈ X:
(p1) x = y⇔ P(x, x) = P(x, y) = P(y, y),
(p2) P(x, x) ≤ P(x, y),
(p3) P(x, y) = P(y, x),
(p4) P(x, y) ≤ P(x, z) +P(z, y) − P(z, z).

A partial metric space is a pair (X,P) such that X is a nonempty set and P is a partial metric on X. It is clear
that, if P(x, y) = 0, then from (p1) and (p2) x = y. But if x = y, P(x, y) may not be 0. A basic example of a
partial metric space is the pair (R+,P), whereP(x, y) = max{x, y} for all x, y ∈ R+. Other examples of partial
metric spaces which are interesting from a computational point of view may be found in [12].
Each partial metric P on X generates a T0 topology τP on X which has as a base the family open P-balls
{Bp(x, ϵ) : x ∈ X, ϵ > 0}, where Bp(x, ϵ) = {y ∈ X : P(x, y) < P(x, x) + ϵ} for all x ∈ X and ϵ > 0.
If P is a partial metric on X, then the function Ps : X × X→ R+ given by

Ps(x, y) = 2P(x, y) − P(x, x) − P(y, y)

is a metric on X.
Let (X,P) be a partial metric space.

A sequence {xn} in a partial metric space (X,P) converges to a point x ∈ X if and only if P(x, x) =
limn→∞P(x, xn).

A sequence {xn} in a partial metric space (X,P) is called a Cauchy sequence if there exists (and is finite)
limn,m→∞P(xn, xm).

A partial metric space (X,P) is said to be complete if every Cauchy sequence {xn} in X converges, with
respect to τp, to a point x ∈ X such that P(x, x) = limn,m→∞P(xn, xm).

A mapping F : X → X is said to be continuous at x0 ∈ X, if for every ϵ > 0, there exists δ > 0 such that
F(Bp(x0, δ)) ⊆ Bp(Fx0, ϵ).
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Lemma 1.1. Let (X,P) be a partial metric space.

(a) {xn} is a Cauchy sequence in (X,P) if and only if it is a Cauchy sequence in the metric space (X,Ps).
(b) A partial metric space (X,P) is complete if and only if the metric space (X,Ps) is complete. Furthermore,

limn→∞Ps(xn, x) = 0 if and only if

P(x, x) = lim
n→∞
P(xn, x) = lim

n,m→∞
P(xn, xm).

2. Main Results

Definition 2.1. Let ϕ : [0,∞)→ [0,∞) satisfy

(i) ϕ(0) = 0 and ϕ(t) > 0 for each t > 0.
(ii) ϕ is right lower semi-continuous, i.e. for any nonnegative nonincreasing sequence {rn}, lim infn→∞ ϕ(rn) ≥

ϕ(r), provided limn→∞ rn = r.
(iii) For any sequence {rn} with limn→∞ rn = 0, there exists a ∈ (0, 1) and n0 ∈ N such that ϕ(rn) ≥ arn for each

n ≥ n0.

Define Φ = {ϕ : ϕ satisfies(i) − (iii) above}.

Theorem 2.2. Let (X,≤) be a partially ordered set and suppose that there is a partial metric P on X such that (X,P)
is a complete partial metric space. Suppose T : X→ X is a continuous and nondecreasing mapping such that

P(Tx,Ty) ≤ P(x, y) − ϕ(P(x, y)), (1)

for all x, y ∈ X which are comparable, where ϕ ∈ Φ.
If there exists an x0 ∈ X with x0 ≤ Tx0, then there exists x ∈ X such that x = Tx. Moreover, P(x, x) = 0.

Proof. If Tx0 = x0, then the proof is finished, so suppose x0 , Tx0. Now let xn = Txn−1 for n = 1, 2, . . . . If
xn0 = xn0+1 for some n0 ∈N, then it is clear that xn0 is a fixed point of T. Thus assume xn , xn+1 for all n ∈N.
Notice that, since x0 ≤ Tx0 and T is nondecreasing, we have

x0 ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ xn+1 ≤ . . . .

Now since xn−1 ≤ xn we can use the inequality (1) for these points, then we have

P(xn+1, xn) = P(Txn,Txn−1)
≤ P(xn, xn−1) − ϕ(P(xn, xn−1))
< P(xn, xn−1),

it follows that pn = {P(xn+1, xn)} is a nonnegative nonincreasing sequence and hence possesses a limit p. If
p > 0, from the assumption (ii) of ϕ, there exists n0 ∈N such that

ϕ(pn) ≥ ϕ(p) > 0 for all n > n0.

In addition, we have
pn ≤ pn−1 − ϕ(pn−1) ≤ pn−1 − ϕ(p).

Taking the limit as n→∞, we have
p ≤ p − ϕ(p) < p,

this is a contradiction and hence we get p = 0.
Now, we show that {xn} is a Cauchy sequence. On the other hand, since limn→∞P(xn, xn−1) = 0, from the
assumption (iii) of ϕ there exists 0 < a < 1 and n0 ∈N such that

ϕ(P(xn, xn−1)) ≥ aP(xn, xn−1) for all n > n0.
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We have

P(xn+1, xn) ≤ P(xn, xn−1) − ϕ(P(xn, xn−1)) ≤ (1 − a)P(xn, xn−1). (2)

By this inequality, we get

P(xn+1, xn) ≤ (1 − a)P(xn, xn−1) ≤ · · · ≤ (1 − a)nP(x1, x0). (3)

Set λ = (1 − a). Therefore,

Ps(xn+1, xn) = 2P(xn+1, xn) − P(xn+1, xn+1) − P(xn, xn)
≤ 2P(xn+1, xn) +P(xn+1, xn+1) +P(xn, xn)
≤ 4λnP(x1, x0).

This shows that limn→∞P(xn+1, xn) = 0. Now we have

Ps(xn+k, xn) ≤ Ps(xn+k, xn+k−1) + · · · +Ps(xn+1, xn),

≤ 4λn+k−1P(x1, x0) + · · · + 4λnP(x1, x0),

= 4
λn(1 − λk)

1 − λ P(x1, x0),

≤ 4
λn

1 − λP(x1, x0).

This shows that {xn} is a Cauchy sequence in the metric space (X,Ps). Since (X,P) is complete then from
Lemma 1.1, the sequence {xn} is converges in the metric space (X,Ps), say limn→∞Ps(xn, x) = 0 for some
x ∈ X. Again from Lemma 1.1, we have

P(x, x) = lim
n→∞
P(xn, x) = lim

n,m→∞
P(xn, xm). (4)

Furthermore, since {xn} is a Cauchy sequence in the metric space (X,Ps), we have limn,m→∞Ps(xn, xm) = 0
and from (3) we have limn→∞P(xn, xn) = 0, thus from the definition Ps we have limn,m→∞P(xn, xm) = 0.
Therefore from (4) we have

P(x, x) = lim
n→∞
P(xn, x) = lim

n,m→∞
P(xn, xm) = 0.

Now we claim that Tx = x. Suppose P(x,Tx) > 0. Since T is continuous, then given ϵ > 0, there exists
δ > 0 such that T(Bp(x, δ)) ⊆ Bp(Tx, ϵ). Since P(x, x) = limn→∞P(xn, x) = 0, then there exists k ∈ N such that
P(xn, x) < P(x, x) + δ for all n ≥ k. Therefore, we have xn ∈ Bp(x, δ) for all n ≥ k. Thus Txn ∈ T(Bp(x, δ)) ⊆
Bp(Tx, ϵ) and so P(Txn,Tx) < P(Tx,Tx) + ϵ for all n ≥ k. This shows that limn→∞P(xn+1,Tx) = P(Tx,Tx).
Now

P(x,Tx) ≤ P(x, xn+1) +P(xn+1,Tx) − P(xn+1, xn+1)
≤ P(x, xn+1) +P(xn+1,Tx),

and letting n→∞, by (1) we have

P(x,Tx) ≤ P(Tx,Tx) ≤ P(x, x) − ϕ(P(x, x)) = 0

Thus P(x,Tx) = 0 and so x = Tx.

In the following theorem we remove the continuity of T:
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Theorem 2.3. Let (X,≤) be a partially ordered set and suppose that there is a partial metric P on X such that (X,P)
is a complete partial metric space. Suppose T : X→ X is a nondecreasing mapping such that

P(Tx,Ty) ≤ P(x, y) − ϕ(P(x, y)), (5)

for all x, y ∈ X which are comparable, where ϕ ∈ Φ. Also, the condition
{xn} is a increasing sequence with xn → x in X, then xn ≤ x for all n,
hold. If there exists an x0 ∈ X with x0 ≤ Tx0, then there exists x ∈ X such that x = Tx. Moreover, P(x, x) = 0.

Proof. As in the proof of Theorem 2.2, we can construct a sequence {xn} in X by xn = Txn−1 such that

x0 ≤ x1 ≤ · · · ≤ xn ≤ xn+1 ≤ . . . .

Also, we can show that {xn} is a Cauchy sequence in the metric space (X,Ps) and therefore there exists x ∈ X
such that

P(x, x) = lim
n→∞
P(xn, x) = lim

n,m→∞
P(xn, xm) = 0.

Now we claim that Tx = x. Suppose P(x,Tx) > 0, by the conditions of theorem we have

P(x,Tx) ≤ P(x, xn+1) +P(xn+1,Tx) − P(xn+1, xn+1)
≤ P(x, xn+1) +P(Txn,Tx)
≤ P(x, xn+1) +P(xn, x) − ϕ(P(xn, x)),

now letting n→∞, we have P(x,Tx) = 0.

In what follows, we give a sufficient condition for the uniqueness of the fixed point in Theorem 2.2 and
Theorem 2.3. This condition is

for every x, y ∈ X there exists a lower bound or an upper bound. (6)

In [7] it is proved that condition (6) is equivalent to

for x, y ∈ X there exists z ∈ X which is comparable to x and y. (7)

Theorem 2.4. Adding condition (7) to the hypothesis of Theorems 2.2 and 2.3 we obtain uniqueness of the fixed point
of T.

Proof. Suppose that there exists z, y ∈ X are different fixed point of T. Then P(z, y) > 0. Now we consider
the following two cases:

(i) If z and y are comparable, then Tnz = z and Tny = y are comparable for n = 0, 1, . . . . So we can use
the condition (1) then we have

P(z, y) = P(Tnz,Tny)

≤ P(Tn−1z,Tn−1y) − ϕ(P(Tn−1z,Tn−1y))
= P(z, y) − ϕ(P(z, y))
< P(z, y).

This is a contradiction.
(ii) If z and y are not comparable, then there exists x ∈ X comparable to z and y. Since T is nondecreasing,

then Tnx is comparable to Tnz = z and Tny = y for n = 0, 1, . . . . Moreover,

P(z,Tnx) = P(Tnz,Tnx)

≤ P(Tn−1z,Tn−1x) − ϕ(P(Tn−1z,Tn−1x))

= P(z,Tn−1x) − ϕ(P(z,Tn−1x))

< P(z,Tn−1x).
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This shows that P(z,Tnx) is nonnegative and nondecreasing sequence and so has a limit, say α ≥ 0.
From the last inequality we can obtain

α ≤ α − ϕ(α) < α,

and, hence α = 0. Similarly it can be proved limn→∞P(y,Tnx) = 0. Finally

P(z, y) ≤ P(z,Tnx) +P(Tnx, y) − P(Tnx,Tnx)
≤ P(z,Tnx) +P(Tnx, y),

and the taking limit as n→∞we have P(z, y) = 0. This is a contradiction to P(z, y) > 0.

Example 2.5. Let X = [0,+∞). Then (X,≤) is a partially ordered set with the natural ordering of real numbers.
Define P : X × X→ R by

P(x, y) = max{x, y}.

Then (X,P) is a complete partial metric space. Define T : X→ X by

Tx =
{

0, i f 0 ≤ x < 1,
x+1

3 , i f x ≥ 1.

It is clear that T is a nondecreasing mapping. Let ϕ : [0,∞)→ [0,∞) be defined as

ϕ(t) =
1
3

t, for t ∈ [0,∞).

It is easy to see that ϕ satisfies all of conditions of Definition 2.1.
Now, we verify the inequality (5) of Theorem 2.3. We consider the following cases:

Case-1 : x, y ∈ [0, 1) and x ≤ y:
Then,
P(Tx,Ty) = 0 and obviously (5) is satisfied.

Case-2 : x, y ≥ 1 and x ≤ y:
Then,

P(Tx,Ty) = P(
x + 1

3
,

y + 1
3

)

=
y + 1

3

≤ x + y
3

≤ 2
3

max{x, y}

= max{x, y} − 1
3

max{x, y}

= P(x, y) − ϕ(P(x, y)).

Case-3 : x ∈ [0, 1), y ≥ 1 and x < y:
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Then,

P(Tx,Ty) = P(0,
y + 1

3
)

=
y + 1

3

≤ 2
3

y

= max{x, y} − 1
3

max{x, y}

= P(x, y) − ϕ(P(x, y)).

Thus it is verified that the nondecreasing mapping T satisfies all the conditions of Theorem 2.3. Here x = 0 is the
unique fixed point of T in X

3. Application

Consider the nonlinear boundary value problem of fractional order:

Dα
0+u(t) + f (t,u(t)) = 0, 0 ≤ t ≤ 1, 3 < α ≤ 4 (8)

with
u(0) = u′(0) = u′′(0) = u′′(1) = 0

The aim of this section is to present a recent existence theorem due to Caballero, Harjani and Sadarangani
[4] for a solution of the above problem which can be derived by our Theorem 2.3.
Notice that the Banach space C[0, 1] can be equipped with a partial order given by

x, y ∈ C[0; 1], x ≤ y⇔ x(t) ≤ y(t), for t ∈ [0, 1]

which satisfies the condition
if {xn} ⊆ C[0, 1] is a increasing sequence with xn → x in X, then xn ≤ x for all n. Moreover, for x, y ∈ C[0, 1],
as the function max(x, y) ∈ C[0, 1], (C[0, 1],≤) satisfies condition (7).
Here, we can consider the classical metric on C[0, 1] as a partial metric:

P(x, y) = sup
0≤t≤1
{|x(t) − y(t)|}.

By Ψ we denote the class of functions ψ : [0,+∞) → [0,+∞) satisfying that I − ψ ∈ Φ, where I denotes the
identity mapping on [0,+∞).

Theorem 3.1. [4] Problem (8) has unique positive solution u(t) if the following conditions are satisfied:

(i) f : [0, 1] × [0,∞)→ [0,∞) is continuous and nondecreasing respect to the second argument;
(ii) There exists t0 ∈ [0, 1] such that f (t0, 0) > 0;

(iii) There exists 0 < λ ≤ (α−2)Γ(α+1)
2 , such that, for x, y ∈ [0,∞) with y ≥ x and t ∈ [0, 1],

f (t, y) − f (t, x) ≤ λ.ψ(y − x),

where ψ ∈ Ψ.

Proof. We omit the proof. For details, see [4].
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