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Abstract. The aim of this article is to investigate nonnegativity of the inverse, the Moore-Penrose inverse
and other generalized inverses, in the setting of indefinite inner product spaces with respect to the indefinite
matrix product. We also propose and investigate generalizations of the corresponding notions of matrix
monotonicity, namely, ◦-(rectangular) monotonicity, ◦-semimonotonicity and ◦-weak monotonicity and its
interplay with nonnegativity of various generalized inverses in the same setting.

1. Introduction

An indefinite inner product in Cn is a conjugate symmetric sesquilinear form [x, y] together with the
regularity condition that [x, y] = 0 ∀ y ∈ Cn only when x = 0. Associated with any indefinite inner product
is a unique invertible Hermitian matrix J (called a weight) with complex entries such that [x, y] = ⟨x, Jy⟩,
where ⟨., .⟩denotes the Euclidean inner product onCn and vice versa. Motivated by the notion of Minkowski
space (as studied by physicists), we also make an additional assumption on J, namely, J2 = I. It can be
shown that this assumption on J is not really restrictive as the results presented in this manuscript can
also be deduced without this assumption on J, with appropriate modifications. It should be remarked that
this assumption also allows us to compare our results with the Euclidean case, apart from allowing us to
present the results with much algebraic ease.

Investigations of linear maps on indefinite inner product spaces employ the usual multiplication of
matrices which is induced by the Euclidean inner product of vectors (See for instance [3]). This causes a
problem as there are two different values for the dot product of vectors. To overcome this difficulty, Kamaraj,
Ramanathan and Sivakumar introduced a new matrix product called indefinite matrix multiplication and
investigated some of its properties in [19]. More precisely, the indefinite matrix product of two matrices A
and B of sizes m× n and n × l complex matrices, respectively, is defined to be the matrix A ◦ B := AJnB. The
adjoint of A, denoted by A[∗], is defined to be the matrix JnA∗ Jm, where Jm and Jn are weights in the appropriate
spaces. Many properties of this product are similar to that of the usual matrix product (refer [19]). Moreover,
it not only rectifies the difficulty indicated earlier, but also enables us to recover some interesting results in
indefinite inner product spaces in a manner analagous to that of the Euclidean case. Kamaraj, Ramanathen
and Sivakumar also established in [19] that in the setting of indefinite inner product spaces, the indefinite
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matrix product is more appropriate than the usual matrix product. Recall that the Moore-Penrose inverse

exists if and only if rank(AA∗) = rank(A∗A) = rank(A). If we take A =
(
1 1
1 1

)
, J =

(
1 0
0 −1

)
, then AA[∗] and

A[∗]A are both the zero matrix and so rank(AA[∗]) < rank(A), thereby proving that the Moore-Penrose inverse
doesn’t exist with respect to the usual matrix product. However, it can be easily verified that with respect
to the indefinite matrix product, rank(A ◦ A[∗]) = rank(A[∗] ◦ A) = rank(A). Thus, the Moore-Penrose inverse
of a matrix with real or complex entries exists over an indefinite inner product space with respect to the
indefinite matrix product, whereas a similar result is false with respect to the usual matrix multiplication.
It is therefore really pertinant to extend the study of generalized inverses to the setting of indefinite inner
product spaces, with respect to the indefinite matrix product. It should be remarked that the Moore-Penrose
inverse in an indefinite inner product space was earlier discussed by Kamaraj and Sivakumar (see [9] and
the references cited therein). It was also pointed out in [9] that the matrix A in the above example fails to
have a Moore-Penrose inverse with respect to the usual matrix product in indefinite inner product spaces.
It should also be pointed out that the existence of the Moore-Penrose inverse in Krein spaces was studied
recently by Mary [14]. Let us point out finally that nonnegativity of the Moore-Penrose inverse as well as
a generalization of Farkas’ alternative in indefinite inner product spaces were also studied by Ramanathan
and Sivakumar [17, 18].

The aim of this manuscript is to propose notions of matrix monotonicity in indefinite inner product
spaces with respect to the indefinite matrix product with a view to generalize the existing notions and
characterizations of generalized inverse nonnegativity to the setting of indefinite inner product spaces. A
good source for the theory of generalized inverse nonnegativity in Euclidean spaces is the monograph by
Berman and Plemmons [2]. The paper is organized as follows. We recall the basic definitions and facts in
the next section. In particular, we recall the definition of an indefinite product of two matrices / vectors
(Definition 2.1) and the adjoint with respect to this multiplication in Definition 2.2. The definions of the
range and the null space, denoted by Ra(.) and Nu(.), respectively, invertibility, the Moore-Penrose inverse,
all with respect to this indefinite product, and its properties are given next in Definitions 2.3, 2.4, 2.5 and
2.6. The definitions of a cone, its dual (with respect to the Euclidean inner product) and nonnegativity of
a matrix with respect to two cones with respect to the indefinite matrix product are given next. Section 3
contains the main results of this paper. We begin with inverse nonnegativity and monotonicity, denoted by
◦-monotonicity (with respect to the indefinite matrix product). One of the main result in this connection is
Theorem 3.2. An interesting result in the theory of positive operators on ordered Banach spaces is that a
doubly power bounded positive operator on a finite dimensional Banach lattice has a positive inverse [1].
A generalization of this to indefinite inner product spaces is presented next (Theorem 3.4). One of the most
well studied notions in the theory of nonnegative matrices is that of splittings. Several notions of splittings
of matrices were studied in connection with nonnegativity of various generalized inverses. One such
notion is that of B-splittings [16], which was later on generalized to the setting of ordered Banach spaces by
Weber [20] (Refer Theorem 3.8 in Section 3). This notion has an obvious generalization to indefinite inner
product spaces (Definition 3.7 and this is taken up next in connection with inverse nonnegativity (Theorem
3.11). It turns out that a complete generalization of Weber’s theorem to the indefinite setting does not hold.
We then discuss ◦-rectangular monotonicity, a natural generalization of rectangular monotonicity in the
Euclidean setting. We prove an analogue of Mangasarian’s theorem, namely, Theorem 3.16 on the existence
of a nonnegative left inverse when the matrix is rectangular monotone (Refer Theorem 1, [13]). The case
of nonnegativity of the Moore-Penrose inverse A[†] is taken up next and three characterizations regarding
the same are presented (Refer Theorems 3.19, 3.22 and 3.23). A key ingredient in the proof of Theorem 3.23
is that if A is nonnegative with respect to the indefinite matrix product, then A[∗] is also nonnegative (as in
the Euclidean case), when the cones are self-dual. We prove this result also (see Lemma 3.20). The case of
◦-weak monotonicity is also studied in connection with the existence of a {1}-inverse that is nonnegative on
the range space of A. A generalization of a structure theorem for weak monotone matrices similar to the
Euclidean setting, namely, that a weak monotone matrix A with a nonnegative rank factorization satisfies
the equation XAY = I for some nonnegative matrices X and Y is also generalized. Wherever possible,
examples are given to illustrate the results and validitity of the assumptions made. The manuscript ends
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with a few concluding remarks.

2. Notations, Definitions and Preliminaries

We first recall the notion of an indefinite multiplication of matrices. We refer the reader to [19], wherein
various properties and also advantages of this product have been discussed in detail.

Definition 2.1. Let A and B be m × n and n × l complex matrices, respectively. Let Jn be an arbitrary but fixed
n × n complex matrix such that Jn = J∗n = J−1

n . An indefinite matrix product of A and B (relative to Jn) is defined by
A ◦ B = AJnB.

Note that there is only one value for the indefinite product of vectors /matrices. When Jn = In, the above
product becomes the usual product of matrices.

Definition 2.2. Let A be an m×n complex matrix. The adjoint A[∗] of A (relative to Jn, Jm) is defined by A[∗] = JnA∗ Jm.

When the dimensions are equal, the subscripts n,m will be dropped. A[∗] satisfies the following identities :
[Ax, y] = [x,A[∗]y] and [A ◦ x, y] = [x, (I ◦ A ◦ I)[∗] ◦ y].

Definition 2.3. Let A be an m × n complex matrix. Then the range space Ra(A) is defined by Ra(A) = {y = A ◦ x ∈
Cm : x ∈ Cn} and the null space Nu(A) of A is defined by Nu(A) = {x ∈ Cn : A ◦ x = 0}.

The null and range spaces with respect to the usual product will be denoted by N(A) and R(A), respec-
tively. It follows at once that Ra(A) = R(A) and Nu(A[∗]) = N(A∗).

Definition 2.4. Let A ∈ Cn×n. A is said to be J-invertible if there exists X ∈ Cn×n such that A ◦ X = X ◦ A = J.

It can be easily proved that A is J-invertible if and only if A is invertible and in this case the J-inverse
is given by A[−1] = JA−1J. We now pass on to the notion of the Moore-Penrose inverse in indefinite inner
product spaces.

Definition 2.5. For A ∈ Cm×n, a matrix X ∈ Cn×m is called the Moore-Penrose inverse if it satisfies the following
equations : A ◦ X ◦ A = A,X ◦ A ◦ X = X, (A ◦ X)[∗] = A ◦ X, (X ◦ A)[∗] = X ◦ A.

Such an X will be denoted by A[†]. As was pointed out in the introduction, it can be shown that A[†] exists if
and only if rank(A) = rank(A◦A[∗]) = rank(A[∗] ◦A). The Moore-Penrose has the representation A[†] = JnA†Jm.
We also have, Ra(A ◦A[†]) = Ra(A) and Ra(A[†] ◦A) = Ra(A[∗]) (see for instance Lemma 2.1(v), [18].) One can
similarly define the notion of the group inverse in indefinite inner product spaces.

Definition 2.6. For A ∈ Cn×n,X ∈ Cn×n is called the group inverse of A if it satisfoes the equations : A ◦ X ◦ A =
A,X ◦ A ◦ X = X,A ◦ X = X ◦ A.

As in the Euclidean setting, it can be proved that the group inverse exists if and only if rank(A) = rank(A[2])
and is denoted by A[#]. In particular, if A = A[∗], then A[#] exists. However, an analagous formula for the
group inverse similar to that of the Moore-Penrose inverse does not hold in the indefinite setting. Similarly,
one can have a generalization of {1}-inverses and left inverses in the above setting : An n × m matrix X is
said to be a {1}-inverse if it satisfies the equation A ◦ X ◦ A = A and a left inverse if it satisfies the equation
X ◦ A = Jn. Throughout this manuscript, we shall work with matrices over the field of real numbers. A
subset P of a vector space is called a cone if αP ⊆ P for all α ≥ 0 and P + P = P. P is said to be pointed if
P ∩ −P = {0} and generating if V = P − P. For a cone P in a Hilbert space H, the dual cone of P, denoted by
P∗, is defined by

P∗ := {x ∈ H : ⟨x, y⟩ ≥ 0 ∀ y ∈ P}.
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A cone P is said to be acute if P ⊆ P∗, self-dual if P∗ = P. The nonnegative orthant Rn
+ of the Euclidean

space Rn, the ice-cream cone PI := {x ∈ Rn : x1 ≥ 0, x2
1 ≥ (x2

2 + . . . + x2
n)} and the P0 cone defined by

P0 := {x ∈ R3 : x1 ≥ 0, x3 ≥ 0, x2
2 ≤ 2x1x3} are examples of pointed, self-dual (closed) generating cones. The

P0 cone was introduced by Ben-Israel and Charnes in connection with interval linear programs. It is to be
noted that the ice-cream cone satisfies xt Jnx ≥ 0 where, Jn = dia1(1,−1, . . .− 1), whereas the P0 satisfies xt J3x
for J3 = dia1(1,−1, 1). Finally, given closed cones P1 and P2 in Rn and Rm, respectively, an m × n matrix A is
said to be nonnegative with respect to the cones P1 and P2 with respect to the indefinite matrix product, if
A ◦ P1 ⊆ P2.

3. Main Results

We present the main results in this section. This section has four parts, all of them dealing with
nonnegativity with respect to the indefinite matrix product as introduced in the previous section. We start
with the existence of a nonnegative inverse. The following is the definition of ◦-monotonicity for a square
matrix A.

Definition 3.1. A square matrix A is said to be ◦-monotone if A ◦ x ∈ P2 =⇒ x ∈ P1, where P1 and P2 are closed
convex cones in Rn and Rm, respectively.

Let us observe that the above definition is equivalent to saying that AJ is monotone. We now have the
following simple characterization of inverse nonnegativity.

Theorem 3.2. Let P1 and P2 be closed convex cones inRn andRm, respectively, with P1 being pointed and generating.
Then, A[−1] ◦ P2 ⊆ P1 if and only if A is ◦-monotone.

Proof. As remarked above, if A is ◦-monotone, then AJ is monotone and hence A is invertible. Thus, A[−1]

exists and is given by A[−1] = JA−1J. Note that we have used the fact that the cone P1 is pointed in deducing
the above. Now, monotonicity of AJ implies that (AJ)−1(P2) ⊆ P1. Therefore, for any x ∈ P2,A[−1] ◦ x =
JA−1x ∈ P1, proving inverse nonnegativity of A in the indefinite setting. The converse can be proved in a
similar manner.

Example 3.3. Let A =
(
1 0
1 0

)
and J =

(
1 0
0 −1

)
. By taking P1 = {x : x1 ≥ 0} and P2 = R2

+, we see that AJ is

monotone, but not invertible. Therefore, pointedness of the cone P1 is crucial in the above example.

A bounded linear operator A between Banach spaces is said to be power bounded if sup
n∈N
{||An||} < ∞.

An invertible bounded linear operator A with a bounded inverse is said to be doubly power bounded if
sup
n∈Z
{||An||} < ∞. A well known result in the theory of positive operators on Banach lattices is that a doubly

power bounded positive operator on a finite dimensional Banach lattice has a positive inverse. We prove
below a result similar to the above stated result, in the setting of indefinite inner product spaces, with
respect to the indefinite matrix product. Let us observe that for an invertible A and any integer n, there are
n− 1 occurrances of J and n occurrances of A in A[n]. Therefore, ||A[n]|| ≤ ||J||n−1||A||n = ||A||n. This means that
if sup

n∈Z
{||A||n} < ∞, then sup

n∈Z
{||A[n]||} < ∞. We then have the following theorem.

Theorem 3.4. Let P1 and P2 be self-dual cones in Rn and let A be an invertible matrix such that A ◦ P1 ⊆ P2.
Assume that sup

m∈Z
{||A||m} < ∞. Then, A[−1] ◦ P2 ⊆ P1.

Proof. It follows from A ◦ P1 ⊆ P2 that JA∗(P2) ⊆ P1 (recall that if P1 and P2 are self-dual cones in Rn and
Rm, respectively, and if A(P1) ⊆ P2, then A∗(P2) ⊆ P1. Notice that ||(JA∗)m|| ≤ ||J||m||A||m = ||A||m. Therefore,
sup
m∈Z
{||(JA∗)m||}

≤ sup
m∈Z
{||Am||} < ∞. Thus, JA∗ is doubly power bounded and hence (JA∗)−1(P1)

⊆ P2 which, in turn is equivalent to saying that (JA−1)(P2) ⊆ P1. It is now easy to verify that A[−1]◦P2 ⊆ P1.
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The following example shows that the assumption sup
m∈Z
{||A||m} < ∞ in the above theorem cannot be

dispensed with.

Example 3.5. Let J =
(
0 1
1 0

)
,A =

(
1 1
0 1

)
. Take P1 = P2 = R2

+. It is obvious that for any x ∈ P1,AJx ∈ P2, thereby

proving that A◦P1 ⊆ P2. Noting that ||A|| ≥ sup
i, j
|ai j| = 1, we see that sup

m∈Z
{||A||m} ≮ ∞. Also, note that JA∗ =

(
1 1
1 0

)
which implies that ||JA∗|| ≥ 1. Therefore, JA∗ cannot be doubly power bounded. It is easy to see that JA−1 =

(
0 1
1 −1

)
,

and hence JA−1(P2) * P1, proving that A[−1] ◦ P2 * P1.

The following definition is well known in the literature (refer Definition 3.1, [20]).

Definition 3.6. For a square matrix A, a decomposition A = U − V is called positive, if U ≥ 0,V ≥ 0 (in this case,
the operator A is regular), positive regular, if it is positive, U−1 exists and U−1 ≥ 0, and a B-decomposition, if it is
positive and satisfies the conditions :
(a) U−1 exists
(b) VU−1 ≥ 0
(c) Ax ≥ 0,Ux ≥ 0 =⇒ x ≥ 0.

A natural generalization of the above definition, with respect to the indefinite matrix product is given
below. In what follows, we shall assume that P is a pointed generating cone inRn (and hence has non-empty
interior).

Definition 3.7. Let P be a pointed generating cone in Rn. For a square matrix A, a decomposition A = U − V is
called ◦-positive, if U ◦ P ⊆ P,V ◦ P ⊆ P, ◦-positive regular, if it is ◦-positive, U[−1] exists and U[−1] ◦ P ⊆ P, and a
◦-B-decomposition, if it is ◦-positive and satisfies the conditions :
(a) U[−1] exists
(b) V ◦U[−1] ◦ P ⊆ P
(c) A ◦ x ∈ P,U ◦ x ∈ P =⇒ x ∈ P.

The following result on positive invertibility is due to Weber.

Theorem 3.8. (Theorem 3.4, [20]) Let (X,X+, ||.||) be an ordered Banach space with a normal cone X+ that satisfies
the condition int(X+) , ϕ. Let A : X −→ X be a continuous linear operator. Consider the conditions
(i) A is positively intertible,
(ii) X+ ⊆ A(X+),
(iii) there exists x0 ∈ X+ such that Ax0 ∈ int(X+),
(iv) ρ(VU−1) < 1 (if A = U − V is a decomposition such that U−1 exists).

Then, (i) =⇒ (ii) =⇒ (iii). If A possesses a B-decomposition, then (i) - (iv) are equivalent.

Before proving a generalization of the above theorem in indefinite inner product spaces, we state two
results in the theory of positive operators on Banach lattices.

Theorem 3.9. (Theorem 25.4, [10]) Let (X,X+, ||.||) be an ordered Banach space with a normal cone having non-empty
interior. Let C and B be two continuous linear operators on X such that (B − C)(X+) ⊆ X+ and that B is positively
invertible. Then, C is positively invertible if and only if C(X+) ∩ int(X+) is non-empty.

Theorem 3.10. (Theorem 2.3 (i), [20]) Let (X,X+, ||.||) be an ordered Banach space and C a bounded linear operator
on X such that C(X+) ⊆ X+. If ρ(C) < 1, then I − C is positively invertible. The converse is true if the cone X+ is
normal and reproducing.

We now present a partial generalization of Theorem 3.8 to indefinite inner product spaces.
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Theorem 3.11. Let P be a pointed cone in Rn that makes it into a Riesz space (so that the cone P is closed, normal
and generating). Let A be an n × n matrix. Consider the following statements :
(1) A[−1] ◦ P ⊆ P
(2) P ⊆ A ◦ P
(3) There exists x0 ∈ P such that A ◦ x0 ∈ int(P)
(4) ρ(V ◦U[−1]) < 1 (if A = U − V is a decomposition such that U[−1] exists).

Then, (1) =⇒ (2) =⇒ (3). If A = U − V is a ◦-B-decomposition such that JVU−1 = VU−1J, then (3) =⇒ (4).

Proof. (1) =⇒ (2) : From A[−1] ◦ P ⊆ P, we see that A ◦A[−1] ◦ P ⊆ A ◦ P, which is equivalent to statement (2).
(2) =⇒ (3) : If u ∈ int(P), then u ∈ A ◦ P and so u = A ◦ x0 for some x0 ∈ P. Thus, (3) holds.

Suppose A = U−V is a ◦-B-decomposition of A. Then, U ◦P ⊆ P,V ◦P ⊆ P,U[−1] exists, V ◦U[−1] ◦P ⊆ P
and A ◦ x ∈ P,U ◦ x ∈ P =⇒ x ∈ P. Taking C := V ◦ U[−1], we see that A = (J − C) ◦ U. Also note that
C ◦ P ⊆ P ⇐⇒ VU−1(P) ⊆ P.
(3) =⇒ (4) : By the above remark, C ◦ P ⊆ P if and only if VU−1(P) ⊆ P. Since A = (J − C) ◦ U, we see
that A ◦ x0 ∈ int(P) for some x0 ∈ P is equivalent to (J − C) ◦ y0 ∈ int(P) for some y0 ∈ P. (Here we have
used the fact that A = U − V is a ◦-B-decomposition, and hence y0 := U ◦ x0 ∈ P). After simplification, we
see that A ◦ x0 ∈ int(P) for some x0 ∈ P if and only if there exists y0 ∈ P such that (I − VU−1)y0 ∈ int(P).
Also, nonnegativity of VU−1 is equivalent to nonnegativity of I − (I −VU−1). It now follows from Theorem
3.9 that I − VU−1 is positively invertible; moreover, from Theorem 3.10, we see that ρ(VU−1) < 1. Finally,
ρ(V ◦U[−1]) = ρ(VU−1 J) ≤ ρ(VU−1)ρ(J) = ρ(VU−1) < 1.

The following is an example to show that (3) =⇒ (4) cannot be deduced without the commutativity of J
and VU−1.

Example 3.12. Let J =
(
0 1
1 0

)
and A =

(
0 1

1/4 −1

)
. Let P be the nonnegative orthant of R2, which is a pointed,

generating self-dual cone with non-empty interior. By taking x = (1, 16)t ∈ P, we see that A ◦ x ∈ int(P). Consider

the splitting A = U−V, where U =
(

0 1
1/4 0

)
and V =

(
0 0
0 1

)
. It is easy to see that this is a ◦-B-splitting of A. Also,

it can be easily verified that VU−1J , JVU−1. However, ρ(V ◦U[−1]) = 1.

As the following example shows, the implication (4) =⇒ (1) need not hold good even if A has a ◦-B-
decomposition with ρ(V ◦U[−1]) < 1.

Example 3.13. Let J =
(
0 1
1 0

)
. Consider the matrix A =

(
−1/2 0

1 −1/2

)
. Consider the decomposition U − V of A,

where U = J and V =
(
1/2 1
0 1/2

)
. Observe that, U ◦ R2

+ ⊆ R2
+,V ◦ R2

+ ⊆ R2
+ and VU−1(R2

+) ⊆ R2
+. Moreover,

A ◦ x ∈ R2
+,U ◦ x ∈ R2

+ =⇒ x = 0 ∈ R2
+. Thus, A has a ◦-B-decomposition. Now, JA−1 = 4

(
−1 −1/2
−1/2 0

)
, and

hence A[−1] ◦R2
+ * R

2
+. Finally, observe that ρ(VU−1J) = ρ(V) = 1/2 < 1.

We now pass on to the case of a nonnegative left inverse. The notion of monotonicity can be generalized
to rectangular matrices with a view to investigate the existence of a one sided inverse. This notion, called
rectangular monotonicity, is generalized to the indefinite setting below.

Definition 3.14. An m × n matrix is said to be ◦-rectangular monotone if A ◦ x ∈ P2 =⇒ x ∈ P1, where P1 and P2
are closed convex cones in Rn and Rm, respectively.

A well known result of Mangasarian (Refer Theorem 1, [13]) is that, over the nonnegative orthants if an
m × n matrix A is rectangular monotone, then it has a nonnegative left inverse. In an attempt to generalize
this to more general cones (possibly) in infinite dimensional real Hilbert spaces, Kulkarni and Sivakumar
proved the following :
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Theorem 3.15. (Theorem 2.26, [11])Let H1 and H2 be Hilbert spaces with cones P1 and P2, respectively, with P1
generating and P2 self-dual. Suppose that there exists an orthonormal basis {uα : α ∈ I}, I an index set, of H1 with
uα ∈ P1 for all α ∈ I. Let A be a bounded operator with closed range such that N(A∗) + P2 is closed. Then, A is
rectangular monotone if and only if there exists a bounded operator Y such that YA = I with Y(P2) ⊆ P1.

We now have the following generalization of the above theorem in the setting of indefinite inner product
spaces.

Theorem 3.16. Let P1 and P2 be closed cones in Rn and Rm, respectively, such that P1 is generating, P2 is self-dual
and that Nu(A[∗])+ P2 is closed. Further, assume that there exists an orthonormal basis {u1, . . . , un} for Rn such that
ui ∈ P1, for i = 1, . . . , n. Then, A is ◦-rectangular monotone if and only if there exists an n × m matrix X such that
X ◦ A = Jn and such that X ◦ P2 ⊆ P1.

Proof. If A is ◦-rectangular monotone, then AJn is rectangular monotone. From Theorem 3.15, we infer that
AJn has a nonnegative left inverse, say, Y; that is, YAJn = In and Y(P2) ⊆ P1. Note that Nu(A[∗]) + P2 =
N(A∗) + P2. Let X := YJm. Then, X ◦ A = YJmJmA = Jn. Moreover, for any x ∈ P2, X ◦ x = YJmJmx = Yx ∈ P1.
Thus, there exists an X such that X ◦ A = Jn with X ◦ P2 ⊆ P1. The converse is obvious.

Remark 3.17. It is clear that if A is ◦-rectangular monotone, then A has a left inverse, and hence rank(A) = n.
Remark 2.19 in [11], following Theorem 3.15 shows that the assumption on the closedness of Nu(A[∗])+ P2 cannot be
dispensed with.

We now take up the case of ◦-semimonotonicity and its interplay with nonnegativity of A[†] in the
indefinite setting. An m × n matrix is said to be semimonotone if Ax ∈ P2 + N(A∗), x ∈ R(A∗) =⇒ x ∈ P1. It
can then be proved that the following three statements are equivalent :
(1) A†(P2) ⊆ P1, (2) A is semimonotone and (3) Ax ∈ AA†(P2), x ∈ R(A∗) =⇒ x ∈ P1 (Refer Theorem 3.2, [11]).
We now present a generalization of the above to the indefinite setting.

Definition 3.18. An m × n matrix is said to be ◦-semimonotone if A ◦ x ∈ P2 +Nu(A[∗]), x ∈ Ra(A[∗]) =⇒ x ∈ P1.

It is easy to see that the above definition is equivalent to semimonotonicity of AJn. We therefore have
the following theorem.

Theorem 3.19. Let P1 and P2 be closed cones in Rn and Rm, respectively. Then, the following two statements are
equivalent :
(1) A is ◦-semimonotone.
(2) A[†] ◦ P2 ⊆ P1.

Proof. (1) =⇒ (2) : If A is ◦-semimonotone, then AJn is semimonotone and hence (AJn)†(P2) ⊆ P1 which, is
the same as saying JnA†(P2) ⊆ P1. Therefore, for any x ∈ P2, A[†] ◦ x = JnA† Jm Jmx = JnA†x ∈ P1, thereby
proving nonnegativity of A[†] with respect to the indefinite matrix product.
(2) =⇒ (1) : Suppose A[†] ◦ P2 ⊆ P1. Now, A[†] ◦ P2 ⊆ P1 is equivalent to AJn being semimonotone. This,
in turn, is equivalent to AJnx ∈ P2 + N(A∗), x ∈ R((AJn)∗) =⇒ x ∈ P1. Noting that R(JnA∗) = Ra(A[∗]) and
N(A∗) = Nu(A[∗]), we see that A is ◦-semimonotone.

We now present two more characterizations of nonnegativity of A[†] with respect to the indefinite
product. It is a well known result that if P1 and P2 are self-dual cones in Hilbert spaces H1 and H2,
respectively, and if A is a bounded operator such that A(P1) ⊆ P2, then A∗(P2) ⊆ P1. We now generalize this
to indefinite inner product spaces and with respect to the indefinite matrix product.

Lemma 3.20. Let P1 and P2 be self-dual cones in Rn and Rm, respectively. Let A be an m × n matrix such that
A ◦ P1 ⊆ P2. Then, A[∗] ◦ P2 ⊆ P1.
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Proof. Let y ∈ A[∗] ◦ P2. Then y = A[∗] ◦ x, x ∈ P2. Therefore, for any u ∈ P1, ⟨u, y⟩ = ⟨u,A[∗] ◦ x⟩
= ⟨u, JnA∗ JmJmx⟩
= ⟨u, JnA∗x⟩
= ⟨AJnu, x⟩
= ⟨v, x⟩ ≥ 0, where v = A ◦ u ∈ P2. (Here we have used the assumption that A ◦ P1 ⊆ P2 and P2 is self-dual).
Therefore, y ∈ P∗1 = P1, as P1 is self-dual. Thus, A[∗] ◦ P2 ⊆ P1.

The following example shows that self-duality of the underlying cones is essestial in the above lemma.

Example 3.21. Consider R2 with the cone P := {x ∈ R2 : x1 ≥ 0}. The dual of this cone is P∗ := {x ∈ R2 : x1 ≥

0, x2 = 0}. Hence, the cone P is not self-dual. Now, let P1 = P2 = P and let A and J be the matrices
(
1 0
1 0

)
and(

1 0
0 −1

)
, respectively. Then, AJ = A. For any x ∈ P1,A ◦ x = (x1, x1)t ∈ P2 and so A ◦ P1 ⊆ P2. On the other

hand, A[∗], which is given by
(
1 −1
0 0

)
is not nonnegative, since for x = (1,−2)t ∈ P2,A[∗] ◦ x = (−1, 0)t < P1. Thus,

A[∗] ◦ P2 * P1.

We now present two characterizations of nonnegativity of A[†] with respect to the indefinite product.
The first of these is a generalization of Theorem 3.4 in [7] and the latter is a generalization of Theorem 3.6
in the same.

Theorem 3.22. Let P1 and P2 be closed cones in Rn and Rm, respectively, and let A be an m × n matrix such that
A◦P1 ⊆ P2. If A satisfies the inclusion relation P2 ⊆ A◦P1+Nu(A[∗]) and if A[†] ◦A◦P1 ⊆ P1, then A[†] ◦P2 ⊆ P1.
The converse is also true.

Proof. Let x ∈ P2 and y = A[†] ◦ x. Then, x = A ◦ u + v,u ∈ P1, v ∈ Nu(A[∗]). Notice that v ∈ Nu(A[∗]) =⇒ v ∈
Nu(A[†]). Therefore, y = A[†] ◦ x = A[†] ◦ A ◦ u ∈ P1, by assumption.

Conversely, suppose A[†] ◦ P2 ⊆ P1. Since A ◦ P1 ⊆ P2, it follows that A[†] ◦ A ◦ P1 ⊆ P1. That
P2 ⊆ A ◦ P1 + Nu(A[∗]) follows from the lemma on linear equations, namely : For an m × n matrix A and a
b ∈ Rm, the linear equation A ◦ x = b is solvable if and only if b ∈ Ra(A), in which case the general solution
is given by x = A[†] ◦ b + v, v ∈ Nu(A) (Refer Lemma 2.2, [18]).

We now present the second characterization of nonnegativity of A[†].

Theorem 3.23. Let P1 and P2 be self-dual cones in Rn and Rm, respectively. Let A be an m × n matrix such that
A ◦ P1 ⊆ P2. If (A ◦ A[∗])[†] ◦ P2 ⊆ P2, then A[†] ◦ P2 ⊆ P1. The converse is also true.

Proof. Let x ∈ P1. Since A ◦ P1 ⊆ P2,A[†] ◦ A ◦ x ∈ A[†] ◦ P2. But (Jn − A[†] ◦ A) ◦ x ∈ Nu(A). Then,
x = A[†] ◦ A ◦ x + (Jn − A[†] ◦ A) ◦ x ∈ A[†] ◦ P2 + Nu(A). Thus, P1 ⊆ A[†] ◦ P2 + Nu(A). Therefore for
x ∈ P1, we have that (A[†])[∗] ◦ x = (A[∗])[†] ◦ x = (A[∗])[†] ◦ (A[†] ◦ y + z), where y ∈ P2, z ∈ Nu(A). Now,
(A[∗])[†] ◦A[†] ◦ y = (AA∗)†y. On the other hand, for y ∈ P2, (A ◦A[∗])[†] ◦ y is also equal to (AA∗)†y. Note also
that, z ∈ Nu(A) if and only if Jnz ∈ N((A∗)†). Therefore, (A[∗])[†] ◦ z = (A∗)†Jnz = 0. Therefore, for any x ∈ P1,
we have (A[†])[∗] ◦ x = (A[∗])[†] ◦ x = (AA∗)†y = (A ◦ A[∗])[†] ◦ y ∈ P2. It now follows from Lemma 3.20 that
A[†] ◦ P2 ⊆ P1, as the cones are self-dual.

Conversely, assume that A[†] ◦P2 ⊆ P1. Then, (A◦A[∗])[†] ◦P2 = (A[∗])[†] ◦A[†] ◦P2 = (A[†])[∗] ◦A[†] ◦P2 ⊆ P2,
as the cones are self-dual.

The following example illustrates Theorems 3.22 and 3.23.
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Example 3.24. Let P1 = R2
+ and P2 = P0 (introduced earlier). Let A =

1 0
0 0
0 −1

 , J2 =

(
1 0
0 −1

)
and J3 =0 0 1

0 −1 0
1 0 0

. Clearly, A ◦ P1 ⊆ P2. Note that N(A∗) = Nu(A[∗]) = span{e2}. Therefore, any x = (x1, x2, x3)t ∈ P2

can be written as x = (x1, x2, x3) = x2(0, 1, 0)t + (x1, 0, x3)t, thereby proving that P2 ⊆ A ◦ P1 + Nu(A[∗]). We also
compute A[†] ◦ A as J2A†A and so, for any x ∈ P1, we have A[†] ◦ A ◦ x = J2A†AJ2x = x ∈ P1. Thus, A[†] ◦ P2 ⊆ P1,

by Theorem 3.22. Notice also that, A ◦ A[∗] is the matrix

0 0 1
0 0 0
1 0 0

. One can now easily verify that for any

x ∈ P2, (A ◦ A[∗])[†] ◦ x ∈ P2. Thus, by Theorem 3.23, we see that A[†] ◦ P2 ⊆ P1.

We finally present a generalization of weak monotonicity and the existence of a nonnegative {1}-inverse
to the indefinite setting. Recall that an m×n matrix A is said to be weak monotone if Ax ∈ P2 =⇒ x ∈ P1+N(A).
Weak monotonicity is the weakest among all notions of matrix monotonicity and guarantees nonnegative
solvability of a consistent system Ax = b, b ∈ P2. An interesting result concerning weak monotonicity of
a matrix A and its connection to nonnegative rank factorization and the existence of a {1}-inverse that is
nonnegative on the range space of A was brought out by the author and Sivakumar in [5]. We now propose
a generalization of weak monotonicity with respect to the indefinite matrix product and investigate similar
questions as discussed above.

Definition 3.25. For cones P1 and P2 in Rn and Rm, respectively, an m× n matrix A is said to be ◦-weak monotone
if A ◦ x ∈ P2 =⇒ x ∈ P1 +Nu(A)

Observe that if A is ◦-weak monotone, then AJn is weak monotone. ◦-weak monotonicity is weaker than
◦-monotonicity, as the following matrix illustrates.

A =

1 −1 1
1 −1 1
1 −1 1

 and J =

0 0 1
0 −1 0
1 0 0

. Let the cones P1 = P2 = P be given by P := {x = (x1, x2, x3)t : x1 ≥ 0, x3 ≥

0, x2
2 ≤ 2x1x3}. This cone is self-dual. In this case, AJ =

1 1 1
1 1 1
1 1 1

, which is weak monotone with respect to

the cone P, and hence A is ◦-weak monotone. However, A is not ◦-monotone, as it is not invertible. Note
that J(P) = P.

Suppose P1 and P2 are self-dual cones such that N(A)+P1 and N(A∗)+P2 are closed and that Jn(P1) = P1
(this is equivalent to Jn being monotone). Then, JnA∗ = (AJn)∗ is weak monotone (Refer Theorem 3.12, [4]).
Since Jn is monotone, we have that A∗ = Jn(JnA∗) is weak monotone (Refer Theorem 3.20, [4].) Again, by
Theorem 3.12 of [4], we see that A is weak monotone. It should be pointed out that nonnegativity of Jn is
crucial in this, as the following example illustrates.

Example 3.26. Let P1 = P2 = P = {x ∈ R2 : x2 ≥ 0, x2
2 ≥ x2

1} (the ice-cream cone). Let A and J be the matrices(
1 1
−1 −1

)
and

(
1 0
0 −1

)
, respectively. P is a self-dual generating, polyhedral cone and so, N(A)+P1 and N(A∗)+P2 are

closed. Now, N(AJ) = span{(1, 1)t}. If AJx ∈ P2, then x2−x1 ≥ 0 and therefore, x = (x1, x2)t = x1(1, 1)t+(0, x2−x1)t ∈

N(AJ) + P1. Thus, AJ and hence JA∗ are weak monotone. However, A∗ = J(JA∗) =
(
1 −1
1 −1

)
is not weak monotone.

Note that N(A∗) = span{(1, 1)t}. By taking x = (1, 0)t, we see that A∗x = (1, 1)t ∈ P1. However, there is no element
y = (y1, y2)t in P1 such that x = α(1, 1)t + (y1, y2)t. Note that J(P1) * P1.

We now have the following theorem. Before we proceed, we introduce a notation. Let us say that a
Hilbert space H equipped with a closed cone P has propertyP if there exists an orthonormal basis {uα : α ∈ I},
I an index set, for H such that uα ∈ P for all α ∈ I.
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Theorem 3.27. LetRn andRm have property P with respect to self-dual cones P1 and P2, respectively. Assume that
N(A) + P1 and N(A∗) + P2 are closed, that Jn(P1) = P1 and that P2 is generating. If there exists an n ×m matrix X
such that A ◦X ◦A = A with X ◦R(A)∩P2 ⊆ P1, then, A is ◦-weak monotone. Conversely, if A is ◦-weak monotone
with a rank factorization A = B ◦ C such that B ◦ P3 ⊆ P2,C ◦ P1 ⊆ P3 for some self-dual generating cone P3 in Rr.
Then, there exists an n ×m matrix X such that A ◦ X ◦ A = A with X ◦ R(A) ∩ P2 ⊆ P1.

Proof. From X ◦ R(A) ∩ P2 ⊆ P1 and monotonicity of Jn we infer that for any x ∈ R(A) ∩ P2, JnXJmx ∈ P1.
Therefore, by letting Y := JnXJm and using the fact that A ◦ X ◦ A = A, we see that Y is a {1}-inverse that is
nonnegative with respect to the cones R(A) ∩ P2 and P1. Thus, A is weak monotone. Since P1 is self-dual
and N(A∗) + P2 is closed, we see that A∗ is weak monotone. Therefore, JnA∗ = (AJn)∗ is weak monotone, as
Jn is monotone. Again, the assumption on self-duality of P2 and closedness of N(A) + P1 guarantees weak
monotonicity of AJn. Thus, A is ◦-weak monotone.

Conversely, suppose A is ◦-weak monotone with a rank factorization A = B◦C. This means, AJn is weak
monotone. The assumptions now guarantee that A is weak monotone. Thus A is a weak monotone matrix
with a rank factorization A = BJrC. From B ◦ P3 ⊆ P2, we see that BJr(P3) ⊆ P2. Since C ◦ P1 ⊆ P3 and the
cones are self-dual, we see from Lemma 3.20 that C[∗] ◦ P3 ⊆ P1, which implies that JnC∗(P3) ⊆ P1. From this
it follows that C∗(P3) ⊆ P1 and hence that C(P1) ⊆ P3 (as the cones are self-dual). Thus, A has a nonnegative
rank factorization, namely, A = BJrC. Therefore, by Theorem 3.16 of [4], there exists an r × m matrix Y, an
n× r matrix Z such that YBJr = Ir and CZ = Ir. Moreover, Y(P2) ⊆ P3 and Z(P3) ⊆ P1. By setting X := JnZYJm,
we see that A ◦ X ◦ A = A. Then, for any x ∈ R(A) ∩ P2,X ◦ x = JnZYx ∈ P1, as Y(P2) ⊆ P3,Z(P3) ⊆ P1 and
Jn(P1) = P1.

Note that X◦ (R(A)∩P2) ⊆ P1 is equivalent to X◦Ra(A)+P2 ⊆ P1. A matrix A having a {1}-inverse X that
is nonnegative on the range of A is said to be generalized range monotone. This notion was introduced in by
the author and Sivakumar (Refer Theorem 3.22, [4]). Thus, the above theorem is a generalization of Theorem
3.22 in [4] to the setting of indefinite inner product spaces with respect to the indefinite matrix product.
The above proof depends on the assumption that A = B ◦ C with B ◦ P3 ⊆ P2,C ◦ P1 ⊆ P3 and Jn(P1) = P1.
That these are essential follows from the following example. Let P1 = P2 = R4

+ and P3 = R3
+. Consider the

4 × 4 matrix A =


1 0 1 0
0 1 0 1
1 0 0 1
0 1 1 0

. Let J3 = I3 and J4 =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

. The matrix A is weak monotone,

but not ◦-weak monotone. Note that J4(R4
+) * R4

+. In this case, AJ4 is the matrix AJ4 =


1 0 1 0
0 −1 0 −1
1 0 0 −1
0 −1 1 0

,

and so N(AJ4) is spanned by the vector (−1, 1, 1,−1)t. If x = (−1, 1, 2,−2)t, then A ◦ x ∈ R4
+. However, there

is no u, v such that x = u + v, with u ∈ R4
+ and v ∈ N(AJ4). Also, it is known that A has no nonnegative

rank factorization over the orthants. This matrix A, although weak monotone, has no {1}-inverse X that is
nonnegative on the range space of A (Refer Remarks 3.2, [5]).

It was proved by the author and Sivakumar that if A is weak monotone with a nonnegative rank fac-
torization A = BC, then under some conditions on the underlying cones, there exist nonnegative operators
X and Y such that XAY = I (Refer Theorem 3.16, [4]). The following is a generalization of the same to
indefinite inner product spaces.

Theorem 3.28. LetRn andRm have property P with respect to self-dual cones P1 and P2, respectively. Assume that
N(A) + P1 and N(A∗) + P2 are closed and that P2 is generating. If A is ◦-weak monotone with a rank factorization
A = B ◦ C such that B ◦ P3 ⊆ P2 and C ◦ P1 ⊆ P3 for some self-dual generating cone P3 in Rr, r being the rank of
A. Assume further that Jn(P1) = P1 and Jr(P3) = P3. Then, there exist matrices X̃ and Ỹ of orders r ×m and n × r,
respectively, such that X̃ ◦ A ◦ Ỹ = Jr with X̃ ◦ P2 ⊆ P3 and Ỹ ◦ P3 ⊆ P1, where Jr is a weight in Rr×r.

Proof. Suppose A is ◦-weak monotone. The assumptions on the closedness of N(A) + P1 and N(A∗) + P2
implies weak monotonicity of A, as Jn(P1) = P1. Let X and Y be choices of left and right inverses of B and
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C respectively, such that X(P2) ⊆ P3 and Y(P3) ⊆ P1. Now, define X̃ := JrXJm and Ỹ := JnYJr. Then, it can
be easily seen that X̃ ◦ A ◦ Ỹ = Jr. Moreover, both X̃ ◦ P2 ⊆ P3 and Ỹ ◦ P3 ⊆ P1 hold, as Jn(P1) = P1 and
Jr(P3) = P3.

Let us point out that monotonicity of Jn and Jr are only sufficient conditions in deriving nonnegativity
of X̃ and Ỹ, respectively, in the above proof. As the following example shows, there are matrices that are
◦-weak monotone with a nonnegative rank factorization with nonnegative X̃ and Ỹ such that X̃ ◦A◦ Ỹ = Jr,
but neither Jr not Jn are monotone.

Example 3.29. Consider the cones P1,P2 and the matrices A, J as in Example 3.26. Let J1 = (−1) and P3 = R+.

Then, A is ◦-weak monotone with a factorization A = BJ1C with B ◦ P3 ⊆ P2 and C ◦ P2 ⊆ P3, where B =
(

1
−1

)
and

C = (−1 − 1). All the assumptions of the above theorem are satisfied, except J(P1) = P1 and J1(P3) = P3. It is easy to
verify that there is a choice of X̃ and a Ỹ such that X̃ ◦ A ◦ Ỹ = J1 with X̃ ◦ P2 ⊆ P3 and Ỹ ◦ P3 ⊆ P1.

Note, however, that if J1 = (1), then in the above example B =
(

1
−1

)
and C = (−1 − 1), both of which fail

to be nonnegative.
It is well known and also easy to prove that if a matrix A has a nonnegative {1}-inverse, then A is weak

monotone. The converse holds good if A is weak monotone and has a nonnegative rank factorization (see
Corollary 3.17, [4]). The matrix Z̃ := Ỹ ◦ X̃, where X̃ and Ỹ are as in the above theorem, is a nonnegative
{1,2}-inverse of A. An interesting characterization of nonnegative weak monotone matrices due to Jeter
and Pye is that a nonnegative weak monotone matrix of rank r has a nonnegative rank factorization if and
only if it has an r × r monomial submatrix (Refer Corollary 1, [8]). A generalization of this result can also
be obtained and we skip the details.

4. Concluding Remarks

We wind up with a few remarks in this section.
1. Nonnegativity of the group inverse (when it exists) can also be investigated in the indefinite setting.
Recall that for a square matrix A, the group inverse (denoted by A[#]) exists if and only if Ra(A) = Ra(A[2])
(as in the Euclidean setting). We then have the following analogue of Theorem 3.10 in [7]. We skip the
proof.

Theorem 4.1. Let A be square matrix such that P ⊆ A ◦ P + Nu(A), where P is a self-dual generating cone in Rn.
Then, the following two statements are equivalent :
(1) A ◦ x ∈ P +Nu(A), x ∈ Ra(A) =⇒ x ∈ P.
(2) A[#] exists and A[#] ◦ P ⊆ P.

If A[#] ◦ A ◦ P ⊆ P, an additional equivalent condition is : A[#] ◦ P ⊆ P +Nu(A).

2. Suppose P1 and P2 are self-dual cones in Rn and Rm, respectively. Let A and X be matrices of orders
m × n and n × m, respectively, such that A ◦ X ◦ A = A,X ◦ A ◦ X = X,A ◦ P1 ⊆ P2,X ◦ P2 ⊆ P1. From the
first two equations, we infer that the matrix JnXJm is a reflexive generalized inverse of A. Suppose that
Jn(P1) = P1. Then, from A ◦P1 ⊆ P2, self-duality of the cones and monotonicity of Jn, we see that A(P1) ⊆ P2.
Again, monotonicity of Jn and X ◦ P2 ⊆ P1 imply that JnXJm(P2) ⊆ P1. Thus, A is a nonnegative matrix
having a nonnegative reflexive generalized inverse JnXJm (with respect to self-dual cones P1,P2 and P2,P1,
respectively). Therefore by Theorem 3.11 of [6], we see that the cones A(P1) and JnXJm(P2) are self-dual in
Rm and Rn, respectively. Note, however, that A(P1) = AJn(P1) = A ◦ P1. Thus, A ◦ P1 is a self-dual cone
(with respect to the ususl inner product in Rm).
3. A new type of splitting was introduced recently by Mishra and Sivakumar [15] with a view to study
nonnegativity of the Moore-Penrose inverse and the group inverse. These are called B†-splitting and B#
splitting. We give the definitions below. Recall that a splitting A = U − V of A ∈ Rm×n is called a proper
splitting if R(A) = R(U) and N(A) = N(U).
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Definition 4.2. A proper splitting A = U − V of A is called a B†-splitting if
(1) U ≥ 0,
(2) V ≥ 0,
(3) VU† ≥ 0,
(4) Ax,Ux ∈ Rm

+ +N(At) and x ∈ R(At) =⇒ x ∈ Rn
+.

Definition 4.3. A proper splitting A = U − V of A is called a B#-splitting if
(1) U ≥ 0,
(2) V ≥ 0,
(3) U# exists and VU# ≥ 0,
(4) Ax,Ux ∈ Rn

+ +N(A) and x ∈ R(A) =⇒ x ∈ Rn
+.

Using these notions, Mishra and Sivakumar characterized nonnegativity of the Moore-Penrose inverse
and the group inverse (Refer Theorems 3.8 and 4.4 in [15]). In view of Definition 3.18 and Theorem 3.19,
it is quite natural to generalize these two splittings to indefinite inner product spaces. However, we defer
this for future investigation.
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