Filomat 27:4 (2013), 671–678 DOI 10.2298/FIL1304671Y Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

SPECTRUM OF CLASS ABSOLUTE -*-k-PARANORMAL OPERATORS FOR $0 \le k \le 1$

CHANGSEN YANG^a, JUNLI SHEN^b

^aCollege of Mathematics and Information Science, Henan Normal University, Xinxiang 453007, People's Republic of China ^bDepartment of Mathematics, Xinxiang University, Xinxiang 453000, People's Republic of China

Abstract. In this paper, we shall introduce a new class absolute-*-*k*-paranormal operators given by a norm inequality and *-*A*(*k*) operator by operator inequality, we will discuss the inclusion relation of them. And we study spectral properties of class absolute-*-*k*-paranormal operators. We show that if *T* belongs to class absolute-*-*k*-paranormal operators, then its point spectrum and joint point spectrum are identical, its approximate point spectrum and joint approximate point spectrum $\sigma_{ea}(\cdot)$, we will show that if *T* or *T** is absolute-*-*k*-paranormal for $0 \le k \le 1$, then w(f(T)) = f(w(T)), $\sigma_{ea}(f(T)) = f(\sigma_{ea}(T))$ for every $f \in H(\sigma(T))$ where $H(\sigma(T))$ denotes the set of all analytic functions on an open neighborhood of $\sigma(T)$.

1. Introduction

Let *H* be an infinite dimensional separable Hilbert space, let *B*(*H*) and *K*(*H*) denote, respectively, the algebra of all bounded linear operators and the ideal of compact operators on *H*. If $T \in B(H)$, write *N*(*T*) and *R*(*T*) for the null space and range space of *T*; $\alpha(T) := \dim N(T)$; $\beta(T) := \dim N(T^*)$; $\sigma(T)$, $\sigma_a(T)$, $\sigma_p(T)$, $\sigma_{jp}(T)$, $\sigma_{ja}(T)$ for the spectrum of *T*, the approximate point spectrum of *T*, the point spectrum of *T*, the joint point spectrum of *T*, respectively.

An operator $T \in B(H)$ is called Fredholm if it has closed range with finite dimension null space and its range of finite co-dimension. The index of a Fredholm operator $T \in B(H)$ is given by

$$i(T) := \alpha(T) - \beta(T).$$

An operator $T \in B(H)$ is called Weyl if it is Fredholm of index zero. An operator $T \in B(H)$ is called Browder if it is Fredholm of finite ascent and descent: equivalently ([1], Theorem 7.9.3) if *T* is Fredholm and $T - \lambda$ is invertible for sufficiently small $\lambda \neq 0$ in *C*; The essential spectrum $\sigma_e(T)$, The Weyl spectrum w(T) and the Browder spectrum $\sigma_b(T)$ of $T \in B(H)$ are defined in [1] or [2]:

²⁰¹⁰ Mathematics Subject Classification. 47A10; 47A11, 47B47

Keywords. absolute-*-k-paranormal operators, approximate point spectrum, joint approximate point spectrum, joint point spectrum.

Received: 12 December 2011; Accepted: 06 May 2012

Communicated by Dragan Djordjevic

Research Supported by the National Natural Science Founda- tion of P.R.China(11271112; 11201127), Innovation Scientists and Technicians Troop Construction Projects of Henan Province(114200510011), Technology and Pioneering project in Henan province(122300410110).

Email addresses: yangchangsen 0991@sina.com (CHANGSEN YANG), Shenjunli58@sina.com (JUNLI SHEN)

$$\sigma_e(T) := \{\lambda \in C : T - \lambda \text{ is not Fredholm}\};$$
$$w(T) := \{\lambda \in C : T - \lambda \text{ is not Weyl}\};$$
$$\sigma_b(T) := \{\lambda \in C : T - \lambda \text{ is not Browder}\}:$$

Evidently

$$\sigma_e(T) \subseteq w(T) \subseteq \sigma_b(T) = \sigma_e(T) \cup \operatorname{acc} \sigma(T),$$

where *accK* denotes the accumulation points of $K \subseteq C$.

We consider the sets

 $\Phi_+(H) := \{T \in B(H) : R(T) \text{ is closed and } \alpha(T) < \infty\};$ $\Phi_-(H) := \{T \in B(H) : R(T) \text{ is closed and } \alpha(T^*) < \infty\};$ $\Phi_+(H) := \{T \in B(H) : T \in \Phi_+(H) \text{ and } i(T) \le 0\}.$

On the other hand, $\sigma_{ea}(T) := \{\lambda \in C : T - \lambda \notin \Phi^-_+(H)\}$ is the essential approximate point spectrum and $\sigma_{ab}(T) := \cap \{\sigma_a(T+K) : TK = KT \ K \in K(H)\}$ is the Browder essential approximate point spectrum.

We say that α -Browder's theorem holds for $T \in B(H)$ if there is equality $\sigma_{ea}(T) = \sigma_{ab}(T)$. Recall ([3]) that $S, T \in B(H)$ are said to be quasisimilar if there exist injections $X, Y \in B(H)$ with the dense range such that XS = TX and YT = SY, respectively, and this relation of S and T is denoted by $S \sim T$. We say that $T \in B(H)$ has the single valued extension property (abbev. SVEP) if for every open set U of C the only analytic solution $f: U \to H$ of the equation

$$(T - \lambda)f(\lambda) = 0$$

for all $\lambda \in U$ is the zero function on U.

A complex number $\lambda \in C$ is said to be in the point spectrum $\sigma_p(T)$ of the operator T if there is a unit vector x satisfying $(T - \lambda)x = 0$. If in addition, $(T^* - \overline{\lambda})x = 0$, then λ is said to be in the joint point spectrum $\sigma_{ip}(T)$ of T.

A complex number $\lambda \in C$ is said to be in the approximate point spectrum $\sigma_a(T)$ of the operator T if there is a sequence $\{x_n\}$ of unit vectors satisfying $(T - \lambda)x_n \to 0$. If in addition, $(T^* - \overline{\lambda})x_n \to 0$, then λ is said to be in the joint approximate point spectrum $\sigma_{ja}(T)$ of T. The boundary $\partial \sigma(T)$ of the spectrum $\sigma(T)$ of the operator T is known to be a subset of $\sigma_a(T)$. Although, in general, one has $\sigma_{jp}(T) \subset \sigma_p(T)$, $\sigma_{ja}(T) \subset \sigma_a(T)$, there are many classes of operators T for which

$$\sigma_{jp}(T) = \sigma_p(T). \tag{1}$$

$$\sigma_{ia}(T) = \sigma_a(T). \tag{2}$$

For example, if *T* is either normal or hyponormal, then *T* satisfies (1) (2). More generally, (1) (2) hold if *T* is semi-hyponormal[4], p-hyponormal[5] or log-hyponormal [6], [7, Corollary 4.5]. In [8], Duggal introduced a class K(p) of operators which contains the p-hyponormal operators and showed [8,Theorem 4] that operators *T* in the class K(p) satisfy (1), (2).

In this paper, we proof that absolute-*-*k*-paranormal operators satisfy (1), (2).

2. Main results

```
Definition 1. An operator T \in B(H) is said to be *-paranormal if ||T^*x||^2 \le ||T^2x|| for every unit vector x \in H.
```

Definition 2. For each k > 0, an operator T belongs to class * - A(k) if $(T^* | T |^{2k} T)^{\frac{1}{k+1}} \ge | T^* |^2$.

Definition 3. For each k > 0, an operator T is absolute-*-k-paranormal if $|| T^*x ||^{k+1} \le || T ||^k Tx ||$ for every unit vector $x \in H$.

To prove the inclusion relation between *-A(k) operator and absolute-*-k-paranormal operator, we need the following lemma.

Lemma 1. ^[12] Let *A* be a positive linear operator on a Hilbert space *H*. Then the following properties (1), (2) and (3) hold.

- (1) $(A^{\lambda}x, x) \ge (Ax, x)^{\lambda}$ for any $\lambda > 1$ and any unit vector x.
- (2) $(A^{\lambda}x, x) \leq (Ax, x)^{\lambda}$ for any $\lambda \in [0, 1]$ and any unit vector x.
- (3) If A is invertible, then

 $(A^{\lambda}x, x) \ge (Ax, x)^{\lambda}$ for any $\lambda < 0$ and any unit vector x.

Moreover (1), (2) and (3) are equivalent to the following (1'), (2') and (3'), respectively.

- (1) $(A^{\lambda}x, x) \ge (Ax, x)^{\lambda} ||x||^{2(1-\lambda)}$ for any $\lambda > 1$ and any vector x.
- (2') $(A^{\lambda}x, x) \leq (Ax, x)^{\lambda} ||x||^{2(1-\lambda)}$ for any $\lambda \in [0, 1]$ and any vector x.
- (3') If A is invertible, then $(A^{\lambda}x, x) \ge (Ax, x)^{\lambda} ||x||^{2(1-\lambda)}$ for any $\lambda < 0$ and any vector x.

We obtain the following inclusion relation.

Theorem 2. For each k > 0, every class *-A(k) operator is an absolute-*-k-paranormal operator.

Proof. Suppose that *T* belongs to class *- A(k) for k > 0, i.e.,

 $(T^* | T |^{2k} T)^{\frac{1}{k+1}} \ge | T^* |^2 \text{ for } k > 0.$ Then for every unit vector $x \in H$, $||| T |^k Tx ||^2 = (T^* | T |^{2k} Tx , x)$ $\ge ((T^* | T |^{2k} T)^{\frac{1}{k+1}}x , x)^{k+1}$ $\ge (| T^* |^2 x , x)^{k+1}$ $= || T^*x ||^{2(k+1)}.$

Hence we have

 $|| T^*x ||^{k+1} \le ||| T |^k Tx ||$ for every unit vector $x \in H$,

so that *T* is absolute-*-*k*-paranormal for k > 0. Whence the proof is complete.

But the inverse of Theorem 2 is not correct, we will give a counterexample, and we need the following theorem and lemma.

Lemma 3. Let a and b be positive real numbers. Then $a^{\lambda}b^{\mu} \leq \lambda a + \mu b$ holds for $\lambda > 0$ and $\mu > 0$ such that $\lambda + \mu = 1$.

Theorem 4. For each k > 0, an operator *T* is absolute-*-k-paranormal if and only if

 $T^* \mid T \mid^{2k} T - (k+1)\lambda^k \mid T^* \mid^2 + k\lambda^{k+1} \ge 0 \quad \lambda > 0.$

Proof. Suppose that *T* is absolute-*-*k*-paranormal for k > 0, i.e.,

$$|| T^* x ||^{k+1} \le ||| T |^k T x ||$$
(3)

for every unit vector $x \in H$.

(3) holds if and only if

$$||| T |^{k} Tx ||^{\frac{1}{k+1}} || x ||^{\frac{k}{k+1}} \ge || T^{*}x ||$$

or equivalently,

$$(T^* \mid T \mid^{2k} Tx, x)^{\frac{1}{k+1}} (x, x)^{\frac{k}{k+1}} \ge (\mid T^* \mid^2 x, x)$$
(4)

for all $x \in H$.

By Lemma 3, for all $x \in H$ and $\lambda > 0$ $(T^* | T |^{2k} Tx, x)^{\frac{1}{k+1}} (x, x)^{\frac{k}{k+1}}$ $= \{ (\frac{1}{\lambda})^{k} (T^{*} | T |^{2k} Tx, x) \}^{\frac{1}{k+1}} \{ \lambda(x, x) \}^{\frac{k}{k+1}} \\ \leq \frac{1}{k+1} \cdot \frac{1}{\lambda^{k}} (T^{*} | T |^{2k} Tx, x) + \frac{k}{k+1} \lambda(x, x) \\ \text{so that (4) ensures the following (6) by (5).}$

$$\frac{1}{k+1} \cdot \frac{1}{\lambda^k} (T^* \mid T \mid^{2k} Tx, x) + \frac{k}{k+1} \lambda(x, x) \ge (\mid T^* \mid^2 x, x)$$
(6)

for all $x \in H$ and $\lambda > 0$.

Conversely, (6) implies (4) by putting $\lambda = \{\frac{(T^*|T|^{2k}Tx,x)}{(x,x)}\}^{\frac{1}{k+1}}$.

(In case $(T^* | T |^{2k} Tx, x) = 0$, let $\lambda \to 0$, we have $(| T^* |^2 x, x) = 0$). Hence (6) holds if and only if (3) is valid, so the proof of Theorem 4 is complete.

By computing, we have the following Lemma 5.

Lemma 5. ^[12] Let $K = \bigoplus_{n=-\infty}^{+\infty} H_n$, where $H_n \cong H$. For given positive operators A and B on H, define the operator T on K as follows:

	([•] •.	÷	÷	÷	÷	÷	÷	:	
T =		0	0	0	0	0	0	$0\cdots$	
		В	0	0	0	0	0	$0\cdots$	
		0	В	(0)	0	0	0	$0\cdots$	
		0	0	В	0	0	0	$0\cdots$	ľ
		0	0	0	Α	0	0	$0\cdots$	
		0	0	0	0	Α	0	$0\cdots$	
		:	:	:	:	:	:	:•.	
	(•	•	•	•	•	•	· · ,	′

where () shows the place of the (0, 0) matrix element. Then the following assertions hold: (1)For each k > 0, T belongs to class *-A(k) if and only if

$$(BA^{2k}B)^{\frac{1}{k+1}} \ge B^2.$$

(2)For each k > 0, T is absolute-*-k-paranormal if and only if

$$BA^{2k}B - (k+1)\lambda^k B^2 + k\lambda^{k+1} \ge 0$$

for all $\lambda > 0$.

Example 1: A non-class *-*A*(2) and absolute-*-2-paranormal operator.

Take *A* and *B* as

$$A = \begin{pmatrix} 4 & 0 \\ 0 & 20 \end{pmatrix}^{\frac{1}{4}}, B = \frac{1}{2} \begin{pmatrix} 1 + \sqrt{3} & 1 - \sqrt{3} \\ 1 - \sqrt{3} & 1 + \sqrt{3} \end{pmatrix}.$$

Then

$$(BA^4B)^{\frac{1}{3}} - B^2 = \begin{pmatrix} -0.0091543\dots & 0.44289\dots\\ 0.44289\dots & 1.2774\dots \end{pmatrix}.$$

(5)

The eigenvalues of $(BA^4B)^{\frac{1}{3}} - B^2$ are 1.4151...and -0.14687..., so that $(BA^4B)^{\frac{1}{3}} \not\geq B^2$. Hence T is a non-class *-A(2) operator by (1) of Lemma 5.

On the other hand, for $\lambda > 0$, define $X_2(\lambda)$ as follow:

$$X_2(\lambda) = BA^4B - 3\lambda^2B^2 + 2\lambda^3 = \begin{pmatrix} 24 - 8\sqrt{3} - 6\lambda^2 + 2\lambda^3 & -12 + 3\lambda^2 \\ -12 + 3\lambda^2 & 24 + 8\sqrt{3} - 6\lambda^2 + 2\lambda^3 \end{pmatrix}.$$

Put $p_2(\lambda) = \text{tr} X_2(\lambda)$ and $q_2(\lambda) = \text{det} X_2(\lambda)$. Then $p_2(\lambda) = 4\lambda^3 - 12\lambda^2 + 48$

and

 $q_2(\lambda) = (24 - 8\sqrt{3} - 6\lambda^2 + 2\lambda^3)(24 + 8\sqrt{3} - 6\lambda^2 + 2\lambda^3) - (-12 + 3\lambda^2)^2$ $= 4\lambda^6 - 24\lambda^5 + 27\lambda^4 + 96\lambda^3 - 216\lambda^2 + 240.$ We easily obtain $p_2(\lambda) > 0$ for all $\lambda > 0$. And we have $q_{2}'(\lambda) = 24\lambda^{5} - 120\lambda^{4} + 108\lambda^{3} + 288\lambda^{2} - 432\lambda$

 $= 12\overline{\lambda}(\lambda - 2)(2\lambda^3 - 6\lambda^2 - 3\lambda + 18).$

So $q'_{\lambda}(\lambda) = 0$ if and only if $\lambda = 0, 2$, since $2\lambda^3 - 6\lambda^2 - 3\lambda + 18 > 0$ for all $\lambda > 0$ by an easy calculation, that is, $q_2(\lambda) \ge q_2(2) = 64 > 0$ for all $\lambda > 0$.

Hence $X_2(\lambda) \ge 0$ for all $\lambda > 0$. Since $\operatorname{tr} X_2(\lambda) = p_2(\lambda) > 0$ and $\operatorname{det} X_2(\lambda) = q_2(\lambda) > 0$ for all $\lambda > 0$. Therefore *T* is absolute-*-2-paranormal by (2) of Lemma 5.

We will give some spectral properties of absolute-*-k-paranormal operator and *-A(k) operator.

Theorem 6. If *T* is absolute-*-k-paranormal for $0 \le k \le 1$, then $Tx = \lambda x$ implies $T^*x = \overline{\lambda} x$.

Proof. It is suffice to show that $N(T - \lambda) \subseteq N(T^* - \overline{\lambda})$. Let $\lambda \in C$ and suppose $x \in N(T - \lambda)$. Then $Tx = \lambda x$. Since *T* is absolute-*-*k*-paranormal, $|| T^*x ||^{k+1} \le ||| T ||^k Tx ||$ for every unit vector $x \in H$. So $|| T^*x ||^{k+1} \le ||| T ||^k Tx ||$ $= |\lambda| (|T|^{2k} x x)^{\frac{1}{2}} \le |\lambda| (|T|^{2} x x)^{\frac{k}{2}} = |\lambda| ||Tx||^{k} = |\lambda|^{k+1}$, and so $||T^{*}x|| \le |\lambda|$ for all $x \in N(T - \lambda)$ with ||x|| = 1. Therefore if $x \in N(T - \lambda)$, then $((T - \lambda)^*x (T - \lambda)^*x) = ||T^*x||^2 - (x \overline{\lambda}Tx) - (\overline{\lambda}Tx x) + |\lambda|^2 ||x||^2 \le ||T^*x||^2$ $\lambda \mid^2 - |\lambda \mid^2 - |\lambda \mid^2 + |\lambda \mid^2 = 0$. Thus $\|T^*x - \overline{\lambda}x\| = 0$, and hence $x \in N(T - \lambda)^*$. Thus $N(T - \lambda) \subseteq N(T^* - \overline{\lambda})$.

Corollary 7. If T is absolute-*-k-paranormal for $0 \le k \le 1$, then (1) $\sigma_{iv}(T) = \sigma_v(T)$. (2) If $Tx = \lambda x$, $Ty = \mu y$ and $\lambda \neq \mu$, then (x, y)=0.

Proof. (1)It is obvious from Theorem 6. (2)As $\lambda(x, y) = (Tx, y) = (x, T^*y) = \mu(x, y)$ and $\lambda \neq \mu$, then (x, y) = 0.

Corollary 8. If T is *-A(k) operator or *-paranormal operator, then $\sigma_{in}(T) = \sigma_n(T)$.

Proof. It is clear from Corollary 7 and Theorem 2.

Corollary 9. If T^* is absolute-*-k-paranormal for $0 \le k \le 1$, then $\beta(T - \lambda) \leq \alpha(T - \lambda)$ for all $\lambda \in C$.

Proof. It is obvious from Theorem 6.

Theorem 10. If *T* or T^* is absolute-*-*k*-paranormal for $0 \le k \le 1$, then w(f(T)) = f(w(T)) for every $f \in H(\sigma(T))$, where $H(\sigma(T))$ denotes the set of all analytic functions on an open neighborhood of $\sigma(T)$.

Proof. Since $w(f(T)) \subseteq f(w(T))$ holds for any operator *T*, we need only prove (7)

$$f(w(T)) \subseteq w(f(T)) .$$

Note that (7) clearly holds if f is constant on G. Thus assume f is nonconstant on G. Let $\lambda \notin w(f(T))$ and write

$$f(z) - \lambda = (z - \lambda_1)....(z - \lambda_n)g(z),$$

where λ_i , j = 1, ..., n are the zeros of $f(z) - \lambda$ in *G*, listed according to multiplicity, and $q(z) \neq 0$ for all $z \in G$. Thus

$$f(T) - \lambda = (T - \lambda_1)....(T - \lambda_n)g(T).$$
(8)

Clearly, $\lambda \in f(w(T))$ if and only if $\lambda_j \in w(T)$ for some *j*. Therefore, to prove (7), we need only establish $\lambda_j \notin w(T)$ for all *j*. Since $f(T) - \lambda$ is Weyl and the operators on the right side of (8) commute, each $T - \lambda_j$ is Fredholm. Moreover, since $N(T - \lambda_j) \subseteq N(f(T) - \lambda)$ and $N((T - \lambda_j)^*) \subseteq N((f(T) - \lambda)^*)$, both $N(T - \lambda_j)$ and $N(T - \lambda_j)^*$ are finite dimensional. Then $i(T - \lambda_j) \leq 0$ by Theorem 6. Since $i(f(T) - \lambda) = i(g(T)) = 0$, it follow from (8) that $i(T - \lambda_j) = 0$ for all *j*. Consequently, $T - \lambda_j$ is Weyl, and $\lambda_j \notin w(T)$. Suppose that T^* is absolute-*-*k*-paranormal, then by Corollary 10 $i(T - \lambda_j) \geq 0$ for each j = 1, 2, ..., n. However,

$$\sum_{j=1}^{n} i(T - \lambda_j) = i(f(T) - \lambda) = 0,$$

and so $T - \lambda_j$ is Weyl for each j = 1, 2, ..., n. Hence $\lambda \notin f(w(T))$, and so w(f(T)) = f(w(T)). This completes the proof of theorem.

Theorem 11. If *T* or *T*^{*} is absolute-*-k-paranormal for $0 \le k \le 1$, then $\sigma_{ea}(f(T)) = f(\sigma_{ea}(T))$ for every $f \in H(\sigma(T))$, where $H(\sigma(T))$ denotes the set of all analytic functions on an open neighborhood of $\sigma(T)$.

Proof. Let $f \in H(\sigma(T))$. It suffices to show that $f(\sigma_{ea}(T)) \subseteq \sigma_{ea}(f(T))$. Suppose that $\lambda \notin \sigma_{ea}(f(T))$. Then $f(T) - \lambda \in \Phi^-_+(H)$ and

(9)

$$f(T) - \lambda = c(T - \lambda_1)...(T - \lambda_n)g(T)$$

where $c, \lambda_1, \lambda_2, ..., \lambda_n \in C$ and g(T) is invertible. Since the operators on the right side of (9) commute, $T - \lambda_i \in \Phi_+(H)$. Suppose *T* is absolute-*-*k*-paranormal. Then by Theorem 6 $i(T - \lambda_j) \leq 0$ for each j = 1, 2, ..., n. Therefore $\lambda \notin f(\sigma_{ea}(T))$. If T^* is absolute-*-*k*-paranormal, it follows from Corollary 9 that $i(T - \lambda_j) \geq 0$ for each j = 1, 2, ..., n. Therefore

$$0 \le \sum_{j=1}^{n} i(T - \lambda_j) = i(f(T) - \lambda) \le 0,$$

and so $T - \lambda_j$ is Weyl for each j = 1, 2, ..., n. Therefore $\lambda \notin f(\sigma_{ea}(T))$, and so $\sigma_{ea}(f(T)) = f(\sigma_{ea}(T))$. This completes the proof of theorem.

Lemma 12. If T is absolute-*-k-paranormal for $0 \le k \le 1$, then $T - \lambda$ has finite ascent for each $\lambda \in C$.

Proof. Suppose that *T* is absolute-*-k-paranormal for $0 \le k \le 1$. Then $N(T - \lambda) \subseteq N(T^* - \overline{\lambda})$ for each $\lambda \in C$. Thus we can represent $T - \lambda$ as the following 2×2 operator matrix with respect to the decomposition $N(T - \lambda) \oplus (N(T - \lambda))^{\perp}$:

$$T - \lambda = \left(\begin{array}{cc} 0 & 0\\ 0 & S \end{array}\right).$$

Let $x \in N((T-\lambda)^2)$. Write x = y+z, where $y \in N(T-\lambda)$ and $z \in (N(T-\lambda))^{\perp}$. Then $0 = (T-\lambda)^2 x = (T-\lambda)^2 z$, so that $(T-\lambda)z \in N(T-\lambda) \cap N(T-\lambda)^{\perp} = \{0\}$. Which implies that $z \in N(T-\lambda)$, and hence $x \in N(T-\lambda)$. Therefore $N(T-\lambda) = N(T-\lambda)^2$.

Theorem 13. If *T* is absolute-*-k-paranormal for $0 \le k \le 1$ and suppose that $S \sim T$. Then *S* has SVEP.

Proof. Since *T* is absolute-*-*k*-paranormal for $0 \le k \le 1$, it follows from Lemma 12 that $T - \lambda$ has finite ascent for each $\lambda \in C$. So by [9, proposition 1.8], *T* has SVEP. Let *U* be any open set and $f : U \to H$ be any analytic function such that $(S - \lambda)f(\lambda) = 0$ for all $\lambda \in U$. Since $S \sim T$, there exists an injective operator *A* with dense range such that AS = TA. So $A(S - \lambda) = (T - \lambda)A$ for all $\lambda \in U$. Since $(S - \lambda)f(\lambda) = 0$ for all $\lambda \in U$, $0 = A(S - \lambda)f(\lambda) = (T - \lambda)Af(\lambda)$ for all $\lambda \in U$. But *T* has SVEP; hence $Af(\lambda) = 0$ for all $\lambda \in U$. Since *A* is injective, $f(\lambda) = 0$ for all $\lambda \in U$. Therefore *S* has SVEP.

Theorem 14. If *T* is absolute-*-*k*-paranormal for $0 \le k \le 1$ and suppose that $S \sim T$. Then a-Browder's theorem holds for f(S) for every $f \in H(\sigma(S))$.

Proof. Since T is absolute-*-k-paranormal for $0 \le k \le 1$ and $S \sim T$, it follows from Theorem 13 that S has SVEP. Next we show that a-Browder's theorem holds for S. It is well known that $\sigma_{ea}(T) \subseteq \sigma_{ab}(T)$. Conversely, suppose that $\lambda \in \sigma_a(S) \setminus \sigma_{ea}(S)$. Then $S - \lambda \in \Phi_+^-(H)$ and $S - \lambda$ is not bounded below. Since S has SVEP and $S - \lambda \in \Phi_+(H)$, it follows from [10, Theorem 2.6] that $S - \lambda$ has finite ascent. Therefore by [11, Theorem 2.1], $\lambda \in \sigma_a(S) \setminus \sigma_{ab}(S)$. Thus a-Browder's theorem holds for S. Let $f \in H(\sigma(S))$. Then it follows from Theorem 11 that $\sigma_{ab}(f(S)) = f(\sigma_{ab}(S)) = f(\sigma_{ea}(S)) = \sigma_{ea}(f(S))$. Hence a-Browder's theorem holds for f(S).

Lemma 15. ^[8] Let T = U | T | be the polar decomposition of the operator T, $\lambda = | \lambda | e^{i\theta} \neq 0$, and $\{x_n\}$ be a sequence of vectors. The following assertions are equivalent.

(a) $(T - \lambda)x_n \longrightarrow 0$ and $(T^* - \overline{\lambda})x_n \longrightarrow 0, (n \longrightarrow \infty);$

(a) $(1 - 1/\lambda_n) \rightarrow 0$ and $(1 - i/\lambda_n) \rightarrow 0$, $(n \rightarrow \infty)$; (b) $(|T| - |\lambda|)x_n \rightarrow 0$ and $(U - e^{i\theta})x_n \rightarrow 0$, $(n \rightarrow \infty)$; (c) $(|T^*| - |\lambda|)x_n \rightarrow 0$ and $(U^* - e^{-i\theta})x_n \rightarrow 0$, $(n \rightarrow \infty)$.

Theorem 16. If *T* is absolute-*-*k*-paranormal for $0 \le k \le 1$, then $\sigma_a(T) = \sigma_{ia}(T)$

Proof. It is suffice to show $(T^* - \overline{\lambda})x_n \to 0$ when $(T - \lambda)x_n \to 0$ for any unit vectors sequence $\{x_n\}$. Since *T* is absolute-*-*k*-paranormal for $0 \le k \le 1$, then

$$|| T^* x_n ||^{k+1} \le ||| T |^k T x_n ||$$

for any unit vectors sequence $\{x_n\}$.

Since $(T - \lambda)x_n \to 0$, thus $(T^2 - \lambda^2)x_n \to 0$. Because $|| T^{2} x_{n} ||^{k} \leq (|| (T^{2} - \lambda^{2}) x_{n} || + |\lambda|^{2})^{k}.$

$$|| Tx_n ||^{2(1-k)} \le (|| (T - \lambda)x_n || + |\lambda|)^{2(1-k)}.$$

Thus

$$\| T^* x_n \|^{k+1} \le \| T \|^k T x_n \| = (|T|^{2k} T x_n T x_n)^{\frac{1}{2}} \le (|T|^2 T x_n, T x_n)^{\frac{k}{2}} \| T x_n \|^{(1-k)} = \| T^2 x_n \|^k \| T x_n \|^{(1-k)} \le (\| (T^2 - \lambda^2) x_n \| + |\lambda^2|)^k (\| (T - \lambda) x_n \| + |\lambda|)^{1-k}.$$

But
$$0 \le ((T - \lambda)^* x_n (T - \lambda)^* x_n) = \| T^* x_n \|^2 - (\bar{\lambda} T x_n x_n) - (x_n \bar{\lambda} T x_n) + |\lambda|^2 \le (\| (T^2 - \lambda^2) x_n \| + |\lambda^2|)^{\frac{2k}{k+1}} (\| (T - \lambda) x_n \| + |\lambda|)^{\frac{2(1-k)}{k+1}} - (\bar{\lambda} T x_n x_n) - (x_n \bar{\lambda} T x_n) + |\lambda|^2 \to 0.$$

Thus $(T^* - \bar{\lambda}) x_n \to 0, \sigma_a(T)) = \sigma_{ja}(T).$

Corollary 17. If T is absolute-*-k-paranormal for $0 \le k \le 1$, and T = U | T | is the polar decomposition of the operator T.

- (a) If $\lambda \in \sigma_a(T)$, then $|\lambda| \in \sigma_a(|T|) \cap \sigma_a(|T^*|)$. In particular, if $\lambda \in \partial \sigma(T)$, then $|\lambda| \in \sigma_a(|T|) \cap \sigma_a(|T^*|)$.
- (b) If $\lambda = |\lambda| e^{i\theta} \neq 0$ is such that $\lambda \in \sigma_a(T)$, then $e^{i\theta} \in \sigma_{ia}(U)$.

Proof. (a) Since T is absolute-*-k-paranormal for $0 \le k \le 1$, then $\sigma_a(T) = \sigma_{ia}(T)$ by Theorem 17. Since $\lambda \in \sigma_a(T)$, thus $\lambda \in \sigma_{ia}(T)$, then there exists a unit vector sequence $\{x_n\}$ such that $(T - \lambda)x_n \to 0$ and $(T^* - \overline{\lambda})x_n \rightarrow 0$. Then $(|T| - |\lambda|)x_n \rightarrow 0$, $(|T^*| - |\lambda|)x_n \rightarrow 0$ by Lemma 15, thus $|\lambda| \in \sigma_a(|T|) \cap \sigma_a(|T^*|)$.

(b)Since *T* is absolute-*-*k*-paranormal for $0 \le k \le 1$, then $\sigma_a(T) = \sigma_{ja}(T)$ by Theorem 16. Since $\lambda \in \sigma_a(T)$, thus $\lambda \in \sigma_{ja}(T)$, then there exists a unit vector sequence $\{x_n\}$ such that $(T - \lambda)x_n \to 0$ and $(T^* - \overline{\lambda})x_n \to 0$. Then $(U - e^{i\theta})x_n \to 0, (U^* - e^{-i\theta})x_n \to 0$ by Lemma 15, thus $e^{i\theta} \in \sigma_{ia}(U)$.

Literatur

- [1] R. E. Harte, Invertibility and singularity for bounded linear operators, Dekker, New York, 1988.
- [2] R. E. Harte, Fredholm, Weyl and Browder theory, Proc. Royal Irish Acad., 85A 2 (1985), 151–176.
- [3] K. B. Laursen and M. M. Neumann, An Introduction to Local Spectral Theory, London Mathematical Society Monographs New Series 20, Clarendon Press, Oxford 2000.
- [4] D. Xia, Spectral Theory of Hyponormal Operators, Birkhäuser Verlag, Basel, 1983.
- [5] Chō M. and Huruya T., p-Hyponormal operators for 0 1</sup>/₂, Coment. Nath., 33 (1993), 23–29.
 [6] K. Tanahashi, Putnam's inequality for log-hyponormal operator, Integr. Equat. Oper. Th., 48 (2004), 103–114.
- [7] A. Aluthge and D.Wang, w-hyponormal operators II, Integr. Equat. Oper. Th., 37 (2000), 324-331.
- [8] B.P. Duggal, On a super class of p-hyponormal operators, Hokkaido Math. J., 25 (1996), 97–106.
- [9] K. B. Laursen, Operators with finite ascent, Pacific J. Math., 152 (1992), 323-336.
- [10] P. Aiena and O. Monsalve, Operators which do not have the single valued extension property, J. Math. Anal. Appl., 250 (2000), 435-448.
- [11] V. Rakočević. Approximate point spectrum and commuting compact perturbations, Glasgow Math. J., 28 (1986), 193-198.
- [12] T. Furuta, Invitation to Linear Operators -From Matrices to Bounded Linear Operators on a Hilbert Space, Taylor & Francis, London, 2001.