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Abstract. In this paper, we shall introduce a new class absolute-∗-k-paranormal operators given by a norm
inequality and ∗-A(k) operator by operator inequality, we will discuss the inclusion relation of them. And
we study spectral properties of class absolute-∗-k-paranormal operators. We show that if T belongs to
class absolute-∗-k-paranormal operators, then its point spectrum and joint point spectrum are identical, its
approximate point spectrum and joint approximate point spectrum are identical. Next as an application of
them, for Weyl spectrum w(·) and essential approximate point spectrum σea(·), we will show that if T or T∗

is absolute-∗-k-paranormal for 0 ≤ k ≤ 1, then w( f (T)) = f (w(T)), σea( f (T)) = f (σea(T)) for every f ∈ H(σ(T))
where H(σ(T)) denotes the set of all analytic functions on an open neighborhood of σ(T).

1. Introduction

Let H be an infinite dimensional separable Hilbert space, let B(H) and K(H) denote, respectively, the
algebra of all bounded linear operators and the ideal of compact operators on H. If T ∈ B(H), write N(T)
and R(T) for the null space and range space of T; α(T) := dim N(T); β(T) := dim N(T∗); σ(T), σa(T), σp(T),
σ jp(T), σ ja(T) for the spectrum of T, the approximate point spectrum of T, the point spectrum of T, the joint
point spectrum of T, the joint approximate point spectrum of T, respectively.

An operator T ∈ B(H) is called Fredholm if it has closed range with finite dimension null space and its
range of finite co-dimension. The index of a Fredholm operator T ∈ B(H) is given by

i(T) := α(T) − β(T).

An operator T ∈ B(H) is called Weyl if it is Fredholm of index zero. An operator T ∈ B(H) is called
Browder if it is Fredholm of finite ascent and descent: equivalently ( [1], Theorem 7.9.3 ) if T is Fredholm
and T − λ is invertible for sufficiently small λ , 0 in C; The essential spectrum σe(T), The Weyl spectrum
w(T) and the Browder spectrum σb(T) of T ∈ B(H) are defined in [1] or [2]:

2010 Mathematics Subject Classification. 47A10; 47A11, 47B47
Keywords. absolute-∗-k-paranormal operators, approximate point spectrum, joint approximate point spectrum, point spectrum,

joint point spectrum.
Received: 12 December 2011; Accepted: 06 May 2012
Communicated by Dragan Djordjevic
Research Supported by the National Natural Science Founda- tion of P.R.China(11271112; 11201127), Innovation Scientists and

Technicians Troop Construction Projects of Henan Province(114200510011), Technology and Pioneering project in Henan provin-
ce(122300410110).

Email addresses: yangchangsen 0991@sina.com (CHANGSEN YANG), Shenjunli58@sina.com (JUNLI SHEN)



C. YANG, J. SHEN / Filomat 27:4 (2013), 671–678 672

σe(T) := {λ ∈ C : T − λ is not Fredholm};
w(T) := {λ ∈ C : T − λ is not Weyl};

σb(T) := {λ ∈ C : T − λ is not Browder} :

Evidently
σe(T) ⊆ w(T) ⊆ σb(T) = σe(T) ∪ acc σ(T),

where accK denotes the accumulation points of K ⊆ C.
We consider the sets

Φ+(H) := {T ∈ B(H) : R(T) is closed and α(T) < ∞};

Φ−(H) := {T ∈ B(H) : R(T) is closed and α(T∗) < ∞};
Φ−+(H) := {T ∈ B(H) : T ∈ Φ+(H) and i(T) ≤ 0}.

On the other hand, σea(T) := {λ ∈ C : T − λ < Φ−+(H)} is the essential approximate point spectrum and
σab(T) := ∩{σa(T + K) : TK = KT K ∈ K(H)} is the Browder essential approximate point spectrum.

We say that α-Browder’s theorem holds for T ∈ B(H) if there is equality σea(T) = σab(T).
Recall ([3]) that S, T ∈ B(H) are said to be quasisimilar if there exist injections X, Y ∈ B(H) with the dense

range such that XS = TX and YT = SY, respectively, and this relation of S and T is denoted by S ∼ T. We
say that T ∈ B(H) has the single valued extension property (abbev. SVEP) if for every open set U of C the
only analytic solution f : U→ H of the equation

(T − λ) f (λ) = 0

for all λ ∈ U is the zero function on U.
A complex number λ ∈ C is said to be in the point spectrum σp(T) of the operator T if there is a unit

vector x satisfying (T − λ)x = 0. If in addition, (T∗ − λ̄)x = 0, then λ is said to be in the joint point spectrum
σ jp(T) of T.

A complex number λ ∈ C is said to be in the approximate point spectrum σa(T) of the operator T if
there is a sequence {xn} of unit vectors satisfying (T − λ)xn → 0. If in addition, (T∗ − λ̄)xn → 0, then λ is said
to be in the joint approximate point spectrum σ ja(T) of T. The boundary ∂σ(T) of the spectrum σ(T) of the
operator T is known to be a subset of σa(T). Although, in general, one has σ jp(T) ⊂ σp(T), σ ja(T) ⊂ σa(T),
there are many classes of operators T for which

σ jp(T) = σp(T). (1)

σ ja(T) = σa(T). (2)

For example, if T is either normal or hyponormal, then T satisfies (1) (2). More generally, (1) (2) hold if T is
semi-hyponormal[4], p-hyponormal[5] or log-hyponormal [6], [7, Corollary 4.5]. In [8], Duggal introduced a
class K(p) of operators which contains the p-hyponormal operators and showed [8,Theorem 4] that operators
T in the class K(p) satisfy (1), (2).

In this paper, we proof that absolute-∗-k-paranormal operators satisfy (1), (2).
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2. Main results

Definition 1. An operator T ∈ B(H) is said to be ∗-paranormal if
∥T∗x∥2 ≤ ∥T2x∥ for every unit vector x ∈ H.

Definition 2. For each k > 0, an operator T belongs to class ∗ − A(k) if
(T∗ | T |2k T)

1
k+1 ≥| T∗ |2.

Definition 3. For each k > 0, an operator T is absolute-∗-k-paranormal if
∥ T∗x ∥k+1≤∥| T |k Tx ∥ for every unit vector x ∈ H.

To prove the inclusion relation between ∗-A(k) operator and absolute-∗-k-paranormal operator, we need
the following lemma.

Lemma 1. [12] Let A be a positive linear operator on a Hilbert space H. Then the following properties (1), (2) and (3)
hold.

(1) (Aλx, x) ≥ (Ax, x)λ for any λ > 1 and any unit vector x.
(2) (Aλx, x) ≤ (Ax, x)λ for any λ ∈ [0, 1] and any unit vector x.
(3) If A is invertible, then

(Aλx, x) ≥ (Ax, x)λ for any λ < 0 and any unit vector x.
Moreover (1), (2) and (3) are equivalent to the following (1’), (2’) and (3’), respectively.
(1’) (Aλx, x) ≥ (Ax, x)λ ∥ x ∥2(1−λ) for any λ > 1 and any vector x.
(2’) (Aλx, x) ≤ (Ax, x)λ ∥ x ∥2(1−λ) for any λ ∈ [0, 1] and any vector x.
(3’) If A is invertible, then

(Aλx, x) ≥ (Ax, x)λ ∥ x ∥2(1−λ) for any λ < 0 and any vector x.

We obtain the following inclusion relation.

Theorem 2. For each k > 0, every class ∗-A(k) operator is an absolute-∗-k-paranormal operator.

Proof. Suppose that T belongs to class ∗- A(k) for k > 0, i.e.,
(T∗ | T |2k T)

1
k+1 ≥| T∗ |2 for k > 0.

Then for every unit vector x ∈ H,
∥| T |k Tx ∥2= (T∗ | T |2k Tx , x)

≥ ((T∗ | T |2k T)
1

k+1 x , x)k+1

≥ (| T∗ |2 x , x)k+1

=∥ T∗x ∥2(k+1).
Hence we have
∥ T∗x ∥k+1≤∥| T |k Tx ∥ for every unit vector x ∈ H,

so that T is absolute-∗-k-paranormal for k > 0. Whence the proof is complete.
But the inverse of Theorem 2 is not correct, we will give a counterexample, and we need the following

theorem and lemma.

Lemma 3. Let a and b be positive real numbers.Then
aλbµ ≤ λa + µb holds for λ > 0 and µ > 0 such that λ + µ = 1.

Theorem 4. For each k > 0, an operator T is absolute-∗-k-paranormal if and only if

T∗ | T |2k T − (k + 1)λk | T∗ |2 +kλk+1 ≥ 0 λ > 0.

Proof. Suppose that T is absolute-∗-k-paranormal for k > 0, i.e.,

∥ T∗x ∥k+1≤∥| T |k Tx ∥ (3)

for every unit vector x ∈ H.



C. YANG, J. SHEN / Filomat 27:4 (2013), 671–678 674

(3) holds if and only if
∥| T |k Tx ∥ 1

k+1 ∥ x ∥ k
k+1≥∥ T∗x ∥

or equivalently,
(T∗ | T |2k Tx, x)

1
k+1 (x, x)

k
k+1 ≥ (| T∗ |2 x, x) (4)

for all x ∈ H.
By Lemma 3, for all x ∈ H and λ > 0

(T∗ | T |2k Tx, x)
1

k+1 (x, x)
k

k+1

= {( 1
λ )k(T∗ | T |2k Tx, x)} 1

k+1 {λ(x, x)} k
k+1

≤ 1
k+1 .

1
λk (T∗ | T |2k Tx, x) + k

k+1λ(x, x) (5)
so that (4) ensures the following (6) by (5).

1
k + 1

.
1
λk

(T∗ | T |2k Tx, x) +
k

k + 1
λ(x, x) ≥ (| T∗ |2 x, x) (6)

for all x ∈ H and λ > 0.
Conversely, (6) implies (4) by putting λ = { (T

∗ |T|2kTx,x)
(x,x) } 1

k+1 .
(In case (T∗ | T |2k Tx, x) = 0, let λ → 0, we have (| T∗ |2 x, x) = 0). Hence (6) holds if and only if (3) is

valid, so the proof of Theorem 4 is complete.
By computing, we have the following Lemma 5.

Lemma 5. [12] Let K = ⊕+∞n=−∞Hn, where Hn � H. For given positive operators A and B on H, define the operator T
on K as follows:

T =



. . .
...
...
...

...
...
...
...

. . . 0 0 0 0 0 0 0 · · ·

. . . B 0 0 0 0 0 0 · · ·

. . . 0 B (0) 0 0 0 0 · · ·

. . . 0 0 B 0 0 0 0 · · ·

. . . 0 0 0 A 0 0 0 · · ·

. . . 0 0 0 0 A 0 0 · · ·
...
...
...

...
...
...
...
. . .


,

where ( ) shows the place of the (0, 0) matrix element. Then the following assertions hold:
(1)For each k > 0, T belongs to class ∗-A(k) if and only if

(BA2kB)
1

k+1 ≥ B2.

(2)For each k > 0, T is absolute-∗-k-paranormal if and only if

BA2kB − (k + 1)λkB2 + kλk+1 ≥ 0

for all λ > 0.

Example 1: A non-class ∗-A(2) and absolute-∗-2-paranormal operator.
Take A and B as

A =
(

4 0
0 20

) 1
4

,B =
1
2

(
1 +
√

3 1 −
√

3
1 −
√

3 1 +
√

3

)
.

Then

(BA4B)
1
3 − B2 =

(
−0.0091543 . . . 0.44289 · · ·
0.44289 · · · 1.2774 · · ·

)
.
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The eigenvalues of (BA4B)
1
3 − B2 are 1.4151...and −0.14687..., so that (BA4B)

1
3 � B2. Hence T is a non-class

∗-A(2) operator by (1) of Lemma 5.
On the other hand, for λ > 0, define X2(λ) as follow:

X2(λ) = BA4B − 3λ2B2 + 2λ3 =

(
24 − 8

√
3 − 6λ2 + 2λ3 −12 + 3λ2

−12 + 3λ2 24 + 8
√

3 − 6λ2 + 2λ3

)
.

Put p2(λ) = trX2(λ) and q2(λ) = detX2(λ). Then
p2(λ) = 4λ3 − 12λ2 + 48

and
q2(λ) = (24 − 8

√
3 − 6λ2 + 2λ3)(24 + 8

√
3 − 6λ2 + 2λ3) − (−12 + 3λ2)2

= 4λ6 − 24λ5 + 27λ4 + 96λ3 − 216λ2 + 240.
We easily obtain p2(λ) > 0 for all λ > 0. And we have
q′2(λ) = 24λ5 − 120λ4 + 108λ3 + 288λ2 − 432λ

= 12λ(λ − 2)(2λ3 − 6λ2 − 3λ + 18).
So q′2(λ) = 0 if and only if λ = 0, 2, since 2λ3 − 6λ2 − 3λ + 18 > 0 for all λ > 0 by an easy calculation, that is,
q2(λ) ≥ q2(2) = 64 > 0 for all λ > 0.

Hence X2(λ) ≥ 0 for all λ > 0. Since trX2(λ) = p2(λ) > 0 and detX2(λ) = q2(λ) > 0 for all λ > 0. Therefore
T is absolute-∗-2-paranormal by (2) of Lemma 5.

We will give some spectral properties of absolute-∗-k-paranormal operator and ∗-A(k) operator.

Theorem 6. If T is absolute-∗-k-paranormal for 0 ≤ k ≤ 1, then Tx = λx implies T∗x = λ̄x.

Proof. It is suffice to show that N(T−λ) ⊆ N(T∗−λ). Let λ ∈ C and suppose x ∈ N(T−λ). Then Tx = λx. Since
T is absolute-∗-k-paranormal, ∥ T∗x ∥k+1≤∥| T |k Tx ∥ for every unit vector x ∈ H. So∥ T∗x ∥k+1≤∥| T |k Tx ∥
=| λ | (| T |2k x x)

1
2 ≤| λ | (| T |2 x x)

k
2=| λ |∥ Tx ∥k=| λ |k+1, and so ∥ T∗x ∥≤| λ | for all x ∈ N(T − λ) with

∥ x ∥= 1. Therefore if x ∈ N(T − λ), then ((T − λ)∗x (T − λ)∗x)) =∥ T∗x ∥2 −(x λTx) − (λTx x)+ | λ |2∥ x ∥2≤|
λ |2 − | λ |2 − | λ |2 + | λ |2= 0. Thus ∥ T∗x − λx ∥= 0, and hence x ∈ N(T − λ)∗. Thus N(T − λ) ⊆ N(T∗ − λ).

Corollary 7. If T is absolute-∗-k-paranormal for 0 ≤ k ≤ 1, then (1) σ jp(T)= σp(T). (2) If Tx = λx, Ty = µy and
λ , µ, then (x, y)=0.

Proof. (1)It is obvious from Theorem 6.
(2)As λ(x, y) = (Tx, y) = (x, T∗y) = µ(x, y) and λ , µ, then (x, y) = 0.

Corollary 8. If T is ∗-A(k) operator or ∗-paranormal operator, then σ jp(T)= σp(T).

Proof. It is clear from Corollary 7 and Theorem 2.

Corollary 9. If T∗ is absolute-∗-k-paranormal for 0 ≤ k ≤ 1, then
β(T − λ) ≤ α(T − λ) for all λ ∈ C.

Proof. It is obvious from Theorem 6.

Theorem 10. If T or T∗ is absolute-∗-k-paranormal for 0 ≤ k ≤ 1, then
w( f (T)) = f (w(T)) for every f ∈ H(σ(T)),
where H(σ(T)) denotes the set of all analytic functions on an open neighborhood of σ(T).

Proof. Since w( f (T)) ⊆ f (w(T)) holds for any operator T, we need only prove
f (w(T)) ⊆ w( f (T)) . (7)

Note that (7) clearly holds if f is constant on G. Thus assume f is nonconstant on G. Let λ < w( f (T)) and
write

f (z) − λ = (z − λ1)......(z − λn)1(z),

where λ j, j = 1, ..., n are the zeros of f (z) − λ in G, listed according to multiplicity, and 1(z) , 0 for all z ∈ G.
Thus

f (T) − λ = (T − λ1)......(T − λn)1(T). (8)
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Clearly, λ ∈ f (w(T)) if and only if λ j ∈ w(T) for some j. Therefore, to prove (7), we need only establish
λ j < w(T) for all j. Since f (T) − λ is Weyl and the operators on the right side of (8) commute, each T − λ j
is Fredholm. Moreover, since N(T − λ j) ⊆ N( f (T) − λ) and N((T − λ j)∗) ⊆ N(( f (T) − λ)∗), both N(T − λ j)
and N(T − λ j)∗ are finite dimensional. Then i(T − λ j) ≤ 0 by Theorem 6. Since i( f (T) − λ) = i(1(T)) = 0, it
follow from (8) that i(T − λ j) = 0 for all j. Consequently, T − λ j is Weyl, and λ j < w(T). Suppose that T∗ is
absolute-∗-k-paranormal, then by Corollary 10 i(T − λ j) ≥ 0 for each j = 1, 2, ....,n. However,

n∑
j=1

i(T − λ j) = i( f (T) − λ) = 0,

and so T −λ j is Weyl for each j = 1, 2, ..., n. Hence λ < f (w(T)), and so w( f (T)) = f (w(T)). This completes the
proof of theorem.

Theorem 11. If T or T∗ is absolute-∗-k-paranormal for 0 ≤ k ≤ 1, then
σea( f (T)) = f (σea(T)) for every f ∈ H(σ(T)),
where H(σ(T)) denotes the set of all analytic functions on an open neighborhood of σ(T).

Proof. Let f ∈ H(σ(T)). It suffices to show that f (σea(T)) ⊆ σea( f (T)). Suppose that λ < σea( f (T)). Then
f (T) − λ ∈ Φ−+(H) and

f (T) − λ = c(T − λ1)...(T − λn)1(T) (9)
where c, λ1,λ2...λn ∈ C and 1(T) is invertible. Since the operators on the right side of (9) commute, T − λi ∈
Φ+(H). Suppose T is absolute-∗-k-paranormal. Then by Theorem 6 i(T − λ j) ≤ 0 for each j = 1, 2, ....,n.
Therefore λ < f (σea(T)). If T∗ is absolute-∗-k-paranormal, it follows from Corollary 9 that i(T − λ j) ≥ 0 for
each j = 1, 2, ....,n. Therefore

0 ≤
n∑

j=1

i(T − λ j) = i( f (T) − λ) ≤ 0,

and so T − λ j is Weyl for each j = 1, 2, ....,n. Therefore λ < f (σea(T)), and so σea( f (T)) = f (σea(T)). This
completes the proof of theorem.

Lemma 12. If T is absolute-∗-k-paranormal for 0 ≤ k ≤ 1, then T − λ has finite ascent for each λ ∈ C.

Proof. Suppose that T is absolute-∗-k-paranormal for 0 ≤ k ≤ 1. Then N(T − λ) ⊆ N(T∗ − λ) for each λ ∈ C.
Thus we can represent T − λ as the following 2×2 operator matrix with respect to the decomposition
N(T − λ) ⊕ (N(T − λ))⊥:

T − λ =
(

0 0
0 S

)
.

Let x ∈ N((T−λ)2). Write x = y+z, where y ∈ N(T−λ) and z ∈ (N(T−λ))⊥. Then 0 = (T−λ)2x = (T−λ)2z,
so that (T − λ)z ∈ N(T − λ)

∩
N(T − λ)⊥ = {0}. Which implies that z ∈ N(T − λ), and hence x ∈ N(T − λ).

Therefore N(T − λ) = N(T − λ)2.

Theorem 13. If T is absolute-∗-k-paranormal for 0 ≤ k ≤ 1 and suppose that S ∼ T. Then S has SVEP.

Proof. Since T is absolute-∗-k-paranormal for 0 ≤ k ≤ 1, it follows from Lemma 12 that T − λ has finite
ascent for each λ ∈ C. So by [9, proposition 1.8], T has SVEP. Let U be any open set and f : U → H be any
analytic function such that (S − λ) f (λ) = 0 for all λ ∈ U. Since S ∼ T, there exists an injective operator A
with dense range such that AS = TA. So A(S−λ) = (T−λ)A for all λ ∈ U. Since (S−λ) f (λ) = 0 for all λ ∈ U,
0 = A(S − λ) f (λ) = (T − λ)A f (λ) for all λ ∈ U. But T has SVEP; hence A f (λ) = 0 for all λ ∈ U. Since A is
injective, f (λ) = 0 for all λ ∈ U. Therefore S has SVEP.

Theorem 14. If T is absolute-∗-k-paranormal for 0 ≤ k ≤ 1 and suppose that S ∼ T. Then a-Browder’s theorem holds
for f(S) for every f ∈ H(σ(S)).



C. YANG, J. SHEN / Filomat 27:4 (2013), 671–678 677

Proof. Since T is absolute-∗-k-paranormal for 0 ≤ k ≤ 1 and S ∼ T, it follows from Theorem 13 that S has
SVEP. Next we show that a-Browder’s theorem holds for S. It is well known that σea(T) ⊆ σab(T). Conversely,
suppose that λ ∈ σa(S)\σea(S). Then S − λ ∈ Φ−+(H) and S − λ is not bounded below. Since S has SVEP and
S − λ ∈ Φ−+(H), it follows from [10, Theorem 2.6] that S − λ has finite ascent. Therefore by [11, Theorem2.1],
λ ∈ σa(S)\σab(S). Thus a-Browder’s theorem holds for S. Let f ∈ H(σ(S)). Then it follows from Theorem 11
that σab( f (S)) = f (σab(S)) = f (σea(S)) = σea( f (S)). Hence a-Browder’s theorem holds for f (S).

Lemma 15. [8] Let T = U | T | be the polar decomposition of the operator T, λ =| λ | eiθ , 0, and {xn} be a sequence
of vectors. The following assertions are equivalent.

(a) (T − λ)xn −→ 0 and (T∗ − λ)xn −→ 0, (n −→ ∞);
(b) (| T | − | λ |)xn −→ 0 and (U − eiθ)xn −→ 0, (n −→ ∞);
(c) (| T∗ | − | λ |)xn −→ 0 and (U∗ − e−iθ)xn −→ 0, (n −→ ∞).

Theorem 16. If T is absolute-∗-k-paranormal for 0 ≤ k ≤ 1, then σa(T) = σ ja(T)

Proof. It is suffice to show (T∗ − λ̄)xn → 0 when (T − λ)xn → 0 for any unit vectors sequence {xn}. Since T is
absolute-∗-k-paranormal for 0 ≤ k ≤ 1, then

∥ T∗xn ∥k+1≤∥| T |k Txn ∥

for any unit vectors sequence {xn}.
Since (T − λ)xn → 0, thus (T2 − λ2)xn → 0.
Because

∥ T2xn ∥k≤ (∥ (T2 − λ2)xn ∥ + | λ |2)k.

∥ Txn ∥2(1−k)≤ (∥ (T − λ)xn ∥ + | λ |)2(1−k).

Thus
∥ T∗xn ∥k+1≤∥| T |k Txn ∥

= (| T |2k Txn Txn)
1
2

≤ (| T |2 Txn, Txn)
k
2 ∥ Txn ∥(1−k)

=∥ T2xn ∥k∥ Txn ∥(1−k)

≤ (∥ (T2 − λ2)xn ∥ + | λ2 |)k(∥ (T − λ)xn ∥ + | λ |)1−k.
But
0 ≤ ((T − λ)∗xn (T − λ)∗xn)
=∥ T∗xn ∥2 −(λ̄Txn xn) − (xn λ̄Txn)+ | λ |2
≤ (∥ (T2 − λ2)xn ∥ + | λ2 |) 2k

k+1 (∥ (T − λ)xn ∥ + | λ |)
2(1−k)

k+1

−(λ̄Txn xn) − (xn λ̄Txn)+ | λ |2
→ 0.

Thus (T∗ − λ̄)xn → 0 , σa(T)) = σ ja(T).

Corollary 17. If T is absolute-∗-k-paranormal for 0 ≤ k ≤ 1, and T = U | T | is the polar decomposition of the
operator T.

(a) If λ ∈ σa(T), then | λ |∈ σa(| T |) ∩ σa(| T∗ |). In particular, if λ ∈ ∂σ(T), then | λ |∈ σa(| T |) ∩ σa(| T∗ |).
(b) If λ =| λ | eiθ , 0 is such that λ ∈ σa(T), then eiθ ∈ σ ja(U).

Proof. (a) Since T is absolute-∗-k-paranormal for 0 ≤ k ≤ 1, then σa(T)) = σ ja(T) by Theorem 17. Since
λ ∈ σa(T), thus λ ∈ σ ja(T), then there exists a unit vector sequence {xn} such that (T − λ)xn → 0 and
(T∗ − λ̄)xn → 0. Then (| T | − | λ |)xn →0, (| T∗ | − | λ |)xn → 0 by Lemma 15, thus | λ |∈ σa(| T |) ∩ σa(| T∗ |).

(b)Since T is absolute-∗-k-paranormal for 0 ≤ k ≤ 1, then σa(T)) = σ ja(T) by Theorem 16. Since λ ∈ σa(T),
thus λ ∈ σ ja(T), then there exists a unit vector sequence {xn} such that (T−λ)xn →0 and (T∗− λ̄)xn → 0. Then
(U − eiθ)xn → 0, (U∗ − e−iθ)xn →0 by Lemma 15, thus eiθ ∈ σ ja(U).
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