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Abstract. The main aim of this paper is to obtain some recurrence relations and generating matrix function
for Jacobi matrix polynomials (JMP). Also, various integral representations satisfied by JMP are derived.

1. Introduction

Special matrix functions seen on statistics, Lie group theory and number theory are well known in
[6, 16]. In the recent papers, matrix polynomials have significant emergent in [7–9, 11–14] and some results
in the theory of classical orthogonal polynomials have been extended to orthogonal matrix polynomials in
[1–4, 7, 8, 15]. In [13], these polynomials are orthogonal as examples of right orthogonal matrix polynomial
sequences for appropriate right matrix moment functionals of integral type. Jacobi matrix polynomials
have been introduced and studied in [8] for matrices in CN×N whose eigenvalues, z, all satisfy Re(z) > −1.
Our main aim in this paper is to prove new properties for the Jacobi matrix polynomials. The structure of
this paper is the following:

In section 2, recurrence relations for Jacobi matrix polynomials (JMP) are given. A generating matrix
function for JMP is also obtained in section 3. Furthermore, we show the integral representations for JMP.

Throughout this paper, for a matrix A in CN×N, its spectrum σ(A) denotes the set of all eigenvalues of A.
If f (z) and 1(z) are holomorphic functions of the complex variable z, which are defined in an open set Ω of
the complex plane and A and B are matrices in CN×N with σ(A) ⊂ Ω and σ(B) ⊂ Ω, then from the properties
of the matrix functional calculus in [10], it follows that

f (A)1(B) = 1(B) f (A)

where AB = BA.
The Jacobi matrix polynomials have been given in [8], P(A,B)

n (x) for parameter matrices A and B whose
eigenvalues, z, all satisfy Re(z) > −1. For n ∈N, the n-th Jacobi matrix polynomial P(A,B)

n (x) is defined by

P(A,B)
n (x) =

1
n!

F
(
A + B + (n + 1) I,−nI; A + I;

1 − x
2

)
(A + I)n (1)
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or

P(A,B)
n (x) =

(−1)n

n!
F
(
A + B + (n + 1) I,−nI; B + I;

1 + x
2

)
(B + I)n (2)

where hypergeometric matrix function F (A′,B′; C′; z) has been given in the form [11]

F (A′,B′; C′; z) =
∞∑

k=0

(A′)k (B′)k

k!
[
(C′)k

]−1 zk (3)

for matrices A′,B′ and C′ in CN×N such that C′ + kI is invertible for all integer k ≥ 0 and for |z| < 1. Here

(A′)k = A′(A′ + I)(A′ + 2I)...(A′ + (k − 1)I); k ≥ 1; (A′)0 = I. (4)

These polynomials have the following Rodrigues formula:

P(A,B)
n (x) =

(−1)n

2n n!
(1 − x)−A(1 + x)−B dn

dxn

[
(1 − x)A+nI(1 + x)B+nI

]
. (5)

Let P and Q be positive stable matrices in CN×N, then Beta matrix function in [12] is defined by

B (P,Q) =
∫ 1

0
tP−I (1 − t)Q−I dt.

If P,Q and P +Q are positive stable matrices in CN×N and PQ = QP, then

B (P,Q) = Γ (P) Γ (Q) Γ−1 (P +Q)

[12]. Furthermore, in [8], the reciprocal scalar Gamma function, Γ−1(z) = 1/Γ(z), is an entire function of the
complex variable z. Thus, for any C ∈ CN×N, the Riesz-Dunford functional calculus [10] shows that Γ−1(C)
is well defined and is, indeed, the inverse of Γ(C). Hence: if C ∈ CN×N is such that C + nI is invertible for
every integer n ≥ 0, then

(C)n = Γ(C + nI)Γ−1(C). (6)

Lemma 1.1. Assume that Φ(y) is analytic in a neighborhood of y = x,

r =
y − x
Φ(y)

=

∞∑
n=1

an(y − x)n , a1 , 0 (7)

and f is analytic in a neighborhood of y = x. Then f (y) can be expanded in powers of r :

f (y) = f (x) +
∞∑

n=1

rn

n!
dn−1

dxn−1

(
f ′(x)(Φ(x))n) (8)

in [5].

2. Recurrence Relations for Jacobi Matrix Polynomials

In this section, some recurrence relations satisfied by Jacobi matrix polynomials (JMP) are given.



B. Çekim,A. Altın and R. Aktaş / Filomat 27:4 (2013), 713–719 715

Theorem 2.1. Let A and B be matrices in CN×N whose eigenvalues, z, all satisfy Re(z) > −1. JMP satisfy

(i)
d
dx

P(A,B)
n (x) =

(n + 1) I + A + B
2

P(A+I,B+I)
n−1 (x),

(ii)
dk

dxk
P(A,B)

n (x) =
((n + 1) I + A + B)k

2k
P(A+kI,B+kI)

n−k (x)

for 0 ≤ k ≤ n,

(iii) P(A,B)
n (−x) = (−1)nP(B,A)

n (x).

Proof. (i) By using (1), it can be proved.
(ii) It is enough to use (i).
(iii) Taking (−x) instead of x in (2), we have desired relation.

For n ∈N and AB = BA, the n-th Jacobi matrix polynomial P(A,B)
n (x) is defined by

P(A,B)
n (x) =

1
n!

(x + 1
2

)n
F
(
− (B + nI) ,−nI; A + I;

x − 1
x + 1

)
(A + I)n (9)

or

P(A,B)
n (x) =

1
n!

(x − 1
2

)n
F
(
− (A + nI) ,−nI; B + I;

x + 1
x − 1

)
(B + I)n (10)

[3]. With the help of these equalities, we can give the following theorem:

Theorem 2.2. Let A and B be matrices in CN×N whose eigenvalues, z, all satisfy Re(z) > −1. For the Jacobi matrix
polynomials (JMP), the following recurrence relations

(x + 1)
d

dx
P(A,B)

n (x) = nP(A,B)
n (x) + (B + nI) P(A+I,B)

n−1 (x) (11)

and

(x − 1)
d

dx
P(A,B)

n (x) = nP(A,B)
n (x) − (A + nI) P(A,B+I)

n−1 (x) (12)

hold.

Proof. Differentiating (9) with respect to x, we can write that

d
dx

P(A,B)
n (x) = n (x + 1)−1 P(A,B)

n (x) + (B + nI)
(x + 1)−1

(n − 1)!

(x + 1
2

)n−1

×∑∞k=0
(− (n − 1) I)k (− (B + (n − 1) I))k

[
(A + 2I)k

]−1

k!

(x − 1
x + 1

)k
(A + 2I)n−1

= n (x + 1)−1 P(A,B)
n (x) + (B + nI) (x + 1)−1 P(A+I,B)

n−1 (x).

Therefore, we obtain

(x + 1)
d

dx
P(A,B)

n (x) = nP(A,B)
n (x) + (B + nI) P(A+I,B)

n−1 (x).

Similarly, if we differentiate (10) with respect to x and use (10) again, we find the second relation.



B. Çekim,A. Altın and R. Aktaş / Filomat 27:4 (2013), 713–719 716

Corollary 2.3. As a consequence of Theorem 2.1(i),(11) and (12), we have the following recurrence relations:

2
d
dx

P(A,B)
n (x) = (B + nI) P(A+I,B)

n−1 (x) + (A + nI) P(A,B+I)
n−1 (x)

and

(A + B + (n + 2) I) P(A+I,B+I)
n (x) = (B + (n + 1) I) P(A+I,B)

n (x) + (A + (n + 1) I) P(A,B+I)
n (x).

Lemma 2.4. Let A′,B′ and C′ be matrices in CN×N and A′ and B′ be commutative. For the hypergeometric matrix
function F (A′,B′; C′; z) , the equality

F (A′,B′; C′; z) = F (A′ − I,B′ + I; C′; z) + (B′ + I − A′)zF (A′,B′ + I; C′ + I; z) (C′)−1

holds where A′ − I, B′ + kI and C′ + kI are invertible for all integer k ≥ 0.

Proof. If we rearrange equation in (3), we can write that
F (A′,B′; C′; z)

=

∞∑
k=0

(A′)k (B′)k

k!
[
(C′)k

]−1 zk

=

∞∑
k=0

(A′ + (k − 1) I)(A′ − I)−1B′(B′ + kI)−1(A′ − I)k (B′ + I)k
[
(C′)k

]−1 zk

k!

=

∞∑
k=0

[
I − k(A′ − I)−1(B′ + kI)−1 (A′ − B′ − I)

]
(A′ − I)k (B′ + I)k

[
(C′)k

]−1 zk

k!

=

∞∑
k=0

(A′ − I)k (B′ + I)k
[
(C′)k

]−1 zk

k!
+ (B′ + I − A′)z

∞∑
k=0

(A′)k (B′ + I)k [(C′ + I)k]−1 (C′)−1 zk

k!

= F (A′ − I,B′ + I; C′; z) + (B′ + I − A′) zF (A′,B′ + I; C′ + I; z) (C′)−1

which completes the proof.

Theorem 2.5. Let A and B be matrices in CN×N whose eigenvalues, z, all satisfy Re(z) > −1. JMP satisfy as follows:

P(A,B)
n (x)(A + (n + 1)I) = (n + 1) P(A,B)

n+1 (x) + (A + B + 2(n + 1)I)
(1 − x)

2
P(A+I,B)

n (x)

where A + B + kI is invertible for all integer k ≥ 0.

Proof. In Lemma 2.4, taking

A′ = −nI , B′ = A + B + (n + 1)I , C′ = A + I , z =
1
2

(1 − x) ,

we have

F
(
−nI,A + B + (n + 1)I; A + I;

1 − x
2

)
= F
(
− (n + 1) I,A + B + (n + 2)I; A + I;

1 − x
2

)
+ 1

2 (1 − x) (A + B + 2(n + 1) I)F
(
−nI,A + B + (n + 2)I; A + 2I;

1 − x
2

)
(A + I)−1.

With the help of (1), we obtain

P(A,B)
n (x)(A + (n + 1)I) = (n + 1) P(A,B)

n+1 (x) + (A + B + 2(n + 1)I)
(1 − x)

2
P(A+I,B)

n (x).
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If the hypergeometric matrix function F (A′,B′; C′; z) given by (3) is rearranged, we can give the following
lemma.

Lemma 2.6. Let A′,B′ and C′ be matrices in CN×N and A′ and B′ be commutative. For the hypergeometric matrix
function F (A′,B′; C′; z) , the equality

(A′ − B′) F (A′,B′; C′; z) = A′F(A′ + I,B′; C′; z) − B′F (A′,B′ + I; C′; z)

holds.

Theorem 2.7. Let A and B be matrices in CN×N whose eigenvalues, z, all satisfy Re(z) > −1. We have for JMP

P(A,B+I)
n−1 (x)(A + nI) + (A + B + (n + 1)I) P(A,B+I)

n (x) = (A + B + (2n + 1)I) P(A,B)
n (x).

Proof. In Lemma 2.6, getting

A′ = −nI , B′ = A + B + (n + 1)I , C′ = A + I , z =
1
2

(1 − x) ,

and using (1), we have desired recurrence relation.

Corollary 2.8. As a result of Corollary 2.3 and Theorem 2.7, we can give as follows:

P(A+I,B+I)
n−1 (x)(A + (n + 1) I) = (A + (n + 1) I)P(A+I,B)

n (x) − (A + (n + 1) I)P(A,B+I)
n (x)

where A and B are matrices in CN×N whose eigenvalues, z, all satisfy Re(z) > −1.

3. Generating Matrix Function for Jacobi Matrix Polynomials

In this section, a generating matrix function satisfied by JMP is given.

Theorem 3.1. Assume that A and B are commutative matrices in CN×N whose eigenvalues, z, all satisfy Re(z) > −1.
A generating matrix function for JMP is

∞∑
n=0

P(A,B)
n (x)rn = 2A+BR−1(1 − r + R)−A(1 + r + R)−B

where R = (1 − 2xr + r2)1/2 and |r| < 1.

Proof. Taking Φ(y) = y2−1
2 in Lemma 1.1, we have y = 1

r − R
r . Taking (1 − x)A(1 + x)B instead of f ′(x) in (8)

and differentiating (8) with respect to x,we get

(1 − y)A(1 + y)B 1
R
= (1 − x)A(1 + x)B +

∞∑
n=1

rn

n!
dn

dxn

(
(1 − x)A(1 + x)B

(
x2−1

2

)n)
.

Using (5) in this equation and multiplying (1 − x)−A(1 + x)−B, theorem can be proved.
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4. Integral Representations for Jacobi Matrix Polynomials

In this section, integral representations are given for JMP.

Theorem 4.1. Let A,B,C and M be matrices in CN×N satisfying following conditions
Re(µ) > 0 for all eigenvalue µ ∈ σ(C),
Re(µ) > 0 for all eigenvalue µ ∈ σ(M),
C +M + kI is invertible for all natural number k,
and these matrices are commutative. Then

xC+M−I F(A,B; C +M; x) = Γ(C +M)Γ−1(C)Γ−1(M)
∫ x

0
(x − t)M−ItC−I F(A,B; C; t)dt (13)

Proof. Starting right-side of the equation in (13) and using Beta matrix function in [12], theorem can be proved.

Theorem 4.2. Let A and B be matrices inCN×N whose eigenvalues, z, all satisfy Re(z) > −1.Also, let M be matrix in
CN×N whose eigenvalues, z, all satisfy Re(z) > 0 and these matrices be commutative. JMP satisfy following equalities:

(i) (1 − x)A+MP(A+M,B−M)
n (x)

[
P(A+M,B−M)

n (1)
]−1
=

Γ(A +M + I)Γ−1(A + I)Γ−1(M)
∫ 1

x
(1 − y)AP(A,B)

n (y)
[
P(A,B)

n (1)
]−1

(y − x)M−Idy

where Re(λ) > −1 and Re(µ) > −1 for ∀λ ∈ σ(A +M) and ∀µ ∈ σ(B −M).

(ii) (1 + x)B+MP(A−M,B+M)
n (x)

[
P(B+M,A−M)

n (1)
]−1
=

Γ(B +M + I)Γ−1(B + I)Γ−1(M)
∫ x

−1
(1 + y)BP(A,B)

n (y)
[
P(B,A)

n (1)
]−1

(x − y)M−Idy

where Re(λ) > −1 and Re(µ) > −1 for ∀λ ∈ σ(A −M) and ∀µ ∈ σ(B +M).

(iii) (1 − x)A+M (1 + x)−A−nI−IP(A+M,B)
n (x)

[
P(A+M,B)

n (1)
]−1
=

2MΓ(A +M + I)Γ−1(A + I)Γ−1(M)
∫ 1

x
(1 − y)A(1 + y)−A−M−nI−IP(A,B)

n (y)
[
P(A,B)

n (1)
]−1

(y − x)M−Idy

where Re(λ) > −1 for ∀λ ∈ σ(A +M).

(iv) (1 + x)B+M(1 − x)−B−nI−IP(A,B+M)
n (x)

[
P(B+M,A)

n (1)
]−1
=

2MΓ(B +M + I)Γ−1(B + I)Γ−1(M)
∫ x

−1
(1 + y)B(1 − y)−B−M−nI−IP(A,B)

n (y)
[
P(B,A)

n (1)
]−1

(x − y)M−Idy

where Re(λ) > −1 for ∀λ ∈ σ(B +M).

Proof. (i) To prove (i), taking A→ −nI , B→ A+ B+ (n + 1) I , C→ A + I , x→ 1−x
2 and t→ 1−y

2 in Theorem 4.1.

(ii) Taking A → B and B → A and (−x) instead of x and (−y) instead of y in equation (i) and using Theorem
2.1(iii), which completes of proof (ii).

(iii) Taking x→ x
x−1 , t→ t

t−1 and B→ C − B in Theorem 4.1, then taking A→ −nI , B→ A + B + (n + 1) I ,
C→ A + I , x→ 1−x

2 and t→ 1−y
2 , theorem can be proved.

(iv) Taking A → B and B → A and (−x) instead of x and (−y) instead of y in equation (iii) , using Theorem
2.1(iii), we complete the proof.
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[4] R. Aktaş, B. Çekim and R. Şahin. The matrix version for the multivariable Humbert polynomials. Miskolc Mathematical Notes

13(2)(2012), 197–208.
[5] G. Andrews, R. Askey and R. Roy. Special Functions. Cambridge University Press, UK, 1999.
[6] A. G. Constantine and R. J. Muirhead. Partial differential equations for hypergeometric functions of two argument matrix. J.

Mult. Anal., 3 (1972).
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