Filomat 27:4 (2013), 713–719 DOI 10.2298/FIL1304713C Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Some New Results for Jacobi Matrix Polynomials

Bayram ÇEKİM^a, Abdullah ALTIN^b, Rabia AKTAŞ^c

 ^aGazi University, Faculty of Science, Department of Mathematics Teknikokullar TR-06500, Ankara, TURKEY.
 ^bAnkara University, Faculty of Science, Department of Mathematics Tandoğan TR-06100, Ankara, TURKEY.
 ^cAnkara University, Faculty of Science, Department of Mathematics Tandoğan TR-06100, Ankara, TURKEY.

Abstract. The main aim of this paper is to obtain some recurrence relations and generating matrix function for Jacobi matrix polynomials (JMP). Also, various integral representations satisfied by JMP are derived.

1. Introduction

Special matrix functions seen on statistics, Lie group theory and number theory are well known in [6, 16]. In the recent papers, matrix polynomials have significant emergent in [7–9, 11–14] and some results in the theory of classical orthogonal polynomials have been extended to orthogonal matrix polynomials in [1–4, 7, 8, 15]. In [13], these polynomials are orthogonal as examples of right orthogonal matrix polynomials sequences for appropriate right matrix moment functionals of integral type. Jacobi matrix polynomials have been introduced and studied in [8] for matrices in $\mathbb{C}^{N\times N}$ whose eigenvalues, *z*, all satisfy Re(z) > -1. Our main aim in this paper is to prove new properties for the Jacobi matrix polynomials. The structure of this paper is the following:

In section 2, recurrence relations for Jacobi matrix polynomials (JMP) are given. A generating matrix function for JMP is also obtained in section 3. Furthermore, we show the integral representations for JMP.

Throughout this paper, for a matrix A in $\mathbb{C}^{N\times N}$, its spectrum $\sigma(A)$ denotes the set of all eigenvalues of A. If f(z) and g(z) are holomorphic functions of the complex variable z, which are defined in an open set Ω of the complex plane and A and B are matrices in $\mathbb{C}^{N\times N}$ with $\sigma(A) \subset \Omega$ and $\sigma(B) \subset \Omega$, then from the properties of the matrix functional calculus in [10], it follows that

$$f(A)g(B) = g(B)f(A)$$

where AB = BA.

The Jacobi matrix polynomials have been given in [8], $P_n^{(A,B)}(x)$ for parameter matrices *A* and *B* whose eigenvalues, *z*, all satisfy Re(z) > -1. For $n \in \mathbb{N}$, the *n*-th Jacobi matrix polynomial $P_n^{(A,B)}(x)$ is defined by

$$P_n^{(A,B)}(x) = \frac{1}{n!} F\left(A + B + (n+1)I, -nI; A + I; \frac{1-x}{2}\right) (A+I)_n$$
(1)

Keywords. Jacobi Matrix Polynomials; Recurrence Relation; Generating Matrix Function; Integral Representation. Received: 06 August 2011; Accepted: 26 July 2012

²⁰¹⁰ Mathematics Subject Classification. Primary 33C25; Secondary 15A60

Communicated by Gradimir Milovanovic

Email addresses: bayramcekim@gazi.edu.tr (Bayram ÇEKİM), altin@science.ankara.edu.tr (Abdullah ALTIN), raktas@science.ankara.edu.tr (Rabia AKTAŞ)

or

$$P_n^{(A,B)}(x) = \frac{(-1)^n}{n!} F\left(A + B + (n+1)I, -nI; B + I; \frac{1+x}{2}\right) (B+I)_n$$
(2)

where hypergeometric matrix function F(A', B'; C'; z) has been given in the form [11]

$$F(A',B';C';z) = \sum_{k=0}^{\infty} \frac{(A')_k (B')_k}{k!} \left[(C')_k \right]^{-1} z^k$$
(3)

for matrices A', B' and C' in $\mathbb{C}^{N \times N}$ such that C' + kI is invertible for all integer $k \ge 0$ and for |z| < 1. Here

$$(A')_{k} = A'(A' + I)(A' + 2I)...(A' + (k - 1)I); \ k \ge 1; \ (A')_{0} = I.$$

$$(4)$$

These polynomials have the following Rodrigues formula:

$$P_n^{(A,B)}(x) = \frac{(-1)^n}{2^n n!} (1-x)^{-A} (1+x)^{-B} \frac{d^n}{dx^n} \left[(1-x)^{A+nI} (1+x)^{B+nI} \right].$$
(5)

Let *P* and *Q* be positive stable matrices in $\mathbb{C}^{N \times N}$, then Beta matrix function in [12] is defined by

$$\mathcal{B}(P,Q) = \int_0^1 t^{P-I} (1-t)^{Q-I} dt$$

If *P*, *Q* and *P* + *Q* are positive stable matrices in $\mathbb{C}^{N \times N}$ and *PQ* = *QP*, then

$$\mathcal{B}(P,Q) = \Gamma(P)\Gamma(Q)\Gamma^{-1}(P+Q)$$

[12]. Furthermore, in [8], the reciprocal scalar Gamma function, $\Gamma^{-1}(z) = 1/\Gamma(z)$, is an entire function of the complex variable *z*. Thus, for any $C \in \mathbb{C}^{N \times N}$, the Riesz-Dunford functional calculus [10] shows that $\Gamma^{-1}(C)$ is well defined and is, indeed, the inverse of $\Gamma(C)$. Hence: if $C \in \mathbb{C}^{N \times N}$ is such that C + nI is invertible for every integer $n \ge 0$, then

$$(C)_n = \Gamma(C + nI)\Gamma^{-1}(C).$$
(6)

Lemma 1.1. Assume that $\Phi(y)$ is analytic in a neighborhood of y = x,

$$r = \frac{y - x}{\Phi(y)} = \sum_{n=1}^{\infty} a_n (y - x)^n , \ a_1 \neq 0$$
(7)

and f is analytic in a neighborhood of y = x. Then f(y) can be expanded in powers of r :

$$f(y) = f(x) + \sum_{n=1}^{\infty} \frac{r^n}{n!} \frac{d^{n-1}}{dx^{n-1}} \left(f'(x) (\Phi(x))^n \right)$$
(8)

in [5].

2. Recurrence Relations for Jacobi Matrix Polynomials

In this section, some recurrence relations satisfied by Jacobi matrix polynomials (JMP) are given.

714

Theorem 2.1. Let A and B be matrices in $\mathbb{C}^{N \times N}$ whose eigenvalues, z, all satisfy Re(z) > -1. JMP satisfy

(i)
$$\frac{d}{dx}P_n^{(A,B)}(x) = \frac{(n+1)I + A + B}{2}P_{n-1}^{(A+I,B+I)}(x),$$

(ii) $\frac{d^k}{dx^k}P_n^{(A,B)}(x) = \frac{((n+1)I + A + B)_k}{2^k}P_{n-k}^{(A+kI,B+kI)}(x)$

for $0 \le k \le n$,

(iii)
$$P_n^{(A,B)}(-x) = (-1)^n P_n^{(B,A)}(x).$$

Proof. (i) By using (1), it can be proved.

(ii) It is enough to use (i).

(iii) Taking (-x) instead of *x* in (2), we have desired relation. \Box

For $n \in \mathbb{N}$ and AB = BA, the *n*-th Jacobi matrix polynomial $P_n^{(A,B)}(x)$ is defined by

$$P_n^{(A,B)}(x) = \frac{1}{n!} \left(\frac{x+1}{2}\right)^n F\left(-(B+nI), -nI; A+I; \frac{x-1}{x+1}\right) (A+I)_n$$
(9)

or

$$P_n^{(A,B)}(x) = \frac{1}{n!} \left(\frac{x-1}{2}\right)^n F\left(-(A+nI), -nI; B+I; \frac{x+1}{x-1}\right) (B+I)_n$$
(10)

[3]. With the help of these equalities, we can give the following theorem:

Theorem 2.2. Let A and B be matrices in $\mathbb{C}^{N \times N}$ whose eigenvalues, z, all satisfy Re(z) > -1. For the Jacobi matrix polynomials (JMP), the following recurrence relations

$$(x+1)\frac{d}{dx}P_n^{(A,B)}(x) = nP_n^{(A,B)}(x) + (B+nI)P_{n-1}^{(A+I,B)}(x)$$
(11)

and

$$(x-1)\frac{d}{dx}P_n^{(A,B)}(x) = nP_n^{(A,B)}(x) - (A+nI)P_{n-1}^{(A,B+I)}(x)$$
(12)

hold.

Proof. Differentiating (9) with respect to *x*, we can write that

$$\frac{d}{dx}P_n^{(A,B)}(x) = n(x+1)^{-1}P_n^{(A,B)}(x) + (B+nI)\frac{(x+1)^{-1}}{(n-1)!}\left(\frac{x+1}{2}\right)^{n-1}$$
$$\times \sum_{k=0}^{\infty} \frac{(-(n-1)I)_k (-(B+(n-1)I))_k \left[(A+2I)_k\right]^{-1}}{k!} \left(\frac{x-1}{x+1}\right)^k (A+2I)_{n-1}$$
$$= n(x+1)^{-1}P_n^{(A,B)}(x) + (B+nI)(x+1)^{-1}P_{n-1}^{(A+I,B)}(x).$$

Therefore, we obtain

$$(x+1)\frac{d}{dx}P_n^{(A,B)}(x) = nP_n^{(A,B)}(x) + (B+nI)P_{n-1}^{(A+I,B)}(x).$$

Similarly, if we differentiate (10) with respect to *x* and use (10) again, we find the second relation. \Box

Corollary 2.3. As a consequence of Theorem 2.1(i), (11) and (12), we have the following recurrence relations:

$$2\frac{d}{dx}P_n^{(A,B)}(x) = (B+nI)P_{n-1}^{(A+I,B)}(x) + (A+nI)P_{n-1}^{(A,B+I)}(x)$$

and

$$(A + B + (n + 2)I) P_n^{(A+I,B+I)}(x) = (B + (n + 1)I) P_n^{(A+I,B)}(x) + (A + (n + 1)I) P_n^{(A,B+I)}(x)$$

Lemma 2.4. Let A', B' and C' be matrices in $\mathbb{C}^{N \times N}$ and A' and B' be commutative. For the hypergeometric matrix function F(A', B'; C'; z), the equality

$$F(A',B';C';z) = F(A'-I,B'+I;C';z) + (B'+I-A')zF(A',B'+I;C'+I;z)(C')^{-1}$$

holds where A' - I, B' + kI and C' + kI are invertible for all integer $k \ge 0$.

Proof. If we rearrange equation in (3), we can write that

F(A',B';C';z)

$$= \sum_{k=0}^{\infty} \frac{(A')_{k} (B')_{k}}{k!} [(C')_{k}]^{-1} z^{k}$$

$$= \sum_{k=0}^{\infty} (A' + (k-1)I)(A' - I)^{-1}B'(B' + kI)^{-1}(A' - I)_{k} (B' + I)_{k} [(C')_{k}]^{-1} \frac{z^{k}}{k!}$$

$$= \sum_{k=0}^{\infty} \left[I - k(A' - I)^{-1}(B' + kI)^{-1} (A' - B' - I) \right] (A' - I)_{k} (B' + I)_{k} [(C')_{k}]^{-1} \frac{z^{k}}{k!}$$

$$= \sum_{k=0}^{\infty} (A' - I)_{k} (B' + I)_{k} [(C')_{k}]^{-1} \frac{z^{k}}{k!} + (B' + I - A')z \sum_{k=0}^{\infty} (A')_{k} (B' + I)_{k} [(C' + I)_{k}]^{-1} (C')^{-1} \frac{z^{k}}{k!}$$

$$= F (A' - I, B' + I; C'; z) + (B' + I - A') zF (A', B' + I; C' + I; z) (C')^{-1}$$

which completes the proof. \Box

Theorem 2.5. Let A and B be matrices in $\mathbb{C}^{N \times N}$ whose eigenvalues, z, all satisfy Re(z) > -1. JMP satisfy as follows:

.

$$P_n^{(A,B)}(x)(A + (n+1)I) = (n+1)P_{n+1}^{(A,B)}(x) + (A + B + 2(n+1)I)\frac{(1-x)}{2}P_n^{(A+I,B)}(x)$$

where A + B + kI is invertible for all integer $k \ge 0$.

Proof. In Lemma 2.4, taking

$$A' = -nI$$
, $B' = A + B + (n + 1)I$, $C' = A + I$, $z = \frac{1}{2}(1 - x)$,

we have

$$F\left(-nI, A + B + (n+1)I; A + I; \frac{1-x}{2}\right)$$

= $F\left(-(n+1)I, A + B + (n+2)I; A + I; \frac{1-x}{2}\right)$
+ $\frac{1}{2}(1-x)(A + B + 2(n+1)I)F\left(-nI, A + B + (n+2)I; A + 2I; \frac{1-x}{2}\right)(A + I)^{-1}.$

With the help of (1), we obtain

$$P_n^{(A,B)}(x)(A + (n+1)I) = (n+1)P_{n+1}^{(A,B)}(x) + (A + B + 2(n+1)I)\frac{(1-x)}{2}P_n^{(A+I,B)}(x).$$

If the hypergeometric matrix function F(A', B'; C'; z) given by (3) is rearranged, we can give the following lemma.

Lemma 2.6. Let A', B' and C' be matrices in $\mathbb{C}^{N \times N}$ and A' and B' be commutative. For the hypergeometric matrix function F(A', B'; C'; z), the equality

$$(A' - B')F(A', B'; C'; z) = A'F(A' + I, B'; C'; z) - B'F(A', B' + I; C'; z)$$

holds.

Theorem 2.7. Let A and B be matrices in $\mathbb{C}^{N \times N}$ whose eigenvalues, z, all satisfy $\operatorname{Re}(z) > -1$. We have for JMP

$$P_{n-1}^{(A,B+I)}(x)(A+nI) + (A+B+(n+1)I)P_n^{(A,B+I)}(x) = (A+B+(2n+1)I)P_n^{(A,B)}(x).$$

Proof. In Lemma 2.6, getting

$$A' = -nI$$
, $B' = A + B + (n + 1)I$, $C' = A + I$, $z = \frac{1}{2}(1 - x)$,

and using (1), we have desired recurrence relation. \Box

Corollary 2.8. As a result of Corollary 2.3 and Theorem 2.7, we can give as follows:

$$P_{n-1}^{(A+I,B+I)}(x)(A+(n+1)I) = (A+(n+1)I)P_n^{(A+I,B)}(x) - (A+(n+1)I)P_n^{(A,B+I)}(x)$$

where A and B are matrices in $\mathbb{C}^{N \times N}$ whose eigenvalues, z, all satisfy Re(z) > -1.

3. Generating Matrix Function for Jacobi Matrix Polynomials

In this section, a generating matrix function satisfied by JMP is given.

Theorem 3.1. Assume that A and B are commutative matrices in $\mathbb{C}^{N \times N}$ whose eigenvalues, *z*, all satisfy Re(z) > -1. A generating matrix function for JMP is

$$\sum_{n=0}^{\infty} P_n^{(A,B)}(x)r^n = 2^{A+B}R^{-1}(1-r+R)^{-A}(1+r+R)^{-B}$$

where $R = (1 - 2xr + r^2)^{1/2}$ and |r| < 1.

Proof. Taking $\Phi(y) = \frac{y^2-1}{2}$ in Lemma 1.1, we have $y = \frac{1}{r} - \frac{R}{r}$. Taking $(1 - x)^A (1 + x)^B$ instead of f'(x) in (8) and differentiating (8) with respect to x, we get

$$(1-y)^{A}(1+y)^{B}\frac{1}{R} = (1-x)^{A}(1+x)^{B} + \sum_{n=1}^{\infty} \frac{r^{n}}{n!} \frac{d^{n}}{dx^{n}} \left((1-x)^{A}(1+x)^{B} \left(\frac{x^{2}-1}{2} \right)^{n} \right).$$

Using (5) in this equation and multiplying $(1 - x)^{-A}(1 + x)^{-B}$, theorem can be proved. \Box

4. Integral Representations for Jacobi Matrix Polynomials

In this section, integral representations are given for JMP.

Theorem 4.1. Let A, B, C and M be matrices in $\mathbb{C}^{N \times N}$ satisfying following conditions $Re(\mu) > 0$ for all eigenvalue $\mu \in \sigma(C)$, $Re(\mu) > 0$ for all eigenvalue $\mu \in \sigma(M)$, C + M + kI is invertible for all natural number k, and these matrices are commutative. Then

$$x^{C+M-I} F(A, B; C+M; x) = \Gamma(C+M)\Gamma^{-1}(C)\Gamma^{-1}(M) \int_0^x (x-t)^{M-I} t^{C-I} F(A, B; C; t) dt$$
(13)

Proof. Starting right-side of the equation in (13) and using Beta matrix function in [12], theorem can be proved. \Box

Theorem 4.2. Let A and B be matrices in $\mathbb{C}^{N \times N}$ whose eigenvalues, z, all satisfy $\operatorname{Re}(z) > -1$. Also, let M be matrix in $\mathbb{C}^{N \times N}$ whose eigenvalues, z, all satisfy $\operatorname{Re}(z) > 0$ and these matrices be commutative. JMP satisfy following equalities:

(i)
$$(1-x)^{A+M}P_n^{(A+M,B-M)}(x)\left[P_n^{(A+M,B-M)}(1)\right]^{-1} =$$

$$\Gamma(A+M+I)\Gamma^{-1}(A+I)\Gamma^{-1}(M)\int_{x}^{1}(1-y)^{A}P_{n}^{(A,B)}(y)\left[P_{n}^{(A,B)}(1)\right]^{-1}(y-x)^{M-I}dy$$

where $Re(\lambda) > -1$ and $Re(\mu) > -1$ for $\forall \lambda \in \sigma(A + M)$ and $\forall \mu \in \sigma(B - M)$.

$$(ii) (1+x)^{B+M} P_n^{(A-M,B+M)}(x) \left[P_n^{(B+M,A-M)}(1) \right]^{-1} = \Gamma(B+M+I)\Gamma^{-1}(B+I)\Gamma^{-1}(M) \int_{-1}^{x} (1+y)^B P_n^{(A,B)}(y) \left[P_n^{(B,A)}(1) \right]^{-1} (x-y)^{M-I} dy$$

where $Re(\lambda) > -1$ and $Re(\mu) > -1$ for $\forall \lambda \in \sigma(A - M)$ and $\forall \mu \in \sigma(B + M)$.

$$(iii) (1-x)^{A+M} (1+x)^{-A-nI-I} P_n^{(A+M,B)}(x) \left[P_n^{(A+M,B)}(1) \right]^{-1} = 2^M \Gamma(A+M+I) \Gamma^{-1}(A+I) \Gamma^{-1}(M) \int_x^1 (1-y)^A (1+y)^{-A-M-nI-I} P_n^{(A,B)}(y) \left[P_n^{(A,B)}(1) \right]^{-1} (y-x)^{M-I} dy$$

where $Re(\lambda) > -1$ for $\forall \lambda \in \sigma(A + M)$.

$$(iv) (1+x)^{B+M} (1-x)^{-B-nI-I} P_n^{(A,B+M)}(x) \left[P_n^{(B+M,A)}(1) \right]^{-1} = 2^M \Gamma(B+M+I) \Gamma^{-1}(B+I) \Gamma^{-1}(M) \int_{-1}^x (1+y)^B (1-y)^{-B-M-nI-I} P_n^{(A,B)}(y) \left[P_n^{(B,A)}(1) \right]^{-1} (x-y)^{M-I} dy$$

where $Re(\lambda) > -1$ for $\forall \lambda \in \sigma(B + M)$.

Proof. (i) To prove (i), taking $A \rightarrow -nI$, $B \rightarrow A + B + (n+1)I$, $C \rightarrow A + I$, $x \rightarrow \frac{1-x}{2}$ and $t \rightarrow \frac{1-y}{2}$ in Theorem 4.1.

(*ii*) Taking $A \rightarrow B$ and $B \rightarrow A$ and (-x) instead of x and (-y) instead of y in equation (*i*) and using Theorem 2.1(*iii*), which completes of proof (*ii*).

(iii) Taking $x \to \frac{x}{x-1}$, $t \to \frac{t}{t-1}$ and $B \to C - B$ in Theorem 4.1, then taking $A \to -nI$, $B \to A + B + (n+1)I$, $C \to A + I$, $x \to \frac{1-x}{2}$ and $t \to \frac{1-y}{2}$, theorem can be proved.

(iv) Taking $A \to B$ and $B \to A$ and (-x) instead of x and (-y) instead of y in equation (iii), using Theorem 2.1(iii), we complete the proof. \Box

References

- A. Altın and B. Çekim. Generating matrix functions for Chebyshev matrix polynomials of the second kind. Hacettepe Journal of Mathematics and Statistics 41(1)(2012), 25–32.
- [2] A. Altın and B. Çekim. Some properties associated with Hermite matrix polynomials. Util. Math. 88 (2012), 171–181.
- [3] A. Altın, B. Çekim and E. Erkuş- Duman. Families of generating functions for the Jacobi and related matrix polynomials. Ars Combinatoria (accepted for publication).
- [4] R. Aktaş, B. Çekim and R. Şahin. The matrix version for the multivariable Humbert polynomials. Miskolc Mathematical Notes 13(2)(2012), 197–208.
- [5] G. Andrews, R. Askey and R. Roy. Special Functions. Cambridge University Press, UK, 1999.
- [6] A. G. Constantine and R. J. Muirhead. Partial differential equations for hypergeometric functions of two argument matrix. J. Mult. Anal., 3 (1972).
- [7] E. Defez and L. Jódar. Some applications of the Hermite matrix polynomials series expansions. J. Comp. Appl. Math., 99 (1998), 105–117.
- [8] E. Defez, L. Jódar and A. Law. Jacobi matrix differential equation, polynomial solutions and their properties. Comput. Math. Appl., 48 (2004), 789-803.
- [9] E. Erkuş-Duman. Matrix extension of polynomials in several variables. Util Math., 85 (2011), 161-180.
- [10] N. Dunford and J. Schwartz. Linear Operators. Vol. I, Interscience, New York, 1957.
- [11] L. Jódar and J. C. Cortés. On the hypergeometric matrix function. J. Comput. Appl. Math., 99 (1998), 205-217.
- [12] L. Jódar and J. C. Cortés. Some properties of Gamma and Beta matrix functions. Appl. Math. Lett. 11 (1) (1998), 89-93.
- [13] L. Jódar, E. Defez and E. Ponsoda. Orthogonal matrix polynomials with respect to linear matrix moment functionals: Theory and applications. J. Approx. Theory Appl., 12 (1) (1996), 96–115.
- [14] L. Jódar and E. Defez. A connection between Laguerre's and Hermite's matrix polynomials. Appl. Math. Lett. 11 (1) (1998), 13–178.
- [15] F. Taşdelen, B. Çekim and R. Aktaş. On a multivariable extension of Jacobi matrix polynomials, Comput. Math. Appl., 61(9)(2011), 2412–2423.
- [16] A. Terras. Special functions for the symmetric space of positive matrices. SIAM J. Math. Anal., 16 (1985), 620-640.