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Abstract. A 2p-times continuously differentiable complex-valued function f = u+ iv in a simply connected
domainΩ ⊆ C is p-harmonic if f satisfies the p-harmonic equation ∆p f = 0. In this paper, we investigate the
properties of p-harmonic mappings in the unit disk |z| < 1. First, we discuss the convexity, the starlikeness
and the region of variability of some classes of p-harmonic mappings. Then we prove the existence of
Landau constant for the class of functions of the form D f = z fz − z fz, where f is p-harmonic in |z| < 1. Also,
we discuss the region of variability for certain p-harmonic mappings. At the end, as a consequence of the
earlier results of the authors, we present explicit upper estimates for Bloch norm for bi- and tri-harmonic
mappings.

1. Introduction and Preliminaries

A complex-valued function f = u+ iv in a simply connected domainΩ ⊆ C is called p-harmonic if u and
v are p-harmonic in Ω, i.e. f satisfies the p-harmonic equation ∆p f = 0, where

∆p f = ∆ · · ·∆︸ ︷︷ ︸
p

f ,

where p is a positive integer and ∆ represents the Laplacian operator

∆ := 4
∂2

∂z∂z
=
∂2

∂x2 +
∂2

∂y2 .

Throughout this paper we consider p-harmonic mappings of the unit diskD = {z ∈ C : |z| < 1}. Obviously,
when p = 1 (resp. p = 2), f is harmonic (resp. biharmonic). The properties of harmonic [11, 15] and
biharmonic [1–3, 18, 19] mappings have been investigated by many authors. Concerning p-harmonic
mappings, we easily have the following characterization.
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Research supported by NSFs of Chna (No: 11071063), the Construct Program of the Key Discipline in Hunan Province and the

Start Project of Hengyang Normal University (No. 12B34).
Email addresses: mathechen@126.com (SH. Chen), samy@iitm.ac.in (S. Ponnusamy), xtwang@hunnu.edu.cn (X. Wang)



SH. Chen, S. Ponnusamy and X. Wang / Filomat 27:4 (2013), 577–591 578

Proposition 1.1. A mapping f is p-harmonic inD if and only if f has the following representation:

f (z) =
p∑

k=1

|z|2(k−1)Gp−k+1(z), (1)

where Gp−k+1 is harmonic for each k ∈ {1, . . . , p}.

Proof. We only need to prove the necessity since the proof for the sufficiency part is obvious. Again, as the
cases p = 1, 2 are well-known, it suffices to prove the result for p ≥ 3. We shall prove the proposition by the
method of induction. So, we assume that the proposition is true for p = n (≥ 3).

Let F be an (n+ 1)-harmonic mapping inD. By assumption, ∆F is n-harmonic and so can be represented
as

∆F(z) =
n∑

k=1

|z|2(k−1)Gn−k+1(z),

where Gn−k+1 (1 ≤ k ≤ n) are harmonic functions with

Gn−k+1(z) = a0,n−k+1 +

∞∑
j=1

a j,n−k+1z j +

∞∑
j=1

b j,n−k+1z j for k ∈ {1, . . . ,n}.

Then ∫ z

0

∫ z

0
∆F dz dz =

n∑
k=1

|z|2kTp−k+1(z) + 1(z),

where

Tp−k+1(z) =
n∑

k=1

a0,n−k+1

k2 +

∞∑
j=1

a j,n−k+1

k(k + j)
z j +

∞∑
j=1

b j,n−k+1

k(k + j)
z j


and 1 is a harmonic function in D. A rearrangement of the series in the sum shows that (1) holds for
p = n + 1.

We remark that the representation (1) continues to hold even if f is p-harmonic in a simply connected
domain Ω.

For a sense-preserving C1-mapping (i.e. continuously differentiable), we let

λ f = | fz| − | fz| and Λ f = | fz| + | fz|

so that the Jacobian J f of f takes the form

J f = λ fΛ f = | fz|2 − | fz|2 > 0.

In [4], the authors obtained sufficient conditions for the univalence of C1-functions. Now we introduce the
concepts of starlikeness and convexity of C1-functions.

Definition 1.2. A C1-mapping f with f (0) = 0 is called starlike if f maps D univalently onto a domain Ω that is
starlike with respect to the origin, i.e. for every w ∈ Ω the line segment [0,w] joining 0 and w is contained inΩ. It is
known that f is starlike if it is sense-preserving, f (0) = 0, f (z) , 0 for all z ∈ D \ {0} and

∂
∂t

(
arg f (reit)

)
:= Re

(
D f (z)

f (z)

)
> 0 for all z = reit ∈ D \ {0},

where D f = z fz − z fz (cf. [23, Theorem 1]).
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Definition 1.3. Let f and D f belong to C1(D). Then we say that f is convex inD if it is sense-preserving, f (0) = 0,
f (z) ·D f (z) , 0 for all z ∈ D \ {0} and

Re
(

D2 f (z)
D f (z)

)
> 0 for all z ∈ D \ {0}.

As arg D f (reit) represents the argument of the outer normal to the curve Cr = { f (reiθ) : 0 ≤ θ < 2π} at
the point f (reit), the last condition gives that

∂
∂t

(
arg D f (reit)

)
= Re

(
D2 f (z)
D f (z)

)
> 0 for all z = reit ∈ D \ {0},

showing that the curve Cr is convex for each r ∈ (0, 1) (see [23, Theorem 2]). Non-analytic starlike and
convex functions were studied by Mocanu in [23]. Harmonic starlike and harmonic convex functions were
systematically studied by Clunie and Sheil-Small [11], and these two classes of functions have been studied
extensively by many authors. See for instance, the book by Duren [15] and the references therein.

The complex differential operator

D = z
∂

∂z
− z
∂

∂z
defined by Mocanu [23] on the class of complex-valued C1-functions satisfies the usual product rule:

D(a f + b1) = aD( f ) + bD(1) and D( f1) = f D(1) + 1D( f ),

where a, b are complex constants, f and 1 are C1-functions. The operator D possesses a number of interesting
properties. For instance, the operator D preserves both harmonicity and biharmonicity (see also [3]). In the
case of p-harmonic mappings, we also have the following property of the operator D.

Proposition 1.4. D preserves p-harmonicity.

Proof. Let f be a p-harmonic mapping with the form

f (z) =
p∑

k=1

|z|2(k−1)Gp−k+1(z),

where each Gp−k+1(z) is harmonic in D for k ∈ {1, . . . , p}. As D
(
|z|2

)
= 0, the product rule shows that

D
(
|z|2(k−1)

)
= 0 for each k ∈ {1, . . . , p}. In view of this and the fact that D preserves harmonicity gives that

D( f (z)) =

p∑
k=1

[
|z|2(k−1)D(Gp−k+1(z)) +D(|z|2(k−1))Gp−k+1(z)

]
=

p∑
k=1

|z|2(k−1)D(Gp−k+1(z)).

One of the aims of this paper is to generalize the main results of Abdulhadi, et. al. [3] to the case of
p-harmonic mappings. The corresponding generalizations are Theorems 3.1 and 3.3.

The classical theorem of Landau for bounded analytic functions states that if f is analytic in D with
f (0) = f ′(0) − 1 = 0, and | f (z)| < M for z ∈ D, then f is univalent in the disk Dρ := {z ∈ C : |z| < ρ} and in
addition, the range f (Dρ) contains a disk of radius Mρ2 (cf. [20]), where

ρ =
1

M +
√

M2 − 1
.
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Recently, many authors considered Landau’s theorem for planar harmonic mappings (see for example,
[6, 8, 9, 13, 16, 22, 28]) and biharmonic mappings (see [1, 7, 8, 21]). In Section 4, we consider Landau’s
theorem for p-harmonic mappings with the form D( f ) when f belongs to certain classes of p-harmonic
mappings. Our results are Theorems 4.1 and 4.2.

In a series of papers the second author with Yanagihara and Vasudevarao (see [24, 25, 29, 30]) have
discussed the regions of variability for certain classes of univalent analytic functions inD. In Section 5 (see
Theorem 5.2), we solve a related problem for certain p-harmonic mappings. Finally, in Section 6, we present
explicit upper estimates for Bloch norm for bi- and tri-harmonic mappings (see Corollaries 6.2 and 6.3).

2. Lemmas

For the proofs of our main results we require a number of lemmas. We begin to recall the following
version of Schwarz lemma due to Heinz ([17, Lemma]) and Colonna [12, Theorem 3], see also [6, 8, 9].

Lemma 2.1. Let f be a harmonic mapping ofD such that f (0) = 0 and f (D) ⊂ D. Then

| f (z)| ≤ 4
π

arctan |z| ≤ 4
π
|z| for z ∈ D

and
Λ f (z) ≤ 4

π
1

(1 − |z|2)
for z ∈ D.

Lemma 2.2. ([22, Lemma 2.1]) Suppose that f (z) = h(z)+ 1(z) is a harmonic mapping ofD with h(z) =
∑∞

n=1 anzn

and 1(z) =
∑∞

n=1 bnzn for z ∈ D. If J f (0) = 1 and | f (z)| <M, then

|an|, |bn| ≤
√

M2 − 1, n = 2, 3, . . . ,

|an| + |bn| ≤
√

2M2 − 2, n = 2, 3, . . .

and

λ f (0) ≥ λ0(M) :=


√

2√
M2 − 1 +

√
M2 + 1

if 1 ≤M ≤M0,

π
4M

if M >M0,

(2)

where M0 =
π

2
4√

2π2−16
≈ 1.1296.

The following lemma concerning coefficient estimates for harmonic mappings is crucial in the proofs of
Theorems 3.1 and 3.3. This lemma has been proved by the authors in [10] with an additional assumption
that f (0) = 0. However, for the sake of clarity, we present a slightly different proof than that in [10].

Lemma 2.3. Let f = h + 1 be a harmonic mapping of D such that | f (z)| < M with h(z) =
∑∞

n=0 anzn and 1(z) =∑∞
n=1 bnzn. Then |a0| ≤M and for any n ≥ 1

|an| + |bn| ≤
4M
π
. (3)

The estimate (3) is sharp. The extremal functions are f (z) ≡M or

fn(z) =
2Mα
π

arg
(

1 + βzn

1 − βzn

)
,

where |α| = |β| = 1.



SH. Chen, S. Ponnusamy and X. Wang / Filomat 27:4 (2013), 577–591 581

Proof. Without loss of generality, we assume that | f (z)| < 1. For θ ∈ [0, 2π), let

vθ(z) = Im (eiθ f (z))

and observe that
vθ(z) = Im (eiθh(z) + e−iθ1(z)) = Im (eiθh(z) − e−iθ1(z)).

Because |vθ(z)| < 1, it follows that

eiθh(z) − e−iθ1(z) ≺ K(z) = λ +
2
π

log
(1 + zξ

1 − z

)
,

where ξ = e−iπIm(λ) and λ = eiθh(0) − e−iθ1(0). The superordinate function K(z) maps D onto a convex
domain with K(0) = λ and K′(0) = 2

π (1 + ξ), and therefore, by a theorem of Rogosinski [26, Theorem 2.3]
(see also [14, Theorem 6.4]), it follows that

|an − e−2iθbn| ≤
2
π
|1 + ξ| ≤ 4

π
for n = 1, 2, . . .

and the desired inequality (3), with M = 1, is a consequence of the arbitrariness of θ in [0, 2π).
For the proof of sharpness part, consider the functions

fn(z) =
2Mα
π

Im
(
log

1 + βzn

1 − βzn

)
, |α| = |β| = 1,

whose values are confined to a diametral segment of the diskDM. Also,

fn(z) =
2Mα

iπ

 ∞∑
k=1

1
2k − 1

(βzn)2k−1 −
∞∑

k=1

1
2k − 1

(βzn)2k−1

 ,
which gives

|an| + |bn| =
4M
π
.

The proof of the lemma is complete.

As an immediate consequence of Lemmas 2.2 and 2.3, we have

Corollary 2.4. Let f = h + 1 be a harmonic mapping ofD with h(z) =
∑∞

n=1 anzn, 1(z) =
∑∞

n=1 bnzn and | f (z)| ≤M.
If J f (0) = 1 and M ≥ π√

π2−8
, then for any n ≥ 2,

|an| + |bn| ≤
4M
π
≤
√

2M2 − 2.

3. The convexity and the starlikeness

The following simple result can be used to generate (harmonic) starlike and convex functions.

Theorem 3.1. Let f be a univalent p-harmonic mapping with the form

f (z) = G(z)
p∑

k=1

λk|z|2(k−1),

where G is a locally univalent harmonic mapping and λk (k = 1, . . . , p) are complex constants. Then we have the
following:
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(a)
D( f )

f
=

D(G)
G

and
D2( f ))
D( f )

=
D2(G))
D(G)

.

(b) f is convex (resp. starlike) if and only if G is convex (resp. starlike).

Proof. (a) The two equalities are immediate consequences of the formula

D
(
G(z)

p∑
k=1

λk|z|2(k−1)
)
= D(G(z))

p∑
k=1

λk|z|2(k−1).

So, we omit the details.
(b) It suffices to prove the case of convexity since the proof for the starlikeness is similar.
Let z = reit, where 0 < r < 1 and 0 ≤ t < 2π. Then

f (z) = G(z)
p∑

k=1

λk|z|2(k−1) = G(reiθ)
p∑

k=1

λkr2(k−1),

so that
∂ f (reit)
∂t

=
∂G(reit)
∂t

p∑
k=1

λkr2(k−1)

and
∂2 f (reit)
∂t2 =

∂2G(reit)
∂t2

p∑
k=1

λkr2(k−1).

Therefore Part (a) yields

∂
∂t

(
arg
∂ f (reit)
∂t

)
= Re

(D2( f )
D( f )

)
= Re

(D2(G)
D(G)

)
=
∂
∂t

(
arg
∂G(reit)
∂t

)
,

from which the proof of Part (b) of this theorem follows.

As an immediate consequence of Theorem 3.1(a), we easily have the following.

Corollary 3.2. Let f be a univalent p-harmonic mapping defined as in Theorem 3.1. If f is convex and D( f ) is
univalent, then D( f ) is starlike.

Abdulhadi, et. al. [3, Theorem 1] discussed the univalence and the starlikeness of biharmonic mappings
in D. A natural question is whether [3, Theorem 1] holds for p-harmonic mappings. The following result
gives a partial answer to this problem.

Theorem 3.3. Let f be a p-harmonic mapping ofD satisfying f (z) = |z|2(p−1)G(z), where G is harmonic, orientation
preserving and starlike. Then f is starlike univalent.

Proof. We see that the Jacobian J f of f is

J f = | fz|2 − | fz|2

= |z|4(p−1)(|Gz|2 − |Gz|2) + 2(p − 1)|z|4p−6|G|2Re
(

D(G)
G

)
≥ |z|4(p−1)(|Gz|2 − |Gz|2).

Hence J f (z) > 0 when 0 < |z| < 1 and obviously, J f (0) = 0. The univalence of f follows from a standard
argument as in the proof of [3, Theorem 1]. Finally, Theorem 3.1 implies that f is starlike.
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4. The Landau theorem

We now discuss the existence of the Laudau constant for two classes of p-harmonic mappings.

Theorem 4.1. Let f (z) =
∑p

k=1 |z|
2(k−1)Gp−k+1(z) be a p-harmonic mapping of D satisfying ∆Gp−k+1(z) = f (0) =

Gp(0) = J f (0)− 1 = 0 and for any z ∈ D, |Gp−k+1(z)| ≤M, where M ≥ 1. Then there is a constant ρ (0 < ρ < 1) such
that D( f ) is univalent inDρ, where ρ satisfies the following equation:

λ0(M) − T(M)
(1 − ρ)2

p∑
k=2

(2k − 1)ρ2(k−1) −
p∑

k=1

2T(M)ρ2k−1

(1 − ρ)3 − 16M
π2 s0 arctanρ = 0

with

s0 =

( √
17 − 1√
17 − 3

) √
2

5 −
√

17
≈ 4.1996,

T(M) =


√

2M2 − 2 if 1 ≤M ≤M1 :=
π√
π2 − 8

≈ 2.2976

4M
π

if M >M1

(4)

and λ0(M) is given by (2). Moreover, the range D( f )(Dρ) contains a univalent diskDR, where

R = ρ
[
λ0(M) −

p∑
k=2

T(M)ρ2(k−1)

(1 − ρ)2 − 16M
π2 s0 arctanρ

]
.

Proof. For each k ∈ {1, 2, . . . , p}, let

Gp−k+1(z) = a0,p−k+1 +

∞∑
j=1

a j,p−k+1z j +

∞∑
j=1

b j,p−k+1z j,

where a0,p = 0. We define the function H as

H = D

 p∑
k=1

|z|2(k−1)Gp−k+1

 = p∑
k=1

|z|2(k−1)D(Gp−k+1).

Using Lemmas 2.2, 2.3 and Corollary 2.4, we have

|an,p| + |bn,p| ≤ T(M),

where T(M) is given by (4), and

|a j,p−k+1| + |b j,p−k+1| ≤
4M
π

for j ≥ 1, n ≥ 2 and 2 ≤ k ≤ p.
We observe that

J f (0) = |(Gp)z(0)|2 − |(Gp)z(0)|2 = JGp (0) = 1

and hence by Lemmas 2.1 and 2.2, we have

λ f (0) ≥ λ0(M),

where λ0(M) is given by (2). Now, we define

q(x) =
2 − x2

(1 − x2)x
(0 < x < 1).
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Then there is an r0 =

√
5−
√

17
2 ≈ 0.66 such that

q(r0) = min
0<x<1

q(x) =
( √

17 − 1√
17 − 3

) √
2

5 −
√

17
= s0.

For each θ ∈ [0, 2π), the function

Gθ(z) = (Gp)z(z) − (Gp)(0) + ((Gp)z(z) − (Gp)z(0))ei(π−2θ)

is clearly a harmonic mapping ofD and satisfies Gθ(0) = 0.Moreover, it follows from Lemma 2.1 that

ΛGp (z) ≤ 4M
π

1
1 − |z|2 for z ∈ D.

In particular, this observation yields that

|Gθ(z)| ≤ ΛGp (z) + ΛGp (0) ≤ 4M
π

(
1 +

1
1 − |z|2

)
=

4M
π
|z|q(|z|) (5)

for all z ∈ D.

Since xq(x)− 1 = 1
1−x2 is an increasing function in the interval (0, 1), the inequality (5) shows that for any

z ∈ Dr0 ,

|Gθ(z)| ≤ 4M
π

m0,

where m0 = (2 − r2
0)/(1 − r2

0). Next, we consider the mapping F defined onD by

F(z) =
π

4Mm0
Gθ(r0z).

Applying Lemma 2.1 to the function F(z) yields that for z ∈ Dr0 ,

|Gθ(z)| ≤ 16M
π2 m0 arctan

( |z|
r0

)
≤ 16M
π2 s0 arctan |z|,

where s0 = m0/r0.

Now, we fix ρ with ρ ∈ (0, 1). To prove the univalency of H, we choose two distinct points z1, z2 in Dρ.
Let γ = {(z2 − z1)t + z1 : 0 ≤ t ≤ 1} and z2 − z1 = |z1 − z2|eiθ. We find that
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|H(z1) −H(z2)|

=
∣∣∣∣ ∫
γ

Hz(z) dz +Hz(z) dz
∣∣∣∣

≥
∣∣∣∣ ∫
γ
(Gp)z(0) dz − (Gp)z(0) dz

∣∣∣∣
−
∣∣∣∣ ∫
γ

p∑
k=2

|z|2(k−1)[z(Gp−k+1)z2 (z) dz − z(Gp−k+1)z2 (z) dz]
∣∣∣∣

−
∣∣∣∣ ∫
γ

p∑
k=2

(k − 1)|z|2(k−2)[z2(Gp−k+1)z(z) dz − z2(Gp−k+1)z(z) dz]
∣∣∣∣

−
∣∣∣∣ ∫
γ

p∑
k=2

k|z|2(k−1)[(Gp−k+1)z(z) dz − (Gp−k+1)z(z) dz]
∣∣∣∣

−
∣∣∣∣ ∫
γ
[(Gp)z(z) − (Gp)z(0)] dz − [(Gp)z(z) − (Gp)z(0)] dz

∣∣∣∣
≥ |z1 − z2|

{
λ f (0) − |Gθ(ρ)|

−
p∑

k=1

ρ2(k−1)
∞∑

n=2

n(n − 1)(|an,p−k+1| + |bn,p−k+1|)ρn−1

−
p∑

k=2

(2k − 1)ρ2(k−2)
∞∑

n=1

n(|an,p−k+1| + |bn,p−k+1|)ρn+1
}

> |z1 − z2|
[
λ0(M) − T(M)

(1 − ρ)2

p∑
k=2

(2k − 1)ρ2(k−1)

−
p∑

k=1

2T(M)ρ2k−1

(1 − ρ)3 − 16M
π2 s0 arctanρ

]
.

Let

P(ρ) = λ0(M) − T(M)
(1 − ρ)2

p∑
k=2

(2k − 1)ρ2(k−1) −
p∑

k=1

2T(M)ρ2k−1

(1 − ρ)3 − 16M
π2 s0 arctanρ.

Then it is easy to verify that P(ρ) is a decreasing function on the interval (0, 1),

lim
ρ→0+

P(ρ) = λ0(M) and lim
ρ→1−

P(ρ) = −∞.

Hence there exists a unique ρ0 in (0, 1) satisfying P(ρ0) = 0. This observation shows that |H(z1) −H(z2)| > 0
for arbitrary two distinct points z1, z2 in |z| < ρ0 which proves the univalency of D(F) inDρ0 .
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M p ρ = ρ(M, p) R = R(M, ρ(M, p)) ρ′ R′

1.1296 2 0.0714741 0.0101601 0.0420157 0.00945379
2 2 0.0206783 0.00227639 0.0139439 0.00164502

2.2976 2 0.0155966 0.00151523 0.0106132 0.00108021
3 2 0.00922255 0.00067425 0.00626141 0.000482413

1.1296 3 0.071463 0.0101647 – –
2 3 0.0206782 0.00227641 – –

2.2976 3 0.0155966 0.00151523 – –
3 3 0.00922254 0.000674251 – –

1.1296 4 0.0714629 0.0101647 – –
2 4 0.0206782 0.00227641 – –

2.2976 4 0.0155966 0.00151523 – –
3 4 0.00922254 0.000674251 – –

Table 1: Values of ρ and R for Theorem 4.1 for p = 2, and the corresponding values of ρ′ and R′ of [7, Theorem 1.1] (for p = 2)

For any z with |z| = ρ0, we have

|H(z)| =
∣∣∣∣ p∑

k=1

|z|2(k−1)[z(Gp−k+1)z(z) − z(Gp−k+1)z(z)]
∣∣∣∣

≥
∣∣∣∣z(Gp)z(0) − z(Gp)z(0)

∣∣∣∣
−
∣∣∣∣z[(Gp)z(z) − (Gp)z(0)] − z[(Gp)z(z) − (Gp)z(0)]

∣∣∣∣
−
∣∣∣∣ p∑

k=2

|z|2(k−1)[z(Gp−k+1)z(z) − z(Gp−k+1)z(z)]
∣∣∣∣

≥ ρ0

[
λ0(M) −

p∑
k=2

T(M)ρ2(k−1)
0

(1 − ρ0)2 − 16M
π2 s0 arctanρ0

]
= R

and the proof of the theorem is complete.

From Table 1, we see that Theorem 4.1 improves Theorem 1.1 of [7] for the case p = 2, and the results
for the rest of the values of p are new. In Table 1, third and fourth columns refer to values obtained from
Theorem 4.1 for cases p = 2, 3, 4 for certain choices of M, while the right two columns correspond to the
values obtained from [7, Theorem 1.1] for the case p = 2.

Theorem 4.2. Let f (z) = |z|2(p−1)G(z) be a p-harmonic mapping ofD satisfying G(0) = JG(0)−1 = 0 and |G(z)| ≤M,
where M ≥ 1 and G is harmonic. Then there is a constant ρ (0 < ρ < 1) such that D( f ) is univalent inDρ, where ρ
satisfies the following equation:

λ0(M) − 48M
π2 s0 arctanρ −

2T(M)ρ
(1 − ρ)3 = 0,

where the constants s0, λ0(M) and T(M) are the same as in Theorem 4.1. Moreover, the range D( f )(Dρ) contains a
univalent diskDR, where

R = ρ2p−1
[
λ0(M) − 16M

π2 s0 arctanρ
]
.

Especially, if M = 1, then G(z) = z, i.e. f (z) = |z|2(p−1)z which is univalent inD.
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Proof. Let G(z) =
∑∞

n=1 anzn +
∑∞

n=1 bnzn. Using Lemmas 2.2, 2.3 and Corollary 2.4, we have

|an| + |bn| ≤ T(M) for n ≥ 2.

Note that
JG(0) = |a1|2 − |b1|2 = 1

and hence, by Lemmas 2.1 and 2.2, we have

λG(0) ≥ λ0(M).

Next, we set H = D( f ) = |z|2(p−1)D(G) and fix ρ with ρ ∈ (0, 1). To prove the univalency of f , we choose two
distinct points z1, z2 inDρ. Let γ = {(z2 − z1)t + z1 : 0 ≤ t ≤ 1} and z2 − z1 = |z1 − z2|eiθ. Then

|H(z1) −H(z2)| =
∣∣∣∣∣∣
∫

[z1,z2]
Hz(z) dz +Hz(z) dz

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫

[z1,z2]
p|z|2(p−1)(Gz(z) dz − Gz(z) dz)

+|z|2(p−1)(zGz2 (z) dz − zGz2 (z) dz)

+(p − 1)|z|2(p−2)(z2Gz(z) dz − z2Gz(z) dz)
∣∣∣

≥
∣∣∣∣∣∣
∫

[z1,z2]

[
Gz(0)(p|z|2(p−1) dz + (p − 1)|z|2(p−2)z2 dz)

−Gz(0)(p|z|2(p−1) dz − (p − 1)|z|2(p−2)z2 dz)
] ∣∣∣∣

−p

∣∣∣∣∣∣
∫

[z1,z2]
|z|2(p−1)

[
(Gz(z) − Gz(0)) dz − (Gz(z) − Gz(0)) dz]

∣∣∣∣∣∣
−

∣∣∣∣∣∣(p − 1)
∫

[z1,z2]
|z|2(p−1)

[z
z

(Gz(z) − Gz(0)) dz

−z
z

(Gz(z) − Gz(0)) dz
]∣∣∣∣∣

−
∣∣∣∣∣∣
∫

[z1,z2]
|z|2(p−1)(zGz2 (z) dz − zGz2 (z) dz)

∣∣∣∣∣∣
≥ |z1 − z2|

( ∫ 1

0
|z|2(p−1)dt

) {
λ0(M) − 48M

π2 s0 arctanρ

−
∞∑

n=2

n(n − 1)(|an| + |bn|)ρn−1


> |z1 − z2|

( ∫ 1

0
|z|2(p−1)dt

) [
λ0(M) − 48M

π2 s0 arctanρ −
2T(M)ρ
(1 − ρ)3

]
.

Since there exists a unique ρ in (0, 1) which satisfies the following equation:

λ0(M) − 48M
π2 s0 arctanρ −

2T(M)ρ
(1 − ρ)3 = 0,

we see that H(z1) , H(z2) and so, H(z) is univalent for |z| < ρ0.
Furthermore, we observe that for any z with |z| = ρ0,

|H(z)| = ρ2(p−1)
0

∣∣∣zGz(0) − zGz(0) + z(Gz(z) − Gz(0)) − z(Gz(z) − Gz(0))
∣∣∣

≥ ρ
2p−1
0

[
λ0(M) − 16M

π2 s0 arctanρ0

]
= R.
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M p ρ = ρ(M, p) R = R(M, ρ(M, p)) ρ′ R′

1.1296 2 0.0281673 0.0000106985 0.0194864 3.54498×10−6

2 2 0.00856025 1.73218×10−7 0.00623202 6.5415×10−8

2.2976 2 0.00646284 6.4986×10−8 0.0047235 2.47902×10−8

3 2 0.0037942 1.00669×10−8 0.00277162 3.83502×10−9

1.1296 3 0.0281673 8.48819×10−9 – –
2 3 0.00856025 1.2693×10−11 – –

2.2976 3 0.00646284 2.71435×10−12 – –
3 3 0.0037942 1.44922×10−13 – –

Table 2: Values of ρ and R for Theorem 4.2 for p = 2, 3, and the corresponding values of ρ′ and R′ of [7, Theorem 1.2] (for p = 2)

The proof of the theorem is complete.

We remark that Theorem 4.2 is an improved version of [7, Theorem 1.2] when p = 2. In order to be more
explicit, we refer to Table 2 in which the third and fourth columns refer to values obtained from Theorem
4.2 for cases p = 2, 3 for certain choices of M, while the right two columns correspond to the values obtained
from [7, Theorem 1.2] for the case p = 2.

5. The Region of Variability

Definition 5.1. Let Hp denote the set of all p-harmonic mappings of the unit disk D with the normalization
fzp−1 (0) = (p − 1)! and | f (z)| ≤ 1 for |z| < 1. Here we prescribe thatH0 = ∅.

For a fixed point z0 ∈ D, let
Vp(z0) = { f (z0) : f ∈ Hp \ Hp−1}.

Now, we have

Theorem 5.2. (a) If p = 1, then V1(z0) = {1};
(b) If p ≥ 2, Vp(z0) = D.

Proof. We first prove (a). Let f ∈ H1 and f (z) =
∑∞

n=0 anzn +
∑∞

n=1 bnzn. By Parseval’s identity and the
hypotheses | f (z)| ≤ 1 and f (0) = 1, we have

lim
r→1−

1
2π

∫ 2π

0
| f (reiθ)|2 dθ = lim

r→1−

1
2π

∫ 2π

0

(
|h(reiθ)|2 + |1(reiθ)|2

)
dθ

= |a0|2 +
∞∑

n=1

(
|an|2 + |bn|2

)
≤ 1.

This inequality implies that for any n ≥ 1, an = bn = 0 which gives that f (z) ≡ 1 for z ∈ D. Thus, we have
V1(z0) = {1}.

In order to prove (b), we consider the function

ϕ(z) =
zp−1 − w

1 − wzp−1 = |z|
2(p−1)

∞∑
n=1

wnz(n−1)(p−1)
+ zp−1 − w −

∞∑
n=1

wn+1z(p−1)n,

where w ∈ D and p ≥ 2.
Then ϕzp−1 (0) = (p − 1)!, ∆pϕ = 0 and therefore, ϕ ∈ Hp \ Hp−1. For each fixed a ∈ D, z 7→ fa(z) =

(zp−1 − a)/(1 − azp−1) is a p-harmonic mapping and fa(D) ⊂ D.
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Obviously, a 7→ fa(z0) =
zp−1

0 −a

1−az0
p−1 is a conformal automorphism ofD and the image ofD under fa(z0) isD

itself. By hypotheses, we obtain that for any 1 ∈ Hp \ Hp−1, 1(z0) ∈ D. Hence V0(z0) coincides withD. The
proof of this theorem is complete.

By the method of proof used in Theorem 5.2(a), we obtain the following generalization of Cartan’s
uniqueness theorem (see [5] or [27, p. 23]) for harmonic mappings.

Theorem 5.3. Let f be a harmonic mapping inD with f (D) ⊆ D and fz(0) = 1. Then f (z) = z inD.

6. Estimates for Bloch norm for bi- and tri-harmonic mappings

In the case of p-harmonic Bloch mappings, the authors in [10] obtained the following result.

Theorem 6.1. Let f be a p-harmonic mapping inD of the form (1) satisfying B f < ∞, where

B f := sup
z,w∈D, z,w

| f (z) − f (w)|
ρ(z,w)

< ∞ with ρ(z,w) =
1
2

log
(

1 + | z−w
1−zw |

1 − | z−w
1−zw |

)
.

Then

B f := sup
z∈D

(1 − |z|2)


∣∣∣∣∣∣∣

p∑
k=1

|z|2(k−1)(Gp−k+1)z(z)

+

p∑
k=1

(k − 1)z|z|2(k−2)Gp−k+1(z)

∣∣∣∣∣∣∣ +
∣∣∣∣∣∣∣

p∑
k=1

|z|2(k−1)(Gp−k+1)z(z)

+

p∑
k=1

(k − 1)z|z|2(k−2)Gp−k+1(z)

∣∣∣∣∣∣∣


≥ sup
z∈D

(1 − |z|2)

∣∣∣∣∣∣∣
∣∣∣∣ p∑

k=1

|z|2(k−1)(Gp−k+1)z(z)
∣∣∣∣ − ∣∣∣∣ p∑

k=1

|z|2(k−1)(Gp−k+1)z(z)
∣∣∣∣
∣∣∣∣∣∣∣ (6)

and (6) is sharp. The equality sign in (6) occurs when f is analytic or anti-analytic.
Furthermore, if for each k ∈ {1, 2, . . . , p}, the harmonic functions Gp−k+1 in (1) are such that |Gp−k+1(z)| ≤M, then

B f ≤ 2Mϕp(y0). (7)

Here y0 is the unique root in (0, 1) of the equation ϕ′p(y) = 0, where

ϕp(y) =
2
π

p∑
k=1

y2(k−1) + y(1 − y2)
p∑

k=2

(k − 1)y2(k−2). (8)

The bound in (7) is sharp when p = 1, where M is a positive constant. The extremal functions are

f (z) =
2Mα
π

Im
(
log

1 + S(z)
1 − S(z)

)
,

where |α| = 1 and S(z) is a conformal automorphism ofD.

In order to emphasize the importance of this result, we recall that, when p = 1, (6) (resp. (7)) is a
generalization of [12, Theorem 1] (resp. [12, Theorem 3]). In the case of p = 2 of Theorem 6.1, after some
computation, one has the following simple formulation for biharmonic mappings.
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Corollary 6.2. Let f = H + |z|2G be a biharmonic mapping ofD such that B f < ∞. Then, we have

B f ≥ sup
z∈D

(1 − |z|2)
∣∣∣|Hz + |z|2Gz| − |Hz + |z|2Gz|

∣∣∣ (9)

and

B f ≤
4M

27π3

(
8 + 36π2 +

(
4 + 3π2

)3/2
)
≈ 30.7682M. (10)

Proof. According to our notation, (6) is equivalent to (9). In order to prove (10), we first observe that (7) is
equivalent to

B f ≤ 2M sup
0<y<1

ϕ2(y),

where
ϕ2(y) =

2
π

(1 + y2) + y(1 − y2).

Now, to find sup
0<y<1

ϕ2(y), we compute the derivative

ϕ′2(y) = 1 +
4
π

y − 3y2 = −3
(
y − y0

) y − 2 −
√

4 + 3π2

3π


so that ϕ′2(y) ≥ 0 for 0 ≤ y ≤ y0 and ϕ′2(y) ≤ 0 for y0 ≤ y < 1. Hence

y0 =
2 +
√

4 + 3π2

3π
≈ 0.82732

is the critical point of ϕ2(y). Consequently, ϕ2(y) ≤ ϕ2(y0). A simple calculation shows that

ϕ2(y0) =
2
π

(1 + y2
0) + y0(1 − y2

0)

=
2
π

8 + 12π2 + 4
√

4 + 3π2

9π2

 +  2
3π
+

√
4 + 3π2

3π

 6π2 − 8 − 4
√

4 + 3π2

9π2


=

2
27π3

(
16 + 42π2 + 8

√
4 + 3π2 +

√
4 + 3π2

(
3π2 − 4 − 2

√
3π2 + 4

))
=

2
27π3

(
8 + 36π2 +

(
4 + 3π2

)3/2
)
≈ 15.3841

and therefore, B f ≤ 2Mϕ2(y0) which is the desired inequality (10). The result follows.

In the case of p = 3 of Theorem 6.1, we have

Corollary 6.3. Let f = H + |z|2G + |z|4K be a triharmonic (i.e. 3-harmonic) mapping of the unit disk D such that
B f < ∞, where H, G and K are harmonic inD. Then we have

B f ≥ sup
z∈D

(1 − |z|2)
∣∣∣|Hz + |z|2Gz + |z|4Kz

∣∣∣ − ∣∣∣Hz + |z|2Gz + |z|4Kz|
∣∣∣ (11)

and

B f ≤ 2Mϕ3(y1) ≈ 4.037006M, (12)

where ϕ3(y1) = sup0<y<1 ϕ3(y) and

ϕ3(y) =
2
π

(1 + y2 + y4) + y(1 + y2 − 2y4).
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Proof. Set p = 3 in Theorem 6.1. Then, (11) is equivalent to (6) and therefore, it suffices to prove (12). The
choice p = 3 in (7) shows that

B f ≤ 2M sup
0<y<1

ϕ3(y),

where ϕ3(y) is obtained from (8).
We see that ϕ3(y) has a unique positive root in (0, 1). Also,

ϕ′3(y) =
4
π

(y + 2y3) + 1 + 3y2 − 10y4.

Computations show that ϕ′3(y) ≥ 0 for 0 ≤ y ≤ y1 and ϕ′3(y) ≤ 0 for y1 ≤ y < 1. Hence

y1 ≈ 0.891951
is the only critical point of ϕ3(y) in the interval (0, 1). It follows that

ϕ3(y) ≤ ϕ3(y1) ≈ 2.018503.

Thus, B f ≤ 2Mϕ3(y1) which is the desired inequality (12).
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