Filomat 27:4 (2013), 577–591 DOI 10.2298/FIL1304577C Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

On some properties of solutions of the *p*-harmonic equation

SH. Chen^a, S. Ponnusamy^b, X. Wang^c

^aDepartment of Mathematics and Computational Science, Hengyang Normal University, Hengyang, Hunan 421008, People's Republic of China ^bDepartment of Mathematics, Indian Institute of Technology Madras, Chennai-600 036, India ^cDepartment of Mathematics, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China

Abstract. A 2*p*-times continuously differentiable complex-valued function f = u + iv in a simply connected domain $\Omega \subseteq \mathbb{C}$ is *p*-harmonic if *f* satisfies the *p*-harmonic equation $\Delta^p f = 0$. In this paper, we investigate the properties of *p*-harmonic mappings in the unit disk |z| < 1. First, we discuss the convexity, the starlikeness and the region of variability of some classes of *p*-harmonic mappings. Then we prove the existence of Landau constant for the class of functions of the form $Df = zf_z - \overline{z}f_{\overline{z}}$, where *f* is *p*-harmonic in |z| < 1. Also, we discuss the region of variability for certain *p*-harmonic mappings. At the end, as a consequence of the earlier results of the authors, we present explicit upper estimates for Bloch norm for bi- and tri-harmonic mappings.

1. Introduction and Preliminaries

A complex-valued function f = u + iv in a simply connected domain $\Omega \subseteq \mathbb{C}$ is called *p*-harmonic if *u* and *v* are *p*-harmonic in Ω , i.e. *f* satisfies the *p*-harmonic equation $\Delta^p f = 0$, where

$$\Delta^p f = \underbrace{\Delta \cdots \Delta}_p f,$$

where *p* is a positive integer and Δ represents the Laplacian operator

$$\Delta := 4 \frac{\partial^2}{\partial z \partial \overline{z}} = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}.$$

Throughout this paper we consider *p*-harmonic mappings of the unit disk $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$. Obviously, when p = 1 (resp. p = 2), f is harmonic (resp. biharmonic). The properties of harmonic [11, 15] and biharmonic [1–3, 18, 19] mappings have been investigated by many authors. Concerning *p*-harmonic mappings, we easily have the following characterization.

Keywords. p-harmonic mapping, starlikeness, convexity, region of variability, Landau's theorem

²⁰¹⁰ Mathematics Subject Classification. Primary 30C65, 30C45; Secondary 30C20

Received: 15 February 2012; Accepted: 15 June 2012

Communicated by Miodrag Mateljević

Research supported by NSFs of Chna (No: 11071063), the Construct Program of the Key Discipline in Hunan Province and the Start Project of Hengyang Normal University (No. 12B34).

Email addresses: mathechen@126.com (SH. Chen), samy@iitm.ac.in (S. Ponnusamy), xtwang@hunnu.edu.cn (X. Wang)

Proposition 1.1. A mapping f is p-harmonic in \mathbb{D} if and only if f has the following representation:

$$f(z) = \sum_{k=1}^{p} |z|^{2(k-1)} G_{p-k+1}(z), \tag{1}$$

where G_{p-k+1} is harmonic for each $k \in \{1, ..., p\}$.

Proof. We only need to prove the necessity since the proof for the sufficiency part is obvious. Again, as the cases p = 1, 2 are well-known, it suffices to prove the result for $p \ge 3$. We shall prove the proposition by the method of induction. So, we assume that the proposition is true for $p = n (\ge 3)$.

Let *F* be an (n + 1)-harmonic mapping in \mathbb{D} . By assumption, ΔF is *n*-harmonic and so can be represented as

$$\Delta F(z) = \sum_{k=1}^{n} |z|^{2(k-1)} G_{n-k+1}(z),$$

where G_{n-k+1} ($1 \le k \le n$) are harmonic functions with

$$G_{n-k+1}(z) = a_{0,n-k+1} + \sum_{j=1}^{\infty} a_{j,n-k+1} z^j + \sum_{j=1}^{\infty} \overline{b}_{j,n-k+1} \overline{z}^j \quad \text{for } k \in \{1, \dots, n\}.$$

Then

$$\int_0^z \int_0^{\overline{z}} \Delta F \, d\overline{z} \, dz = \sum_{k=1}^n |z|^{2k} T_{p-k+1}(z) + g(z),$$

where

$$T_{p-k+1}(z) = \sum_{k=1}^{n} \left(\frac{a_{0,n-k+1}}{k^2} + \sum_{j=1}^{\infty} \frac{a_{j,n-k+1}}{k(k+j)} z^j + \sum_{j=1}^{\infty} \frac{\overline{b}_{j,n-k+1}}{k(k+j)} \overline{z}^j \right)$$

and *g* is a harmonic function in \mathbb{D} . A rearrangement of the series in the sum shows that (1) holds for p = n + 1. \Box

We remark that the representation (1) continues to hold even if f is p-harmonic in a simply connected domain Ω .

For a sense-preserving C^1 -mapping (i.e. continuously differentiable), we let

$$\lambda_f = |f_z| - |f_{\overline{z}}|$$
 and $\Lambda_f = |f_z| + |f_{\overline{z}}|$

so that the Jacobian J_f of f takes the form

$$J_f = \lambda_f \Lambda_f = |f_z|^2 - |f_{\overline{z}}|^2 > 0.$$

In [4], the authors obtained sufficient conditions for the univalence of C^1 -functions. Now we introduce the concepts of starlikeness and convexity of C^1 -functions.

Definition 1.2. A C¹-mapping f with f(0) = 0 is called starlike if f maps \mathbb{D} univalently onto a domain Ω that is starlike with respect to the origin, i.e. for every $w \in \Omega$ the line segment [0, w] joining 0 and w is contained in Ω . It is known that f is starlike if it is sense-preserving, f(0) = 0, $f(z) \neq 0$ for all $z \in \mathbb{D} \setminus \{0\}$ and

$$\frac{\partial}{\partial t} \left(\arg f(re^{it}) \right) := \operatorname{Re} \left(\frac{Df(z)}{f(z)} \right) > 0 \quad \text{for all } z = re^{it} \in \mathbb{D} \setminus \{0\},$$

where $Df = zf_z - \overline{z}f_{\overline{z}}$ (cf. [23, Theorem 1]).

Definition 1.3. Let f and Df belong to $C^1(\mathbb{D})$. Then we say that f is convex in \mathbb{D} if it is sense-preserving, f(0) = 0, $f(z) \cdot Df(z) \neq 0$ for all $z \in \mathbb{D} \setminus \{0\}$ and

$$\operatorname{Re}\left(\frac{D^2f(z)}{Df(z)}\right) > 0 \quad \text{for all } z \in \mathbb{D} \setminus \{0\}.$$

As arg $Df(re^{it})$ represents the argument of the outer normal to the curve $C_r = \{f(re^{i\theta}) : 0 \le \theta < 2\pi\}$ at the point $f(re^{it})$, the last condition gives that

$$\frac{\partial}{\partial t} \left(\arg Df(re^{it}) \right) = \operatorname{Re} \left(\frac{D^2 f(z)}{Df(z)} \right) > 0 \quad \text{for all } z = re^{it} \in \mathbb{D} \setminus \{0\},$$

showing that the curve C_r is convex for each $r \in (0, 1)$ (see [23, Theorem 2]). Non-analytic starlike and convex functions were studied by Mocanu in [23]. Harmonic starlike and harmonic convex functions were systematically studied by Clunie and Sheil-Small [11], and these two classes of functions have been studied extensively by many authors. See for instance, the book by Duren [15] and the references therein.

The complex differential operator

$$D = z \frac{\partial}{\partial z} - \overline{z} \frac{\partial}{\partial \overline{z}}$$

defined by Mocanu [23] on the class of complex-valued C¹-functions satisfies the usual product rule:

$$D(af + bg) = aD(f) + bD(g)$$
 and $D(fg) = fD(g) + gD(f)$,

where *a*, *b* are complex constants, *f* and *g* are C^1 -functions. The operator *D* possesses a number of interesting properties. For instance, the operator *D* preserves both harmonicity and biharmonicity (see also [3]). In the case of *p*-harmonic mappings, we also have the following property of the operator *D*.

Proposition 1.4. *D preserves p-harmonicity.*

Proof. Let *f* be a *p*-harmonic mapping with the form

$$f(z) = \sum_{k=1}^{p} |z|^{2(k-1)} G_{p-k+1}(z),$$

where each $G_{p-k+1}(z)$ is harmonic in \mathbb{D} for $k \in \{1, ..., p\}$. As $D(|z|^2) = 0$, the product rule shows that $D(|z|^{2(k-1)}) = 0$ for each $k \in \{1, ..., p\}$. In view of this and the fact that D preserves harmonicity gives that

$$D(f(z)) = \sum_{k=1}^{p} \left[|z|^{2(k-1)} D(G_{p-k+1}(z)) + D(|z|^{2(k-1)}) G_{p-k+1}(z) \right]$$

=
$$\sum_{k=1}^{p} |z|^{2(k-1)} D(G_{p-k+1}(z)).$$

One of the aims of this paper is to generalize the main results of Abdulhadi, et. al. [3] to the case of *p*-harmonic mappings. The corresponding generalizations are Theorems 3.1 and 3.3.

The classical theorem of Landau for bounded analytic functions states that if f is analytic in \mathbb{D} with f(0) = f'(0) - 1 = 0, and |f(z)| < M for $z \in \mathbb{D}$, then f is univalent in the disk $\mathbb{D}_{\rho} := \{z \in \mathbb{C} : |z| < \rho\}$ and in addition, the range $f(\mathbb{D}_{\rho})$ contains a disk of radius $M\rho^2$ (cf. [20]), where

$$\rho = \frac{1}{M + \sqrt{M^2 - 1}}.$$

Recently, many authors considered Landau's theorem for planar harmonic mappings (see for example, [6, 8, 9, 13, 16, 22, 28]) and biharmonic mappings (see [1, 7, 8, 21]). In Section 4, we consider Landau's theorem for *p*-harmonic mappings with the form D(f) when *f* belongs to certain classes of *p*-harmonic mappings. Our results are Theorems 4.1 and 4.2.

In a series of papers the second author with Yanagihara and Vasudevarao (see [24, 25, 29, 30]) have discussed the regions of variability for certain classes of univalent analytic functions in \mathbb{D} . In Section 5 (see Theorem 5.2), we solve a related problem for certain *p*-harmonic mappings. Finally, in Section 6, we present explicit upper estimates for Bloch norm for bi- and tri-harmonic mappings (see Corollaries 6.2 and 6.3).

2. Lemmas

For the proofs of our main results we require a number of lemmas. We begin to recall the following version of Schwarz lemma due to Heinz ([17, Lemma]) and Colonna [12, Theorem 3], see also [6, 8, 9].

Lemma 2.1. Let f be a harmonic mapping of \mathbb{D} such that f(0) = 0 and $f(\mathbb{D}) \subset \mathbb{D}$. Then

$$|f(z)| \le \frac{4}{\pi} \arctan |z| \le \frac{4}{\pi} |z| \text{ for } z \in \mathbb{D}$$

and

$$\Lambda_f(z) \le \frac{4}{\pi} \frac{1}{(1-|z|^2)} \text{ for } z \in \mathbb{D}.$$

Lemma 2.2. ([22, Lemma 2.1]) Suppose that $f(z) = h(z) + \overline{g(z)}$ is a harmonic mapping of \mathbb{D} with $h(z) = \sum_{n=1}^{\infty} a_n z^n$ and $g(z) = \sum_{n=1}^{\infty} b_n z^n$ for $z \in \mathbb{D}$. If $J_f(0) = 1$ and |f(z)| < M, then

$$|a_n|, |b_n| \le \sqrt{M^2 - 1}, n = 2, 3, \dots,$$

 $|a_n| + |b_n| \le \sqrt{2M^2 - 2}, n = 2, 3, \dots$

and

$$\lambda_{f}(0) \geq \lambda_{0}(M) := \begin{cases} \frac{\sqrt{2}}{\sqrt{M^{2} - 1} + \sqrt{M^{2} + 1}} & \text{if } 1 \leq M \leq M_{0}, \\ \frac{\pi}{4M} & \text{if } M > M_{0}, \end{cases}$$
(2)

where $M_0 = \frac{\pi}{2\sqrt[4]{2\pi^2 - 16}} \approx 1.1296.$

The following lemma concerning coefficient estimates for harmonic mappings is crucial in the proofs of Theorems 3.1 and 3.3. This lemma has been proved by the authors in [10] with an additional assumption that f(0) = 0. However, for the sake of clarity, we present a slightly different proof than that in [10].

Lemma 2.3. Let $f = h + \overline{g}$ be a harmonic mapping of \mathbb{D} such that |f(z)| < M with $h(z) = \sum_{n=0}^{\infty} a_n z^n$ and $g(z) = \sum_{n=1}^{\infty} b_n z^n$. Then $|a_0| \le M$ and for any $n \ge 1$

$$|a_n| + |b_n| \le \frac{4M}{\pi}.\tag{3}$$

The estimate (3) *is sharp. The extremal functions are* $f(z) \equiv M$ *or*

$$f_n(z) = \frac{2M\alpha}{\pi} \arg\left(\frac{1+\beta z^n}{1-\beta z^n}\right),$$

where $|\alpha| = |\beta| = 1$.

Proof. Without loss of generality, we assume that |f(z)| < 1. For $\theta \in [0, 2\pi)$, let

$$v_{\theta}(z) = \operatorname{Im}\left(e^{i\theta}f(z)\right)$$

and observe that

$$v_{\theta}(z) = \operatorname{Im} \left(e^{i\theta} h(z) + \overline{e^{-i\theta} g(z)} \right) = \operatorname{Im} \left(e^{i\theta} h(z) - e^{-i\theta} g(z) \right).$$

Because $|v_{\theta}(z)| < 1$, it follows that

$$e^{i\theta}h(z) - e^{-i\theta}g(z) < K(z) = \lambda + \frac{2}{\pi}\log\left(\frac{1+z\xi}{1-z}\right).$$

where $\xi = e^{-i\pi \text{Im}(\lambda)}$ and $\lambda = e^{i\theta}h(0) - e^{-i\theta}g(0)$. The superordinate function K(z) maps \mathbb{D} onto a convex domain with $K(0) = \lambda$ and $K'(0) = \frac{2}{\pi}(1 + \xi)$, and therefore, by a theorem of Rogosinski [26, Theorem 2.3] (see also [14, Theorem 6.4]), it follows that

$$|a_n - e^{-2i\theta}b_n| \le \frac{2}{\pi}|1 + \xi| \le \frac{4}{\pi}$$
 for $n = 1, 2, ...$

and the desired inequality (3), with M = 1, is a consequence of the arbitrariness of θ in $[0, 2\pi)$.

For the proof of sharpness part, consider the functions

$$f_n(z) = \frac{2M\alpha}{\pi} \operatorname{Im}\left(\log\frac{1+\beta z^n}{1-\beta z^n}\right), \quad |\alpha| = |\beta| = 1,$$

whose values are confined to a diametral segment of the disk \mathbb{D}_M . Also,

$$f_n(z) = \frac{2M\alpha}{i\pi} \left(\sum_{k=1}^{\infty} \frac{1}{2k-1} (\beta z^n)^{2k-1} - \sum_{k=1}^{\infty} \frac{1}{2k-1} (\overline{\beta} \overline{z}^n)^{2k-1} \right),$$

which gives

$$|a_n| + |b_n| = \frac{4M}{\pi}$$

The proof of the lemma is complete. \Box

As an immediate consequence of Lemmas 2.2 and 2.3, we have

Corollary 2.4. Let $f = h + \overline{g}$ be a harmonic mapping of \mathbb{D} with $h(z) = \sum_{n=1}^{\infty} a_n z^n$, $g(z) = \sum_{n=1}^{\infty} b_n z^n$ and $|f(z)| \le M$. If $J_f(0) = 1$ and $M \ge \frac{\pi}{\sqrt{\pi^2 - 8}}$, then for any $n \ge 2$,

$$|a_n| + |b_n| \le \frac{4M}{\pi} \le \sqrt{2M^2 - 2}.$$

3. The convexity and the starlikeness

The following simple result can be used to generate (harmonic) starlike and convex functions.

Theorem 3.1. Let f be a univalent p-harmonic mapping with the form

$$f(z) = G(z) \sum_{k=1}^{p} \lambda_k |z|^{2(k-1)},$$

where G is a locally univalent harmonic mapping and λ_k (k = 1, ..., p) are complex constants. Then we have the following:

(a)
$$\frac{D(f)}{f} = \frac{D(G)}{G}$$
 and $\frac{D^2(f)}{D(f)} = \frac{D^2(G)}{D(G)}$.
(b) f is convex (resp. starlike) if and only if G is convex (resp. starlike).

Proof. (a) The two equalities are immediate consequences of the formula

$$D(G(z)\sum_{k=1}^p\lambda_k|z|^{2(k-1)})=D(G(z))\sum_{k=1}^p\lambda_k|z|^{2(k-1)}.$$

So, we omit the details.

(b) It suffices to prove the case of convexity since the proof for the starlikeness is similar. Let $z = re^{it}$, where 0 < r < 1 and $0 \le t < 2\pi$. Then

$$f(z) = G(z) \sum_{k=1}^{p} \lambda_k |z|^{2(k-1)} = G(re^{i\theta}) \sum_{k=1}^{p} \lambda_k r^{2(k-1)},$$

so that

$$\frac{\partial f(re^{it})}{\partial t} = \frac{\partial G(re^{it})}{\partial t} \sum_{k=1}^{p} \lambda_k r^{2(k-1)}$$

and

$$\frac{\partial^2 f(re^{it})}{\partial t^2} = \frac{\partial^2 G(re^{it})}{\partial t^2} \sum_{k=1}^p \lambda_k r^{2(k-1)}.$$

Therefore Part (a) yields

$$\frac{\partial}{\partial t} \Big(\arg \frac{\partial f(re^{it})}{\partial t} \Big) = \operatorname{Re} \Big(\frac{D^2(f)}{D(f)} \Big) = \operatorname{Re} \Big(\frac{D^2(G)}{D(G)} \Big) = \frac{\partial}{\partial t} \Big(\arg \frac{\partial G(re^{it})}{\partial t} \Big),$$

from which the proof of Part (b) of this theorem follows. \Box

As an immediate consequence of Theorem 3.1(a), we easily have the following.

Corollary 3.2. Let f be a univalent p-harmonic mapping defined as in Theorem 3.1. If f is convex and D(f) is univalent, then D(f) is starlike.

Abdulhadi, et. al. [3, Theorem 1] discussed the univalence and the starlikeness of biharmonic mappings in \mathbb{D} . A natural question is whether [3, Theorem 1] holds for *p*-harmonic mappings. The following result gives a partial answer to this problem.

Theorem 3.3. Let f be a p-harmonic mapping of \mathbb{D} satisfying $f(z) = |z|^{2(p-1)}G(z)$, where G is harmonic, orientation preserving and starlike. Then f is starlike univalent.

Proof. We see that the Jacobian J_f of f is

$$\begin{aligned} J_f &= |f_z|^2 - |f_{\overline{z}}|^2 \\ &= |z|^{4(p-1)} (|G_z|^2 - |G_{\overline{z}}|^2) + 2(p-1)|z|^{4p-6} |G|^2 \operatorname{Re}\left(\frac{D(G)}{G}\right) \\ &\geq |z|^{4(p-1)} (|G_z|^2 - |G_{\overline{z}}|^2). \end{aligned}$$

Hence $J_f(z) > 0$ when 0 < |z| < 1 and obviously, $J_f(0) = 0$. The univalence of f follows from a standard argument as in the proof of [3, Theorem 1]. Finally, Theorem 3.1 implies that f is starlike. \Box

4. The Landau theorem

We now discuss the existence of the Laudau constant for two classes of *p*-harmonic mappings.

Theorem 4.1. Let $f(z) = \sum_{k=1}^{p} |z|^{2(k-1)} G_{p-k+1}(z)$ be a *p*-harmonic mapping of \mathbb{D} satisfying $\Delta G_{p-k+1}(z) = f(0) = G_p(0) = J_f(0) - 1 = 0$ and for any $z \in \mathbb{D}$, $|G_{p-k+1}(z)| \le M$, where $M \ge 1$. Then there is a constant ρ ($0 < \rho < 1$) such that D(f) is univalent in \mathbb{D}_{ρ} , where ρ satisfies the following equation:

$$\lambda_0(M) - \frac{T(M)}{(1-\rho)^2} \sum_{k=2}^p (2k-1)\rho^{2(k-1)} - \sum_{k=1}^p \frac{2T(M)\rho^{2k-1}}{(1-\rho)^3} - \frac{16M}{\pi^2} s_0 \arctan \rho = 0$$

with

$$s_{0} = \left(\frac{\sqrt{17} - 1}{\sqrt{17} - 3}\right) \sqrt{\frac{2}{5 - \sqrt{17}}} \approx 4.1996,$$

$$T(M) = \begin{cases} \sqrt{2M^{2} - 2} & \text{if } 1 \le M \le M_{1} := \frac{\pi}{\sqrt{\pi^{2} - 8}} \approx 2.2976 \\ \frac{4M}{\pi} & \text{if } M > M_{1} \end{cases}$$
(4)

and $\lambda_0(M)$ is given by (2). Moreover, the range $D(f)(\mathbb{D}_{\rho})$ contains a univalent disk \mathbb{D}_R , where

$$R = \rho \Big[\lambda_0(M) - \sum_{k=2}^p \frac{T(M)\rho^{2(k-1)}}{(1-\rho)^2} - \frac{16M}{\pi^2} s_0 \arctan \rho \Big].$$

Proof. For each $k \in \{1, 2, ..., p\}$, let

$$G_{p-k+1}(z) = a_{0,p-k+1} + \sum_{j=1}^{\infty} a_{j,p-k+1} z^j + \sum_{j=1}^{\infty} \overline{b}_{j,p-k+1} \overline{z}^j,$$

where $a_{0,p} = 0$. We define the function *H* as

$$H = D\left(\sum_{k=1}^{p} |z|^{2(k-1)} G_{p-k+1}\right) = \sum_{k=1}^{p} |z|^{2(k-1)} D(G_{p-k+1}).$$

Using Lemmas 2.2, 2.3 and Corollary 2.4, we have

$$|a_{n,p}| + |b_{n,p}| \le T(M),$$

where T(M) is given by (4), and

$$|a_{j,p-k+1}| + |b_{j,p-k+1}| \le \frac{4M}{\pi}$$

for $j \ge 1$, $n \ge 2$ and $2 \le k \le p$. We observe that

$$J_f(0) = |(G_p)_z(0)|^2 - |(G_p)_{\overline{z}}(0)|^2 = J_{G_p}(0) = 1$$

and hence by Lemmas 2.1 and 2.2, we have

$$\lambda_f(0) \geq \lambda_0(M),$$

where $\lambda_0(M)$ is given by (2). Now, we define

$$q(x) = \frac{2 - x^2}{(1 - x^2)x} \ (0 < x < 1).$$

Then there is an $r_0 = \sqrt{\frac{5-\sqrt{17}}{2}} \approx 0.66$ such that

$$q(r_0) = \min_{0 < x < 1} q(x) = \left(\frac{\sqrt{17} - 1}{\sqrt{17} - 3}\right) \sqrt{\frac{2}{5 - \sqrt{17}}} = s_0.$$

For each $\theta \in [0, 2\pi)$, the function

$$G_{\theta}(z) = (G_p)_z(z) - (G_p)(0) + ((G_p)_{\overline{z}}(z) - (G_p)_{\overline{z}}(0))e^{i(\pi - 2\theta)}$$

is clearly a harmonic mapping of \mathbb{D} and satisfies $G_{\theta}(0) = 0$. Moreover, it follows from Lemma 2.1 that

$$\Lambda_{G_p}(z) \le \frac{4M}{\pi} \frac{1}{1-|z|^2} \text{ for } z \in \mathbb{D}.$$

In particular, this observation yields that

$$|G_{\theta}(z)| \le \Lambda_{G_p}(z) + \Lambda_{G_p}(0) \le \frac{4M}{\pi} \left(1 + \frac{1}{1 - |z|^2} \right) = \frac{4M}{\pi} |z|q(|z|)$$
(5)

for all $z \in \mathbb{D}$.

Since $xq(x) - 1 = \frac{1}{1-x^2}$ is an increasing function in the interval (0, 1), the inequality (5) shows that for any $z \in \mathbb{D}_{r_0}$,

$$|G_{\theta}(z)| \le \frac{4M}{\pi}m_0,$$

where $m_0 = (2 - r_0^2)/(1 - r_0^2)$. Next, we consider the mapping *F* defined on \mathbb{D} by

$$F(z) = \frac{\pi}{4Mm_0}G_\theta(r_0 z).$$

Applying Lemma 2.1 to the function F(z) yields that for $z \in \mathbb{D}_{r_0}$,

$$|G_{\theta}(z)| \leq \frac{16M}{\pi^2} m_0 \arctan\left(\frac{|z|}{r_0}\right) \leq \frac{16M}{\pi^2} s_0 \arctan|z|,$$

where $s_0 = m_0 / r_0$.

Now, we fix ρ with $\rho \in (0, 1)$. To prove the univalency of H, we choose two distinct points z_1, z_2 in \mathbb{D}_{ρ} . Let $\gamma = \{(z_2 - z_1)t + z_1 : 0 \le t \le 1\}$ and $z_2 - z_1 = |z_1 - z_2|e^{i\theta}$. We find that

$$= \left| \int_{\gamma} H_{z}(z) \, dz + H_{\overline{z}}(z) \, d\overline{z} \right|$$

$$\geq \left| \int_{\gamma} (G_{p})_{z}(0) \, dz - (G_{p})_{\overline{z}}(0) \, d\overline{z} \right|$$

$$- \left| \int_{\gamma} \sum_{k=2}^{p} |z|^{2(k-1)} [z(G_{p-k+1})_{z^{2}}(z) \, dz - \overline{z}(G_{p-k+1})_{\overline{z}^{2}}(z) \, d\overline{z} \right|$$

$$- \left| \int_{\gamma} \sum_{k=2}^{p} (k-1) |z|^{2(k-2)} [z^{2}(G_{p-k+1})_{z}(z) \, d\overline{z} - \overline{z}^{2}(G_{p-k+1})_{\overline{z}}(z) \, dz] \right|$$

$$- \left| \int_{\gamma} \sum_{k=2}^{p} k |z|^{2(k-1)} [(G_{p-k+1})_{z}(z) \, dz - (G_{p-k+1})_{\overline{z}}(z) \, d\overline{z}] \right|$$

$$- \left| \int_{\gamma} [(G_{p})_{z}(z) - (G_{p})_{z}(0)] \, dz - [(G_{p})_{\overline{z}}(z) - (G_{p})_{\overline{z}}(0)] \, d\overline{z} \right|$$

$$\geq |z_{1} - z_{2}| \left\{ \lambda_{f}(0) - |G_{\theta}(\rho)| - \sum_{k=1}^{p} \rho^{2(k-1)} \sum_{n=2}^{\infty} n(n-1)(|a_{n,p-k+1}| + |b_{n,p-k+1}|)\rho^{n-1} - \sum_{k=1}^{p} (2k-1)\rho^{2(k-2)} \sum_{n=2}^{\infty} n(|a_{n,p-k+1}| + |b_{n,p-k+1}|)\rho^{n+1} \right\}$$

$$-\sum_{k=2}^{p} (2k-1)\rho^{2(k-2)} \sum_{n=1}^{\infty} n(|a_{n,p-k+1}| + |b_{n,p-k+1}|)\rho^{n}$$

$$> |z_1 - z_2| \Big[\lambda_0(M) - \frac{T(M)}{(1-\rho)^2} \sum_{k=2}^{p} (2k-1)\rho^{2(k-1)} - \sum_{k=1}^{p} \frac{2T(M)\rho^{2k-1}}{(1-\rho)^3} - \frac{16M}{\pi^2} s_0 \arctan \rho \Big].$$

Let

$$P(\rho) = \lambda_0(M) - \frac{T(M)}{(1-\rho)^2} \sum_{k=2}^p (2k-1)\rho^{2(k-1)} - \sum_{k=1}^p \frac{2T(M)\rho^{2k-1}}{(1-\rho)^3} - \frac{16M}{\pi^2} s_0 \arctan \rho.$$

Then it is easy to verify that $P(\rho)$ is a decreasing function on the interval (0, 1),

$$\lim_{\rho \to 0^+} P(\rho) = \lambda_0(M) \text{ and } \lim_{\rho \to 1^-} P(\rho) = -\infty.$$

Hence there exists a unique ρ_0 in (0, 1) satisfying $P(\rho_0) = 0$. This observation shows that $|H(z_1) - H(z_2)| > 0$ for arbitrary two distinct points z_1, z_2 in $|z| < \rho_0$ which proves the univalency of D(F) in \mathbb{D}_{ρ_0} .

М	n	a = a(M, n)	$R = R(M \circ (M n))$	o'	R'
111	P	p = p(w, p)	$\mathbf{K} = \mathbf{K}(\mathbf{W}, p(\mathbf{W}, p))$	ρ	Λ
1.1296	2	0.0714741	0.0101601	0.0420157	0.00945379
2	2	0.0206783	0.00227639	0.0139439	0.00164502
2.2976	2	0.0155966	0.00151523	0.0106132	0.00108021
3	2	0.00922255	0.00067425	0.00626141	0.000482413
1.1296	3	0.071463	0.0101647	_	_
2	3	0.0206782	0.00227641	_	_
2.2976	3	0.0155966	0.00151523	_	_
3	3	0.00922254	0.000674251	_	_
1.1296	4	0.0714629	0.0101647	_	_
2	4	0.0206782	0.00227641	_	_
2.2976	4	0.0155966	0.00151523	_	_
3	4	0.00922254	0.000674251	_	_

Table 1: Values of ρ and R for Theorem 4.1 for p = 2, and the corresponding values of ρ' and R' of [7, Theorem 1.1] (for p = 2)

For any *z* with $|z| = \rho_0$, we have

$$|H(z)| = \left| \sum_{k=1}^{p} |z|^{2(k-1)} [z(G_{p-k+1})_{z}(z) - \overline{z}(G_{p-k+1})_{\overline{z}}(z)] \right|$$

$$\geq \left| z(G_{p})_{z}(0) - \overline{z}(G_{p})_{\overline{z}}(0) \right|$$

$$- \left| z[(G_{p})_{z}(z) - (G_{p})_{z}(0)] - \overline{z}[(G_{p})_{\overline{z}}(z) - (G_{p})_{\overline{z}}(0)] \right|$$

$$- \left| \sum_{k=2}^{p} |z|^{2(k-1)} [z(G_{p-k+1})_{z}(z) - \overline{z}(G_{p-k+1})_{\overline{z}}(z)] \right|$$

$$\geq \rho_{0} [\lambda_{0}(M) - \sum_{k=2}^{p} \frac{T(M)\rho_{0}^{2(k-1)}}{(1-\rho_{0})^{2}} - \frac{16M}{\pi^{2}} s_{0} \arctan \rho_{0}]$$

$$= R$$

and the proof of the theorem is complete. \Box

From Table 1, we see that Theorem 4.1 improves Theorem 1.1 of [7] for the case p = 2, and the results for the rest of the values of p are new. In Table 1, third and fourth columns refer to values obtained from Theorem 4.1 for cases p = 2, 3, 4 for certain choices of M, while the right two columns correspond to the values obtained from [7, Theorem 1.1] for the case p = 2.

Theorem 4.2. Let $f(z) = |z|^{2(p-1)}G(z)$ be a *p*-harmonic mapping of \mathbb{D} satisfying $G(0) = J_G(0) - 1 = 0$ and $|G(z)| \le M$, where $M \ge 1$ and G is harmonic. Then there is a constant ρ ($0 < \rho < 1$) such that D(f) is univalent in \mathbb{D}_{ρ} , where ρ satisfies the following equation:

$$\lambda_0(M) - \frac{48M}{\pi^2} s_0 \arctan \rho - \frac{2T(M)\rho}{(1-\rho)^3} = 0,$$

where the constants s_0 , $\lambda_0(M)$ and T(M) are the same as in Theorem 4.1. Moreover, the range $D(f)(\mathbb{D}_{\rho})$ contains a univalent disk \mathbb{D}_R , where

$$R = \rho^{2p-1} \Big[\lambda_0(M) - \frac{16M}{\pi^2} s_0 \arctan \rho \Big].$$

Especially, if M = 1*, then* G(z) = z*, i.e.* $f(z) = |z|^{2(p-1)}z$ which is univalent in \mathbb{D} .

Proof. Let $G(z) = \sum_{n=1}^{\infty} a_n z^n + \sum_{n=1}^{\infty} \overline{b}_n \overline{z}_n$. Using Lemmas 2.2, 2.3 and Corollary 2.4, we have

 $|a_n|+|b_n|\leq T(M) \ \text{ for }n\geq 2.$

Note that

$$J_G(0) = |a_1|^2 - |b_1|^2 = 1$$

and hence, by Lemmas 2.1 and 2.2, we have

$$\lambda_G(0) \ge \lambda_0(M).$$

Next, we set $H = D(f) = |z|^{2(p-1)}D(G)$ and fix ρ with $\rho \in (0, 1)$. To prove the univalency of f, we choose two distinct points z_1, z_2 in \mathbb{D}_{ρ} . Let $\gamma = \{(z_2 - z_1)t + z_1 : 0 \le t \le 1\}$ and $z_2 - z_1 = |z_1 - z_2|e^{i\theta}$. Then

$$\begin{aligned} |H(z_{1}) - H(z_{2})| &= \left| \int_{[z_{1},z_{2}]}^{\infty} H_{z}(z) \, dz + H_{\overline{z}}(z) \, d\overline{z} \right| \\ &= \left| \int_{[z_{1},z_{2}]}^{\infty} p|z|^{2(p-1)} (G_{z}(z) \, dz - G_{\overline{z}}(z) \, d\overline{z}) + |z|^{2(p-1)} (zG_{z^{2}}(z) \, dz - \overline{z}G_{\overline{z}^{2}}(z) \, d\overline{z}) + (p-1)|z|^{2(p-2)} (z^{2}G_{z}(z) \, d\overline{z} - \overline{z}^{2}G_{\overline{z}}(z) \, dz) \right| \\ &\geq \left| \int_{[z_{1},z_{2}]}^{\infty} \left[G_{z}(0)(p|z|^{2(p-1)} \, dz + (p-1)|z|^{2(p-2)} \overline{z}^{2} \, dz) \right] \right| \\ &- G_{\overline{z}}(0)(p|z|^{2(p-1)} \, d\overline{z} - (p-1)|z|^{2(p-2)} \overline{z}^{2} \, dz) \right] \left| \\ &- p \left| \int_{[z_{1},z_{2}]} |z|^{2(p-1)} \left[(G_{z}(z) - G_{z}(0)) \, dz - (G_{\overline{z}}(z) - G_{\overline{z}}(0)) \, d\overline{z} \right] \right| \\ &- \left| (p-1) \int_{[z_{1},z_{2}]} |z|^{2(p-1)} \left[\frac{\overline{z}}{\overline{z}} (G_{z}(z) - G_{z}(0)) \, d\overline{z} \right] \\ &- \left| \int_{[z_{1},z_{2}]} |z|^{2(p-1)} (zG_{z^{2}}(z) \, dz - \overline{z}G_{\overline{z}^{2}}(z) \, d\overline{z}) \right| \\ &\geq |z_{1} - z_{2}| \left(\int_{0}^{1} |z|^{2(p-1)} dt \right) \left\{ \lambda_{0}(M) - \frac{48M}{\pi^{2}} s_{0} \arctan \rho - \frac{2T(M)\rho}{(1-\rho)^{3}} \right] \\ &> |z_{1} - z_{2}| \left(\int_{0}^{1} |z|^{2(p-1)} dt \right) \left[\lambda_{0}(M) - \frac{48M}{\pi^{2}} s_{0} \arctan \rho - \frac{2T(M)\rho}{(1-\rho)^{3}} \right] \end{aligned}$$

Since there exists a unique ρ in (0, 1) which satisfies the following equation:

$$\lambda_0(M) - \frac{48M}{\pi^2} s_0 \arctan \rho - \frac{2T(M)\rho}{(1-\rho)^3} = 0,$$

we see that $H(z_1) \neq H(z_2)$ and so, H(z) is univalent for $|z| < \rho_0$. Furthermore, we observe that for any z with $|z| = \rho_0$,

$$|H(z)| = \rho_0^{2(p-1)} |zG_z(0) - \overline{z}G_{\overline{z}}(0) + z(G_z(z) - G_z(0)) - \overline{z}(G_{\overline{z}}(z) - G_{\overline{z}}(0))|$$

$$\geq \rho_0^{2p-1} [\lambda_0(M) - \frac{16M}{\pi^2} s_0 \arctan \rho_0]$$

$$= R.$$

SH. Chen, S. Ponnusamy and X. Wang / Filomat 27:4 (2013), 577-591

М	p	$\rho = \rho(M, p)$	$R = R(M, \rho(M, p))$	ρ'	R'
1.1296	2	0.0281673	0.0000106985	0.0194864	3.54498×10^{-6}
2	2	0.00856025	1.73218×10^{-7}	0.00623202	6.5415×10^{-8}
2.2976	2	0.00646284	6.4986×10^{-8}	0.0047235	2.47902×10^{-8}
3	2	0.0037942	1.00669×10^{-8}	0.00277162	3.83502×10^{-9}
1.1296	3	0.0281673	8.48819×10^{-9}	_	_
2	3	0.00856025	1.2693×10^{-11}	_	_
2.2976	3	0.00646284	2.71435×10^{-12}	_	_
3	3	0.0037942	1.44922×10^{-13}	_	_

Table 2: Values of ρ and *R* for Theorem 4.2 for p = 2, 3, and the corresponding values of ρ' and *R'* of [7, Theorem 1.2] (for p = 2)

The proof of the theorem is complete. \Box

We remark that Theorem 4.2 is an improved version of [7, Theorem 1.2] when p = 2. In order to be more explicit, we refer to Table 2 in which the third and fourth columns refer to values obtained from Theorem 4.2 for cases p = 2, 3 for certain choices of M, while the right two columns correspond to the values obtained from [7, Theorem 1.2] for the case p = 2.

5. The Region of Variability

Definition 5.1. Let \mathcal{H}_p denote the set of all *p*-harmonic mappings of the unit disk \mathbb{D} with the normalization $f_{z^{p-1}}(0) = (p-1)!$ and $|f(z)| \le 1$ for |z| < 1. Here we prescribe that $\mathcal{H}_0 = \emptyset$.

For a fixed point $z_0 \in \mathbb{D}$ *, let*

$$V_p(z_0) = \{ f(z_0) : f \in \mathcal{H}_p \setminus \mathcal{H}_{p-1} \}.$$

Now, we have

Theorem 5.2. (a) If p = 1, then $V_1(z_0) = \{1\}$; (b) If $p \ge 2$, $V_p(z_0) = \overline{\mathbb{D}}$.

Proof. We first prove (a). Let $f \in \mathcal{H}_1$ and $f(z) = \sum_{n=0}^{\infty} a_n z^n + \sum_{n=1}^{\infty} \overline{b}_n \overline{z}^n$. By Parseval's identity and the hypotheses $|f(z)| \le 1$ and f(0) = 1, we have

$$\lim_{r \to 1-} \frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^2 d\theta = \lim_{r \to 1-} \frac{1}{2\pi} \int_0^{2\pi} \left(|h(re^{i\theta})|^2 + |g(re^{i\theta})|^2 \right) d\theta$$
$$= |a_0|^2 + \sum_{n=1}^\infty \left(|a_n|^2 + |b_n|^2 \right) \le 1.$$

This inequality implies that for any $n \ge 1$, $a_n = b_n = 0$ which gives that $f(z) \equiv 1$ for $z \in \mathbb{D}$. Thus, we have $V_1(z_0) = \{1\}$.

In order to prove (b), we consider the function

$$\phi(z) = \frac{z^{p-1} - w}{1 - w\overline{z}^{p-1}} = |z|^{2(p-1)} \sum_{n=1}^{\infty} w^n \overline{z}^{(n-1)(p-1)} + z^{p-1} - w - \sum_{n=1}^{\infty} w^{n+1} \overline{z}^{(p-1)n},$$

where $w \in \overline{\mathbb{D}}$ and $p \ge 2$.

Then $\phi_{z^{p-1}}(0) = (p-1)!$, $\Delta^p \phi = 0$ and therefore, $\phi \in \mathcal{H}_p \setminus \mathcal{H}_{p-1}$. For each fixed $a \in \overline{\mathbb{D}}$, $z \mapsto f_a(z) = (z^{p-1} - a)/(1 - a\overline{z}^{p-1})$ is a *p*-harmonic mapping and $f_a(\mathbb{D}) \subset \mathbb{D}$.

Obviously, $a \mapsto f_a(z_0) = \frac{z_0^{p-1}-a}{1-a\overline{z_0}^{p-1}}$ is a conformal automorphism of \mathbb{D} and the image of $\overline{\mathbb{D}}$ under $f_a(z_0)$ is $\overline{\mathbb{D}}$ itself. By hypotheses, we obtain that for any $g \in \mathcal{H}_p \setminus \mathcal{H}_{p-1}, g(z_0) \in \overline{\mathbb{D}}$. Hence $V_0(z_0)$ coincides with $\overline{\mathbb{D}}$. The proof of this theorem is complete. \Box

By the method of proof used in Theorem 5.2(a), we obtain the following generalization of Cartan's uniqueness theorem (see [5] or [27, p. 23]) for harmonic mappings.

Theorem 5.3. Let f be a harmonic mapping in \mathbb{D} with $f(\mathbb{D}) \subseteq \mathbb{D}$ and $f_z(0) = 1$. Then f(z) = z in \mathbb{D} .

6. Estimates for Bloch norm for bi- and tri-harmonic mappings

In the case of *p*-harmonic Bloch mappings, the authors in [10] obtained the following result.

Theorem 6.1. Let f be a p-harmonic mapping in \mathbb{D} of the form (1) satisfying $B_f < \infty$, where

$$B_f := \sup_{z, w \in \mathbb{D}, \ z \neq w} \frac{|f(z) - f(w)|}{\rho(z, w)} < \infty \ \ with \ \ \rho(z, w) = \frac{1}{2} \log \left(\frac{1 + |\frac{z - w}{1 - \overline{z} w}|}{1 - |\frac{z - w}{1 - \overline{z} w}|} \right)$$

Then

$$B_{f} := \sup_{z \in \mathbb{D}} (1 - |z|^{2}) \left\{ \left| \sum_{k=1}^{p} |z|^{2(k-1)} (G_{p-k+1})_{z}(z) + \sum_{k=1}^{p} (k-1)\overline{z}|z|^{2(k-2)} G_{p-k+1}(z) \right| + \left| \sum_{k=1}^{p} |z|^{2(k-1)} (G_{p-k+1})_{\overline{z}}(z) + \sum_{k=1}^{p} (k-1)z|z|^{2(k-2)} G_{p-k+1}(z) \right| \right\}$$

$$\geq \sup_{z \in \mathbb{D}} (1 - |z|^{2}) \left| \left| \sum_{k=1}^{p} |z|^{2(k-1)} (G_{p-k+1})_{z}(z) \right| - \left| \sum_{k=1}^{p} |z|^{2(k-1)} (G_{p-k+1})_{\overline{z}}(z) \right| \right|$$

$$(6)$$

and (6) is sharp. The equality sign in (6) occurs when f is analytic or anti-analytic.

Furthermore, if for each $k \in \{1, 2, ..., p\}$, the harmonic functions G_{p-k+1} in (1) are such that $|G_{p-k+1}(z)| \le M$, then

$$B_f \le 2M\phi_p(y_0). \tag{7}$$

Here y_0 *is the unique root in* (0, 1) *of the equation* $\phi'_p(y) = 0$ *, where*

$$\phi_p(y) = \frac{2}{\pi} \sum_{k=1}^p y^{2(k-1)} + y(1-y^2) \sum_{k=2}^p (k-1) y^{2(k-2)}.$$
(8)

The bound in (7) *is sharp when* p = 1*, where* M *is a positive constant. The extremal functions are*

$$f(z) = \frac{2M\alpha}{\pi} \operatorname{Im}\left(\log\frac{1+S(z)}{1-S(z)}\right).$$

where $|\alpha| = 1$ and S(z) is a conformal automorphism of \mathbb{D} .

In order to emphasize the importance of this result, we recall that, when p = 1, (6) (resp. (7)) is a generalization of [12, Theorem 1] (resp. [12, Theorem 3]). In the case of p = 2 of Theorem 6.1, after some computation, one has the following simple formulation for biharmonic mappings.

Corollary 6.2. Let $f = H + |z|^2 G$ be a biharmonic mapping of \mathbb{D} such that $B_f < \infty$. Then, we have

$$B_f \ge \sup_{z \in \mathbb{D}} (1 - |z|^2) \left| |H_z + |z|^2 G_z| - |H_{\overline{z}} + |z|^2 G_{\overline{z}}| \right|$$
(9)

and

$$B_f \le \frac{4M}{27\pi^3} \left(8 + 36\pi^2 + \left(4 + 3\pi^2 \right)^{3/2} \right) \approx 30.7682M.$$
⁽¹⁰⁾

Proof. According to our notation, (6) is equivalent to (9). In order to prove (10), we first observe that (7) is equivalent to

$$B_f \leq 2M \sup_{0 < y < 1} \phi_2(y),$$

where

$$\phi_2(y) = \frac{2}{\pi}(1+y^2) + y(1-y^2).$$

Now, to find sup $\phi_2(y)$, we compute the derivative

0<y<1

$$\phi_2'(y) = 1 + \frac{4}{\pi}y - 3y^2 = -3(y - y_0)\left(y - \frac{2 - \sqrt{4 + 3\pi^2}}{3\pi}\right)$$

so that $\phi'_2(y) \ge 0$ for $0 \le y \le y_0$ and $\phi'_2(y) \le 0$ for $y_0 \le y < 1$. Hence

$$y_0 = \frac{2 + \sqrt{4 + 3\pi^2}}{3\pi} \approx 0.82732$$

is the critical point of $\phi_2(y)$. Consequently, $\phi_2(y) \le \phi_2(y_0)$. A simple calculation shows that

$$\begin{split} \phi_2(y_0) &= \frac{2}{\pi} (1+y_0^2) + y_0 (1-y_0^2) \\ &= \frac{2}{\pi} \left(\frac{8+12\pi^2+4\sqrt{4+3\pi^2}}{9\pi^2} \right) + \left(\frac{2}{3\pi} + \frac{\sqrt{4+3\pi^2}}{3\pi} \right) \left(\frac{6\pi^2-8-4\sqrt{4+3\pi^2}}{9\pi^2} \right) \\ &= \frac{2}{27\pi^3} \left(16+42\pi^2+8\sqrt{4+3\pi^2} + \sqrt{4+3\pi^2} \left(3\pi^2-4-2\sqrt{3\pi^2+4} \right) \right) \\ &= \frac{2}{27\pi^3} \left(8+36\pi^2 + \left(4+3\pi^2 \right)^{3/2} \right) \approx 15.3841 \end{split}$$

and therefore, $B_f \leq 2M\phi_2(y_0)$ which is the desired inequality (10). The result follows. \Box

In the case of p = 3 of Theorem 6.1, we have

Corollary 6.3. Let $f = H + |z|^2 G + |z|^4 K$ be a triharmonic (i.e. 3-harmonic) mapping of the unit disk \mathbb{D} such that $B_f < \infty$, where H, G and K are harmonic in \mathbb{D} . Then we have

$$B_f \ge \sup_{z \in \mathbb{D}} (1 - |z|^2) \left| |H_z + |z|^2 G_z + |z|^4 K_z \right| - \left| H_{\overline{z}} + |z|^2 G_{\overline{z}} + |z|^4 K_{\overline{z}} \right|$$
(11)

and

$$B_f \le 2M\phi_3(y_1) \approx 4.037006M,$$
 (12)

where $\phi_3(y_1) = \sup_{0 < y < 1} \phi_3(y)$ and

$$\phi_3(y) = \frac{2}{\pi}(1+y^2+y^4) + y(1+y^2-2y^4).$$

Proof. Set p = 3 in Theorem 6.1. Then, (11) is equivalent to (6) and therefore, it suffices to prove (12). The choice p = 3 in (7) shows that

$$B_f \leq 2M \sup_{0 < y < 1} \phi_3(y),$$

where $\phi_3(y)$ is obtained from (8).

We see that $\phi_3(y)$ has a unique positive root in (0, 1). Also,

$$\phi_3'(y) = \frac{4}{\pi}(y+2y^3) + 1 + 3y^2 - 10y^4$$

Computations show that $\phi'_3(y) \ge 0$ for $0 \le y \le y_1$ and $\phi'_3(y) \le 0$ for $y_1 \le y < 1$. Hence

$$y_1 \approx 0.891951$$

is the only critical point of $\phi_3(y)$ in the interval (0, 1). It follows that

$$\phi_3(y) \le \phi_3(y_1) \approx 2.018503.$$

Thus, $B_f \leq 2M\phi_3(y_1)$ which is the desired inequality (12). \Box

References

- [1] Z. Abdulhadi and Y. Abu Muhanna, Landau's theorem for biharmonic mappings, J. Math. Anal. Appl. 338 (2008) 705–709.
- [2] Z. Abdulhadi, Y. Abu Muhanna and S. Khoury, On univalent solutions of the biharmonic equations, J. Inequal. Appl 5 (2005) 469–478.
- [3] Z. Abdulhadi, Y. Abu Muhanna and S. Khoury, On some properties of solutions of the biharmonic equation, Appl. Math. Comput. 177 (2006) 346–351.
- [4] H. Al-Amiri and P. T. Mocanu, Certain sufficient conditions for univalency of the class C¹, J. Math. Anal. Appl. 80 (1981) 387–392.
- [5] H. Cartan, Les fonctions de deux variables complexes et le problème de la reprèsentation analytique, J. de Math. Pures et Appl. 96 (1931) 1–114.
- [6] H. Chen, P. M. Gauthier and W. Hengartner, Bloch constants for planar harmonic mappings, Proc. Amer. Math. Soc. 128 (2000) 3231–3240.
- [7] SH. Chen, S. Ponnusamy and X. Wang, Landau's theorem for certain biharmonic mappings, Appl. Math. Comput. 208 (2009) 427–433.
- [8] SH. Chen, S. Ponnusamy and X. Wang, Properties of some classes of planar harmonic and planar biharmonic mappings, Complex Anal. Oper. Theory., 5 (2011) 901–916.
- SH. Chen, S. Ponnusamy and X. Wang, Coefficient estimates and Landau-Bloch's constant for planar harmonic mappings, Bull. Malaysian Math. Sci. Soc., 34 (2011) 255–265.
- [10] SH. Chen, S. Ponnusamy and X. Wang, Bloch constant and Landau's theorems for planar *p*-harmonic mappings, J. Math. Anal. Appl., 373 (2011) 102–110.
- [11] J. G. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A.I. 9 (1984) 3–25.
- [12] F. Colonna, The Bloch constant of bounded harmonic mappings, Indiana Univ. Math. J. 38 (1989) 829–840.
- [13] M. Dorff and M. Nowark, Landau's theorem for planar harmonic mappings, Comput. Methods Funct. Theory 4 (2004) 151–158.
 [14] P. Duren, Univalent function (Grundlehren der mathematicchen Wissenschaften 259, New York, Berlin, Heidelberg, Tokyo), Spring-Verlag 1983.
- [15] P. Duren, Harmonic mappings in the plane, Cambridge Univ. Press, 2004.
- [16] A. Grigoryan, Landau and Bloch theorems for planar harmonic mappings, Complex Var. Elliptic Equ. 51 (2006) 81-87.
- [17] E. Heinz, On one-to-one harmonic mappings, Pacific J. Math. 9 (1959) 101-105.
- [18] S. Khoury, Biorthogonal series solution of Stokes flow problems in sectorial regions, SIAM J. Appl. Math. 56 (1996) 19–39.
- [19] W. E. Langlois, Slow Viscous Flow, Macmillan Company, 1964.
- [20] E. Landau, Über die Bloch'sche konstante und zwei verwandte weltkonstanten, Math. Z. 30 (1929) 608-634.
- [21] M. Liu, Landau theorems for biharmonic mappings, Complex Var. Elliptic Equ. 53 (2008) 843-855.
- [22] M. Liu, Landau's theorem for planar harmonic mappings, Comput. Math. Appl. 57 (2009) 1142-1146.
- [23] P. T. Mocanu, Starlikeness and convexity for nonanalytic functions in the unit disc, Mathematica (Cluj) 22 (1980) no. 1, 77-83.
- [24] S. Ponnusamy and A. Vasudevarao, Region of variability of two subclasses of univalent functions, J. Math. Anal. Appl. 332 (2007) 1322–1333.
- [25] S. Ponnusamy, A. Vasudevarao and H. Yanagihara, Region of variability of univalent functions f(z) for which zf'(z) is spirallike, Houston J. Math. **34** (2008) 1037–1048.
- [26] W. Rogosinski, On the coefficients of subordinate functions, Proc. London Math. Soc. 48 (1943) 48-82.
- [27] W. Rudin, Function theory in the unit ball of \mathbb{C}^n , Spring-Verlag, New York, Heidelberg, Berlin, 1980.
- [28] H. Xinzhong, Estimates on Bloch constants for planar harmonic mappings, J. Math. Anal. Appl. 337 (2008) 880-887.
- [29] H. Yanagihara, Regions of variability for functions of bounded derivatives, Kodai Math. J. 28 (2005) 452-462.
- [30] H. Yanagihara, Regions of variability for convex functions, Math. Nachr. 279 (2006) 1723–1730.