On some properties of solutions of the p-harmonic equation

SH. Chen ${ }^{\text {a }}$, S. Ponnusamy ${ }^{\text {b }}$, X. Wang ${ }^{\text {c }}$
${ }^{a}$ Department of Mathematics and Computational Science, Hengyang Normal University,
Hengyang, Hunan 421008, People's Republic of China
${ }^{b}$ Department of Mathematics, Indian Institute of Technology Madras, Chennai-600 036, India
${ }^{c}$ Department of Mathematics, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China

Abstract

A $2 p$-times continuously differentiable complex-valued function $f=u+i v$ in a simply connected domain $\Omega \subseteq \mathbb{C}$ is p-harmonic if f satisfies the p-harmonic equation $\Delta^{p} f=0$. In this paper, we investigate the properties of p-harmonic mappings in the unit disk $|z|<1$. First, we discuss the convexity, the starlikeness and the region of variability of some classes of p-harmonic mappings. Then we prove the existence of Landau constant for the class of functions of the form $D f=z f_{z}-\bar{z} f_{\bar{z}}$, where f is p-harmonic in $|z|<1$. Also, we discuss the region of variability for certain p-harmonic mappings. At the end, as a consequence of the earlier results of the authors, we present explicit upper estimates for Bloch norm for bi- and tri-harmonic mappings.

1. Introduction and Preliminaries

A complex-valued function $f=u+i v$ in a simply connected domain $\Omega \subseteq \mathbb{C}$ is called p-harmonic if u and v are p-harmonic in Ω, i.e. f satisfies the p-harmonic equation $\Delta^{p} f=0$, where

$$
\Delta^{p} f=\underbrace{\Delta \cdots \Delta}_{p} f
$$

where p is a positive integer and Δ represents the Laplacian operator

$$
\Delta:=4 \frac{\partial^{2}}{\partial z \partial \bar{z}}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}} .
$$

Throughout this paper we consider p-harmonic mappings of the unit disk $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$. Obviously, when $p=1$ (resp. $p=2$), f is harmonic (resp. biharmonic). The properties of harmonic [11, 15] and biharmonic $[1-3,18,19]$ mappings have been investigated by many authors. Concerning p-harmonic mappings, we easily have the following characterization.

[^0]Proposition 1.1. A mapping f is p-harmonic in \mathbb{D} if and only if f has the following representation:

$$
\begin{equation*}
f(z)=\sum_{k=1}^{p}|z|^{2(k-1)} G_{p-k+1}(z), \tag{1}
\end{equation*}
$$

where G_{p-k+1} is harmonic for each $k \in\{1, \ldots, p\}$.
Proof. We only need to prove the necessity since the proof for the sufficiency part is obvious. Again, as the cases $p=1,2$ are well-known, it suffices to prove the result for $p \geq 3$. We shall prove the proposition by the method of induction. So, we assume that the proposition is true for $p=n(\geq 3)$.

Let F be an $(n+1)$-harmonic mapping in \mathbb{D}. By assumption, ΔF is n-harmonic and so can be represented as

$$
\Delta F(z)=\sum_{k=1}^{n}|z|^{2(k-1)} G_{n-k+1}(z)
$$

where $G_{n-k+1}(1 \leq k \leq n)$ are harmonic functions with

$$
G_{n-k+1}(z)=a_{0, n-k+1}+\sum_{j=1}^{\infty} a_{j, n-k+1} z^{j}+\sum_{j=1}^{\infty} \bar{b}_{j, n-k+1} \bar{z}^{j} \quad \text { for } k \in\{1, \ldots, n\} .
$$

Then

$$
\int_{0}^{z} \int_{0}^{\bar{z}} \Delta F d \bar{z} d z=\sum_{k=1}^{n}|z|^{2 k} T_{p-k+1}(z)+g(z)
$$

where

$$
T_{p-k+1}(z)=\sum_{k=1}^{n}\left(\frac{a_{0, n-k+1}}{k^{2}}+\sum_{j=1}^{\infty} \frac{a_{j, n-k+1}}{k(k+j)} z^{j}+\sum_{j=1}^{\infty} \frac{\bar{b}_{j, n-k+1}}{k(k+j)} \bar{z}^{j}\right)
$$

and g is a harmonic function in \mathbb{D}. A rearrangement of the series in the sum shows that (1) holds for $p=n+1$.

We remark that the representation (1) continues to hold even if f is p-harmonic in a simply connected domain Ω.

For a sense-preserving C^{1}-mapping (i.e. continuously differentiable), we let

$$
\lambda_{f}=\left|f_{z}\right|-\left|f_{\bar{z}}\right| \text { and } \Lambda_{f}=\left|f_{z}\right|+\left|f_{\bar{z}}\right|
$$

so that the Jacobian J_{f} of f takes the form

$$
J_{f}=\lambda_{f} \Lambda_{f}=\left|f_{z}\right|^{2}-\left|f_{\bar{z}}\right|^{2}>0
$$

In [4], the authors obtained sufficient conditions for the univalence of C^{1}-functions. Now we introduce the concepts of starlikeness and convexity of C^{1}-functions.

Definition 1.2. A C^{1}-mapping f with $f(0)=0$ is called starlike if f maps \mathbb{D} univalently onto a domain Ω that is starlike with respect to the origin, i.e. for every $w \in \Omega$ the line segment $[0, w]$ joining 0 and w is contained in Ω. It is known that f is starlike if it is sense-preserving, $f(0)=0, f(z) \neq 0$ for all $z \in \mathbb{D} \backslash\{0\}$ and

$$
\frac{\partial}{\partial t}\left(\arg f\left(r e^{i t}\right)\right):=\operatorname{Re}\left(\frac{D f(z)}{f(z)}\right)>0 \quad \text { for all } z=r e^{i t} \in \mathbb{D} \backslash\{0\},
$$

where $D f=z f_{z}-\bar{z} f_{\bar{z}}$ (cf. [23, Theorem 1]).

Definition 1.3. Let f and $D f$ belong to $C^{1}(\mathbb{D})$. Then we say that f is convex in \mathbb{D} if it is sense-preserving, $f(0)=0$, $f(z) \cdot D f(z) \neq 0$ for all $z \in \mathbb{D} \backslash\{0\}$ and

$$
\operatorname{Re}\left(\frac{D^{2} f(z)}{D f(z)}\right)>0 \quad \text { for all } z \in \mathbb{D} \backslash\{0\}
$$

As $\arg D f\left(r e^{i t}\right)$ represents the argument of the outer normal to the curve $C_{r}=\left\{f\left(r e^{i \theta}\right): 0 \leq \theta<2 \pi\right\}$ at the point $f\left(r e^{i t}\right)$, the last condition gives that

$$
\frac{\partial}{\partial t}\left(\arg D f\left(r e^{i t}\right)\right)=\operatorname{Re}\left(\frac{D^{2} f(z)}{D f(z)}\right)>0 \quad \text { for all } z=r e^{i t} \in \mathbb{D} \backslash\{0\},
$$

showing that the curve C_{r} is convex for each $r \in(0,1)$ (see [23, Theorem 2]). Non-analytic starlike and convex functions were studied by Mocanu in [23]. Harmonic starlike and harmonic convex functions were systematically studied by Clunie and Sheil-Small [11], and these two classes of functions have been studied extensively by many authors. See for instance, the book by Duren [15] and the references therein.

The complex differential operator

$$
D=z \frac{\partial}{\partial z}-\bar{z} \frac{\partial}{\partial \bar{z}}
$$

defined by Mocanu [23] on the class of complex-valued C^{1}-functions satisfies the usual product rule:

$$
D(a f+b g)=a D(f)+b D(g) \text { and } D(f g)=f D(g)+g D(f)
$$

where a, b are complex constants, f and g are C^{1}-functions. The operator D possesses a number of interesting properties. For instance, the operator D preserves both harmonicity and biharmonicity (see also [3]). In the case of p-harmonic mappings, we also have the following property of the operator D.

Proposition 1.4. D preserves p-harmonicity.
Proof. Let f be a p-harmonic mapping with the form

$$
f(z)=\sum_{k=1}^{p}|z|^{2(k-1)} G_{p-k+1}(z),
$$

where each $G_{p-k+1}(z)$ is harmonic in \mathbb{D} for $k \in\{1, \ldots, p\}$. As $D\left(|z|^{2}\right)=0$, the product rule shows that $D\left(|z|^{2(k-1)}\right)=0$ for each $k \in\{1, \ldots, p\}$. In view of this and the fact that D preserves harmonicity gives that

$$
\begin{aligned}
D(f(z)) & =\sum_{k=1}^{p}\left[|z|^{2(k-1)} D\left(G_{p-k+1}(z)\right)+D\left(|z|^{2(k-1)}\right) G_{p-k+1}(z)\right] \\
& =\sum_{k=1}^{p}|z|^{2(k-1)} D\left(G_{p-k+1}(z)\right) .
\end{aligned}
$$

One of the aims of this paper is to generalize the main results of Abdulhadi, et. al. [3] to the case of p-harmonic mappings. The corresponding generalizations are Theorems 3.1 and 3.3.

The classical theorem of Landau for bounded analytic functions states that if f is analytic in \mathbb{D} with $f(0)=f^{\prime}(0)-1=0$, and $|f(z)|<M$ for $z \in \mathbb{D}$, then f is univalent in the disk $\mathbb{D}_{\rho}:=\{z \in \mathbb{C}:|z|<\rho\}$ and in addition, the range $f\left(\mathbb{D}_{\rho}\right)$ contains a disk of radius $M \rho^{2}$ (cf. [20]), where

$$
\rho=\frac{1}{M+\sqrt{M^{2}-1}} .
$$

Recently, many authors considered Landau's theorem for planar harmonic mappings (see for example, $[6,8,9,13,16,22,28]$) and biharmonic mappings (see [1, 7, 8, 21]). In Section 4, we consider Landau's theorem for p-harmonic mappings with the form $D(f)$ when f belongs to certain classes of p-harmonic mappings. Our results are Theorems 4.1 and 4.2.

In a series of papers the second author with Yanagihara and Vasudevarao (see [24, 25, 29, 30]) have discussed the regions of variability for certain classes of univalent analytic functions in \mathbb{D}. In Section 5 (see Theorem 5.2), we solve a related problem for certain p-harmonic mappings. Finally, in Section 6, we present explicit upper estimates for Bloch norm for bi- and tri-harmonic mappings (see Corollaries 6.2 and 6.3).

2. Lemmas

For the proofs of our main results we require a number of lemmas. We begin to recall the following version of Schwarz lemma due to Heinz ([17, Lemma]) and Colonna [12, Theorem 3], see also [6, 8, 9].

Lemma 2.1. Let f be a harmonic mapping of \mathbb{D} such that $f(0)=0$ and $f(\mathbb{D}) \subset \mathbb{D}$. Then

$$
|f(z)| \leq \frac{4}{\pi} \arctan |z| \leq \frac{4}{\pi}|z| \text { for } z \in \mathbb{D}
$$

and

$$
\Lambda_{f}(z) \leq \frac{4}{\pi} \frac{1}{\left(1-|z|^{2}\right)} \text { for } z \in \mathbb{D}
$$

Lemma 2.2. ([22, Lemma 2.1]) Suppose that $f(z)=h(z)+\overline{g(z)}$ is a harmonic mapping of \mathbb{D} with $h(z)=\sum_{n=1}^{\infty} a_{n} z^{n}$ and $g(z)=\sum_{n=1}^{\infty} b_{n} z^{n}$ for $z \in \mathbb{D}$. If $J_{f}(0)=1$ and $|f(z)|<M$, then

$$
\begin{aligned}
& \left|a_{n}\right|,\left|b_{n}\right| \leq \sqrt{M^{2}-1}, n=2,3, \ldots \\
& \left|a_{n}\right|+\left|b_{n}\right| \leq \sqrt{2 M^{2}-2}, n=2,3, \ldots
\end{aligned}
$$

and

$$
\lambda_{f}(0) \geq \lambda_{0}(M):= \begin{cases}\frac{\sqrt{2}}{\sqrt{M^{2}-1}+\sqrt{M^{2}+1}} & \text { if } 1 \leq M \leq M_{0} \tag{2}\\ \frac{\pi}{4 M} & \text { if } M>M_{0}\end{cases}
$$

where $M_{0}=\frac{\pi}{2 \sqrt[4]{2 \pi^{2}-16}} \approx 1.1296$.
The following lemma concerning coefficient estimates for harmonic mappings is crucial in the proofs of Theorems 3.1 and 3.3. This lemma has been proved by the authors in [10] with an additional assumption that $f(0)=0$. However, for the sake of clarity, we present a slightly different proof than that in [10].

Lemma 2.3. Let $f=h+\bar{g}$ be a harmonic mapping of \mathbb{D} such that $|f(z)|<M$ with $h(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ and $g(z)=$ $\sum_{n=1}^{\infty} b_{n} z^{n}$. Then $\left|a_{0}\right| \leq M$ and for any $n \geq 1$

$$
\begin{equation*}
\left|a_{n}\right|+\left|b_{n}\right| \leq \frac{4 M}{\pi} \tag{3}
\end{equation*}
$$

The estimate (3) is sharp. The extremal functions are $f(z) \equiv M$ or

$$
f_{n}(z)=\frac{2 M \alpha}{\pi} \arg \left(\frac{1+\beta z^{n}}{1-\beta z^{n}}\right)
$$

where $|\alpha|=|\beta|=1$.

Proof. Without loss of generality, we assume that $|f(z)|<1$. For $\theta \in[0,2 \pi)$, let

$$
v_{\theta}(z)=\operatorname{Im}\left(e^{i \theta} f(z)\right)
$$

and observe that

$$
v_{\theta}(z)=\operatorname{Im}\left(e^{i \theta} h(z)+\overline{e^{-i \theta} g(z)}\right)=\operatorname{Im}\left(e^{i \theta} h(z)-e^{-i \theta} g(z)\right)
$$

Because $\left|v_{\theta}(z)\right|<1$, it follows that

$$
e^{i \theta} h(z)-e^{-i \theta} g(z)<K(z)=\lambda+\frac{2}{\pi} \log \left(\frac{1+z \xi}{1-z}\right)
$$

where $\xi=e^{-i \pi \operatorname{Im}(\lambda)}$ and $\lambda=e^{i \theta} h(0)-e^{-i \theta} g(0)$. The superordinate function $K(z)$ maps \mathbb{D} onto a convex domain with $K(0)=\lambda$ and $K^{\prime}(0)=\frac{2}{\pi}(1+\xi)$, and therefore, by a theorem of Rogosinski [26, Theorem 2.3] (see also [14, Theorem 6.4]), it follows that

$$
\left|a_{n}-e^{-2 i \theta} b_{n}\right| \leq \frac{2}{\pi}|1+\xi| \leq \frac{4}{\pi} \quad \text { for } n=1,2, \ldots
$$

and the desired inequality (3), with $M=1$, is a consequence of the arbitrariness of θ in $[0,2 \pi$).
For the proof of sharpness part, consider the functions

$$
f_{n}(z)=\frac{2 M \alpha}{\pi} \operatorname{Im}\left(\log \frac{1+\beta z^{n}}{1-\beta z^{n}}\right), \quad|\alpha|=|\beta|=1
$$

whose values are confined to a diametral segment of the disk \mathbb{D}_{M}. Also,

$$
f_{n}(z)=\frac{2 M \alpha}{i \pi}\left(\sum_{k=1}^{\infty} \frac{1}{2 k-1}\left(\beta z^{n}\right)^{2 k-1}-\sum_{k=1}^{\infty} \frac{1}{2 k-1}\left(\bar{\beta} \bar{z}^{n}\right)^{2 k-1}\right),
$$

which gives

$$
\left|a_{n}\right|+\left|b_{n}\right|=\frac{4 M}{\pi}
$$

The proof of the lemma is complete.
As an immediate consequence of Lemmas 2.2 and 2.3, we have
Corollary 2.4. Let $f=h+\bar{g}$ be a harmonic mapping of \mathbb{D} with $h(z)=\sum_{n=1}^{\infty} a_{n} z^{n}, g(z)=\sum_{n=1}^{\infty} b_{n} z^{n}$ and $|f(z)| \leq M$. If $J_{f}(0)=1$ and $M \geq \frac{\pi}{\sqrt{\pi^{2}-8}}$, then for any $n \geq 2$,

$$
\left|a_{n}\right|+\left|b_{n}\right| \leq \frac{4 M}{\pi} \leq \sqrt{2 M^{2}-2}
$$

3. The convexity and the starlikeness

The following simple result can be used to generate (harmonic) starlike and convex functions.
Theorem 3.1. Let f be a univalent p-harmonic mapping with the form

$$
f(z)=G(z) \sum_{k=1}^{p} \lambda_{k}|z|^{2(k-1)},
$$

where G is a locally univalent harmonic mapping and $\lambda_{k}(k=1, \ldots, p)$ are complex constants. Then we have the following:
(a) $\frac{D(f)}{f}=\frac{D(G)}{G}$ and $\frac{\left.D^{2}(f)\right)}{D(f)}=\frac{\left.D^{2}(G)\right)}{D(G)}$.
(b) f is convex (resp. starlike) if and only if G is convex (resp. starlike).

Proof. (a) The two equalities are immediate consequences of the formula

$$
D\left(G(z) \sum_{k=1}^{p} \lambda_{k}|z|^{2(k-1)}\right)=D(G(z)) \sum_{k=1}^{p} \lambda_{k}|z|^{2(k-1)} .
$$

So, we omit the details.
(b) It suffices to prove the case of convexity since the proof for the starlikeness is similar.

Let $z=r e^{i t}$, where $0<r<1$ and $0 \leq t<2 \pi$. Then

$$
f(z)=G(z) \sum_{k=1}^{p} \lambda_{k}|z|^{2(k-1)}=G\left(r e^{i \theta}\right) \sum_{k=1}^{p} \lambda_{k} r^{2(k-1)}
$$

so that

$$
\frac{\partial f\left(r e^{i t}\right)}{\partial t}=\frac{\partial G\left(r e^{i t}\right)}{\partial t} \sum_{k=1}^{p} \lambda_{k} r^{2(k-1)}
$$

and

$$
\frac{\partial^{2} f\left(r e^{i t}\right)}{\partial t^{2}}=\frac{\partial^{2} G\left(r e^{i t}\right)}{\partial t^{2}} \sum_{k=1}^{p} \lambda_{k} r^{2(k-1)}
$$

Therefore Part (a) yields

$$
\frac{\partial}{\partial t}\left(\arg \frac{\partial f\left(r e^{i t}\right)}{\partial t}\right)=\operatorname{Re}\left(\frac{D^{2}(f)}{D(f)}\right)=\operatorname{Re}\left(\frac{D^{2}(G)}{D(G)}\right)=\frac{\partial}{\partial t}\left(\arg \frac{\partial G\left(r e^{i t}\right)}{\partial t}\right)
$$

from which the proof of Part (b) of this theorem follows.
As an immediate consequence of Theorem 3.1(a), we easily have the following.
Corollary 3.2. Let f be a univalent p-harmonic mapping defined as in Theorem 3.1. If f is convex and $D(f)$ is univalent, then $D(f)$ is starlike.

Abdulhadi, et. al. [3, Theorem 1] discussed the univalence and the starlikeness of biharmonic mappings in \mathbb{D}. A natural question is whether [3, Theorem 1] holds for p-harmonic mappings. The following result gives a partial answer to this problem.
Theorem 3.3. Let f be a p-harmonic mapping of \mathbb{D} satisfying $f(z)=|z|^{2(p-1)} G(z)$, where G is harmonic, orientation preserving and starlike. Then f is starlike univalent.

Proof. We see that the Jacobian J_{f} of f is

$$
\begin{aligned}
J_{f} & =\left|f_{z}\right|^{2}-\left|f_{\bar{z}}\right|^{2} \\
& =|z|^{4(p-1)}\left(\left|G_{z}\right|^{2}-\left|G_{\bar{z}}\right|^{2}\right)+2(p-1)|z|^{4 p-6}|G|^{2} \operatorname{Re}\left(\frac{D(G)}{G}\right) \\
& \geq|z|^{4(p-1)}\left(\left|G_{z}\right|^{2}-\left|G_{\bar{z}}\right|^{2}\right) .
\end{aligned}
$$

Hence $J_{f}(z)>0$ when $0<|z|<1$ and obviously, $J_{f}(0)=0$. The univalence of f follows from a standard argument as in the proof of [3, Theorem 1]. Finally, Theorem 3.1 implies that f is starlike.

4. The Landau theorem

We now discuss the existence of the Laudau constant for two classes of p-harmonic mappings.
Theorem 4.1. Let $f(z)=\sum_{k=1}^{p}|z|^{2(k-1)} G_{p-k+1}(z)$ be a p-harmonic mapping of \mathbb{D} satisfying $\Delta G_{p-k+1}(z)=f(0)=$ $G_{p}(0)=J_{f}(0)-1=0$ and for any $z \in \mathbb{D},\left|G_{p-k+1}(z)\right| \leq M$, where $M \geq 1$. Then there is a constant $\rho(0<\rho<1)$ such that $D(f)$ is univalent in \mathbb{D}_{ρ}, where ρ satisfies the following equation:

$$
\lambda_{0}(M)-\frac{T(M)}{(1-\rho)^{2}} \sum_{k=2}^{p}(2 k-1) \rho^{2(k-1)}-\sum_{k=1}^{p} \frac{2 T(M) \rho^{2 k-1}}{(1-\rho)^{3}}-\frac{16 M}{\pi^{2}} s_{0} \arctan \rho=0
$$

with

$$
\begin{gather*}
s_{0}=\left(\frac{\sqrt{17}-1}{\sqrt{17}-3}\right) \sqrt{\frac{2}{5-\sqrt{17}}} \approx 4.1996, \\
T(M)= \begin{cases}\sqrt{2 M^{2}-2} & \text { if } 1 \leq M \leq M_{1}:=\frac{\pi}{\sqrt{\pi^{2}-8}} \approx 2.2976 \\
\frac{4 M}{\pi} & \text { if } M>M_{1}\end{cases} \tag{4}
\end{gather*}
$$

and $\lambda_{0}(M)$ is given by (2). Moreover, the range $D(f)\left(\mathbb{D}_{\rho}\right)$ contains a univalent disk \mathbb{D}_{R}, where

$$
R=\rho\left[\lambda_{0}(M)-\sum_{k=2}^{p} \frac{T(M) \rho^{2(k-1)}}{(1-\rho)^{2}}-\frac{16 M}{\pi^{2}} s_{0} \arctan \rho\right]
$$

Proof. For each $k \in\{1,2, \ldots, p\}$, let

$$
G_{p-k+1}(z)=a_{0, p-k+1}+\sum_{j=1}^{\infty} a_{j, p-k+1} z^{j}+\sum_{j=1}^{\infty} \bar{b}_{j, p-k+1} \bar{z}^{j},
$$

where $a_{0, p}=0$. We define the function H as

$$
H=D\left(\sum_{k=1}^{p}|z|^{2(k-1)} G_{p-k+1}\right)=\sum_{k=1}^{p}|z|^{2(k-1)} D\left(G_{p-k+1}\right) .
$$

Using Lemmas 2.2, 2.3 and Corollary 2.4, we have

$$
\left|a_{n, p}\right|+\left|b_{n, p}\right| \leq T(M)
$$

where $T(M)$ is given by (4), and

$$
\left|a_{j, p-k+1}\right|+\left|b_{j, p-k+1}\right| \leq \frac{4 M}{\pi}
$$

for $j \geq 1, n \geq 2$ and $2 \leq k \leq p$.
We observe that

$$
J_{f}(0)=\left|\left(G_{p}\right)_{z}(0)\right|^{2}-\left|\left(G_{p}\right)_{\bar{z}}(0)\right|^{2}=J_{G_{p}}(0)=1
$$

and hence by Lemmas 2.1 and 2.2, we have

$$
\lambda_{f}(0) \geq \lambda_{0}(M)
$$

where $\lambda_{0}(M)$ is given by (2). Now, we define

$$
q(x)=\frac{2-x^{2}}{\left(1-x^{2}\right) x}(0<x<1) .
$$

Then there is an $r_{0}=\sqrt{\frac{5-\sqrt{17}}{2}} \approx 0.66$ such that

$$
q\left(r_{0}\right)=\min _{0<x<1} q(x)=\left(\frac{\sqrt{17}-1}{\sqrt{17}-3}\right) \sqrt{\frac{2}{5-\sqrt{17}}}=s_{0} .
$$

For each $\theta \in[0,2 \pi)$, the function

$$
G_{\theta}(z)=\left(G_{p}\right)_{z}(z)-\left(G_{p}\right)(0)+\left(\left(G_{p}\right)_{\bar{z}}(z)-\left(G_{p}\right)_{\bar{z}}(0)\right) e^{i(\pi-2 \theta)}
$$

is clearly a harmonic mapping of \mathbb{D} and satisfies $G_{\theta}(0)=0$. Moreover, it follows from Lemma 2.1 that

$$
\Lambda_{G_{p}}(z) \leq \frac{4 M}{\pi} \frac{1}{1-|z|^{2}} \text { for } z \in \mathbb{D}
$$

In particular, this observation yields that

$$
\begin{equation*}
\left|G_{\theta}(z)\right| \leq \Lambda_{G_{p}}(z)+\Lambda_{G_{p}}(0) \leq \frac{4 M}{\pi}\left(1+\frac{1}{1-|z|^{2}}\right)=\frac{4 M}{\pi}|z| q(|z|) \tag{5}
\end{equation*}
$$

for all $z \in \mathbb{D}$.
Since $x q(x)-1=\frac{1}{1-x^{2}}$ is an increasing function in the interval $(0,1)$, the inequality (5) shows that for any $z \in \mathbb{D}_{r_{0}}$,

$$
\left|G_{\theta}(z)\right| \leq \frac{4 M}{\pi} m_{0}
$$

where $m_{0}=\left(2-r_{0}^{2}\right) /\left(1-r_{0}^{2}\right)$. Next, we consider the mapping F defined on \mathbb{D} by

$$
F(z)=\frac{\pi}{4 M m_{0}} G_{\theta}\left(r_{0} z\right)
$$

Applying Lemma 2.1 to the function $F(z)$ yields that for $z \in \mathbb{D}_{r_{0}}$,

$$
\left|G_{\theta}(z)\right| \leq \frac{16 M}{\pi^{2}} m_{0} \arctan \left(\frac{|z|}{r_{0}}\right) \leq \frac{16 M}{\pi^{2}} s_{0} \arctan |z|
$$

where $s_{0}=m_{0} / r_{0}$.
Now, we fix ρ with $\rho \in(0,1)$. To prove the univalency of H, we choose two distinct points z_{1}, z_{2} in \mathbb{D}_{ρ}. Let $\gamma=\left\{\left(z_{2}-z_{1}\right) t+z_{1}: 0 \leq t \leq 1\right\}$ and $z_{2}-z_{1}=\left|z_{1}-z_{2}\right| e^{i \theta}$. We find that

$$
\begin{aligned}
& \mid H\left(z_{1}\right)- H\left(z_{2}\right) \mid \\
&=\left|\int_{\gamma} H_{z}(z) d z+H_{\bar{z}}(z) d \bar{z}\right| \\
& \geq\left|\int_{\gamma}\left(G_{p}\right)_{z}(0) d z-\left(G_{p}\right)_{\bar{z}}(0) d \bar{z}\right| \\
&-\left.\left|\int_{\gamma} \sum_{k=2}^{p}\right| z\right|^{2(k-1)}\left[z\left(G_{p-k+1}\right)_{z^{2}}(z) d z-\bar{z}\left(G_{p-k+1}\right)_{\bar{z}^{2}}(z) d \bar{z}\right] \mid \\
&-\left.\left|\int_{\gamma} \sum_{k=2}^{p}(k-1)\right| z\right|^{2(k-2)}\left[z^{2}\left(G_{p-k+1}\right)_{z}(z) d \bar{z}-\bar{z}^{2}\left(G_{p-k+1}\right)_{\bar{z}}(z) d z\right] \mid \\
&-\left.\left|\int_{\gamma} \sum_{k=2}^{p} k\right| z\right|^{2(k-1)}\left[\left(G_{p-k+1}\right)_{z}(z) d z-\left(G_{p-k+1}\right)_{\bar{z}}(z) d \bar{z}\right] \mid \\
&-\left|\int_{\gamma}\left[\left(G_{p}\right)_{z}(z)-\left(G_{p}\right)_{z}(0)\right] d z-\left[\left(G_{p}\right)_{\bar{z}}(z)-\left(G_{p}\right)_{\bar{z}}(0)\right] d \bar{z}\right| \\
& \geq \quad\left|z_{1}-z_{2}\right|\left\{\lambda_{f}(0)-\left|G_{\theta}(\rho)\right|\right. \\
&-\sum_{k=1}^{p} \rho^{2(k-1)} \sum_{n=2}^{\infty} n(n-1)\left(\left|a_{n, p-k+1}\right|+\left|b_{n, p-k+1}\right|\right) \rho^{n-1} \\
&\left.-\sum_{k=2}^{p}(2 k-1) \rho^{2(k-2)} \sum_{n=1}^{\infty} n\left(\left|a_{n, p-k+1}\right|+\left|b_{n, p-k+1}\right|\right) \rho^{n+1}\right\} \\
&>\quad\left|z_{1}-z_{2}\right|\left[\lambda_{0}(M)-\frac{T(M)}{(1-\rho)^{2}} \sum_{k=2}^{p}(2 k-1) \rho^{2(k-1)}\right. \\
&\left.-\sum_{k=1}^{p} \frac{2 T(M) \rho^{2 k-1}}{(1-\rho)^{3}}-\frac{16 M}{\pi^{2}} s_{0} \arctan \rho\right] . \\
&
\end{aligned}
$$

Let

$$
P(\rho)=\lambda_{0}(M)-\frac{T(M)}{(1-\rho)^{2}} \sum_{k=2}^{p}(2 k-1) \rho^{2(k-1)}-\sum_{k=1}^{p} \frac{2 T(M) \rho^{2 k-1}}{(1-\rho)^{3}}-\frac{16 M}{\pi^{2}} s_{0} \arctan \rho
$$

Then it is easy to verify that $P(\rho)$ is a decreasing function on the interval $(0,1)$,

$$
\lim _{\rho \rightarrow 0+} P(\rho)=\lambda_{0}(M) \text { and } \lim _{\rho \rightarrow 1-} P(\rho)=-\infty
$$

Hence there exists a unique ρ_{0} in $(0,1)$ satisfying $P\left(\rho_{0}\right)=0$. This observation shows that $\left|H\left(z_{1}\right)-H\left(z_{2}\right)\right|>0$ for arbitrary two distinct points z_{1}, z_{2} in $|z|<\rho_{0}$ which proves the univalency of $D(F)$ in $\mathbb{D}_{\rho_{0}}$.

M	p	$\rho=\rho(M, p)$	$R=R(M, \rho(M, p))$	ρ^{\prime}	R^{\prime}
1.1296	2	0.0714741	0.0101601	0.0420157	0.00945379
2	2	0.0206783	0.00227639	0.0139439	0.00164502
2.2976	2	0.0155966	0.00151523	0.0106132	0.00108021
3	2	0.00922255	0.00067425	0.00626141	0.000482413
1.1296	3	0.071463	0.0101647	-	-
2	3	0.0206782	0.00227641	-	-
2.2976	3	0.0155966	0.00151523	-	-
3	3	0.00922254	0.000674251	-	-
1.1296	4	0.0714629	0.0101647	-	-
2	4	0.0206782	0.00227641	-	-
2.2976	4	0.0155966	0.00151523	-	-
3	4	0.00922254	0.000674251	-	-

Table 1: Values of ρ and R for Theorem 4.1 for $p=2$, and the corresponding values of ρ^{\prime} and R^{\prime} of [7, Theorem 1.1] (for $p=2$)

For any z with $|z|=\rho_{0}$, we have

$$
\begin{aligned}
|H(z)|= & \left.\left|\sum_{k=1}^{p}\right| z\right|^{2(k-1)}\left[z\left(G_{p-k+1}\right)_{z}(z)-\bar{z}\left(G_{p-k+1}\right)_{\bar{z}}(z)\right] \mid \\
\geq & \left|z\left(G_{p}\right)_{z}(0)-\bar{z}\left(G_{p}\right)_{\bar{z}}(0)\right| \\
& -\left|z\left[\left(G_{p}\right)_{z}(z)-\left(G_{p}\right)_{z}(0)\right]-\bar{z}\left[\left(G_{p}\right)_{\bar{z}}(z)-\left(G_{p}\right)_{\bar{z}}(0)\right]\right| \\
& -\left.\left|\sum_{k=2}^{p}\right| z\right|^{2(k-1)}\left[z\left(G_{p-k+1}\right)_{z}(z)-\bar{z}\left(G_{p-k+1}\right)_{\bar{z}}(z)\right] \mid \\
\geq & \rho_{0}\left[\lambda_{0}(M)-\sum_{k=2}^{p} \frac{T(M) \rho_{0}^{2(k-1)}}{\left(1-\rho_{0}\right)^{2}}-\frac{16 M}{\pi^{2}} s_{0} \arctan \rho_{0}\right] \\
= & R
\end{aligned}
$$

and the proof of the theorem is complete.
From Table 1, we see that Theorem 4.1 improves Theorem 1.1 of [7] for the case $p=2$, and the results for the rest of the values of p are new. In Table 1, third and fourth columns refer to values obtained from Theorem 4.1 for cases $p=2,3,4$ for certain choices of M, while the right two columns correspond to the values obtained from [7, Theorem 1.1] for the case $p=2$.

Theorem 4.2. Let $f(z)=|z|^{2(p-1)} G(z)$ be a p-harmonic mapping of \mathbb{D} satisfying $G(0)=J_{G}(0)-1=0$ and $|G(z)| \leq M$, where $M \geq 1$ and G is harmonic. Then there is a constant $\rho(0<\rho<1)$ such that $D(f)$ is univalent in \mathbb{D}_{ρ}, where ρ satisfies the following equation:

$$
\lambda_{0}(M)-\frac{48 M}{\pi^{2}} s_{0} \arctan \rho-\frac{2 T(M) \rho}{(1-\rho)^{3}}=0,
$$

where the constants $s_{0}, \lambda_{0}(M)$ and $T(M)$ are the same as in Theorem 4.1. Moreover, the range $D(f)\left(\mathbb{D}_{\rho}\right)$ contains a univalent disk \mathbb{D}_{R}, where

$$
R=\rho^{2 p-1}\left[\lambda_{0}(M)-\frac{16 M}{\pi^{2}} s_{0} \arctan \rho\right] .
$$

Especially, if $M=1$, then $G(z)=z$, i.e. $f(z)=|z|^{2(p-1)} z$ which is univalent in \mathbb{D}.

Proof. Let $G(z)=\sum_{n=1}^{\infty} a_{n} z^{n}+\sum_{n=1}^{\infty} \bar{b}_{n} \bar{z}_{n}$. Using Lemmas 2.2, 2.3 and Corollary 2.4, we have

$$
\left|a_{n}\right|+\left|b_{n}\right| \leq T(M) \text { for } n \geq 2
$$

Note that

$$
J_{G}(0)=\left|a_{1}\right|^{2}-\left|b_{1}\right|^{2}=1
$$

and hence, by Lemmas 2.1 and 2.2, we have

$$
\lambda_{G}(0) \geq \lambda_{0}(M)
$$

Next, we set $H=D(f)=|z|^{2(p-1)} D(G)$ and fix ρ with $\rho \in(0,1)$. To prove the univalency of f, we choose two distinct points z_{1}, z_{2} in \mathbb{D}_{ρ}. Let $\gamma=\left\{\left(z_{2}-z_{1}\right) t+z_{1}: 0 \leq t \leq 1\right\}$ and $z_{2}-z_{1}=\left|z_{1}-z_{2}\right| e^{i \theta}$. Then

$$
\begin{aligned}
\left|H\left(z_{1}\right)-H\left(z_{2}\right)\right|= & \left|\int_{\left[z_{1}, z_{2}\right]} H_{z}(z) d z+H_{\bar{z}}(z) d \bar{z}\right| \\
= & \left.\left|\int_{\left[z_{1}, z_{2}\right]} p\right| z\right|^{2(p-1)}\left(G_{z}(z) d z-G_{\bar{z}}(z) d \bar{z}\right) \\
& +|z|^{2(p-1)}\left(z G_{z^{2}}(z) d z-\bar{z} G_{\bar{z}^{2}}(z) d \bar{z}\right) \\
& +(p-1)|z|^{2(p-2)}\left(z^{2} G_{z}(z) d \bar{z}-\bar{z}^{2} G_{\bar{z}}(z) d z\right) \mid \\
\geq & \mid \int_{\left[z_{1}, z_{2}\right]}\left[G_{z}(0)\left(p|z|^{2(p-1)} d z+(p-1)|z|^{2(p-2)} z^{2} d \bar{z}\right)\right. \\
& \left.-G_{\bar{z}}(0)\left(p|z|^{2(p-1)} d \bar{z}-(p-1)|z|^{2(p-2) \bar{z}^{2}} d z\right)\right] \mid \\
& -\left.p\left|\int_{\left[z_{1}, z_{2}\right]}\right| z\right|^{2(p-1)}\left[\left(G_{z}(z)-G_{z}(0)\right) d z-\left(G_{\bar{z}}(z)-G_{\bar{z}}(0)\right) d \bar{z}\right] \mid \\
& -\left.\left|(p-1) \int_{\left[z_{1}, z_{2}\right]}\right| z\right|^{2(p-1)}\left[\frac{z}{\bar{z}}\left(G_{z}(z)-G_{z}(0)\right) d \bar{z}\right. \\
& \left.-\frac{\bar{z}}{z}\left(G_{\bar{z}}(z)-G_{\bar{z}}(0)\right) d z\right] \mid \\
& -\left.\left|\int_{\left[z_{1}, z_{2}\right]}\right| z\right|^{2(p-1)}\left(z G_{z^{2}}(z) d z-\bar{z} G_{\bar{z}^{2}}(z) d \bar{z}\right) \mid \\
\geq & \left|z_{1}-z_{2}\right|\left(\int_{0}^{1}|z|^{2(p-1)} d t\right)\left\{\lambda_{0}(M)-\frac{48 M}{\pi^{2}} s_{0} \arctan \rho\right. \\
& \left.-\sum_{n=2}^{\infty} n(n-1)\left(\left|a_{n}\right|+\left|b_{n}\right|\right) \rho^{n-1}\right\} \\
> & \left|z_{1}-z_{2}\right|\left(\int_{0}^{1}|z|^{2(p-1)} d t\right)\left[\lambda_{0}(M)-\frac{48 M}{\pi^{2}} s_{0} \arctan \rho-\frac{2 T(M) \rho}{(1-\rho)^{3}}\right] .
\end{aligned}
$$

Since there exists a unique ρ in $(0,1)$ which satisfies the following equation:

$$
\lambda_{0}(M)-\frac{48 M}{\pi^{2}} s_{0} \arctan \rho-\frac{2 T(M) \rho}{(1-\rho)^{3}}=0,
$$

we see that $H\left(z_{1}\right) \neq H\left(z_{2}\right)$ and so, $H(z)$ is univalent for $|z|<\rho_{0}$.
Furthermore, we observe that for any z with $|z|=\rho_{0}$,

$$
\begin{aligned}
|H(z)| & =\rho_{0}^{2(p-1)}\left|z G_{z}(0)-\bar{z} G_{\bar{z}}(0)+z\left(G_{z}(z)-G_{z}(0)\right)-\bar{z}\left(G_{\bar{z}}(z)-G_{\bar{z}}(0)\right)\right| \\
& \geq \rho_{0}^{2 p-1}\left[\lambda_{0}(M)-\frac{16 M}{\pi^{2}} s_{0} \arctan \rho_{0}\right] \\
& =R .
\end{aligned}
$$

M	p	$\rho=\rho(M, p)$	$R=R(M, \rho(M, p))$	ρ^{\prime}	R^{\prime}
1.1296	2	0.0281673	0.0000106985	0.0194864	3.54498×10^{-6}
2	2	0.00856025	1.73218×10^{-7}	0.00623202	6.5415×10^{-8}
2.2976	2	0.00646284	6.4986×10^{-8}	0.0047235	2.47902×10^{-8}
3	2	0.0037942	1.00669×10^{-8}	0.00277162	3.83502×10^{-9}
1.1296	3	0.0281673	8.48819×10^{-9}	-	-
2	3	0.00856025	1.2693×10^{-11}	-	-
2.2976	3	0.00646284	2.71435×10^{-12}	-	-
3	3	0.0037942	1.44922×10^{-13}	-	-

Table 2: Values of ρ and R for Theorem 4.2 for $p=2,3$, and the corresponding values of ρ^{\prime} and R^{\prime} of [7, Theorem 1.2] (for $p=2$)

The proof of the theorem is complete.
We remark that Theorem 4.2 is an improved version of [7, Theorem 1.2] when $p=2$. In order to be more explicit, we refer to Table 2 in which the third and fourth columns refer to values obtained from Theorem 4.2 for cases $p=2,3$ for certain choices of M, while the right two columns correspond to the values obtained from [7, Theorem 1.2] for the case $p=2$.

5. The Region of Variability

Definition 5.1. Let \mathcal{H}_{p} denote the set of all p-harmonic mappings of the unit disk \mathbb{D} with the normalization $f_{z^{p-1}}(0)=(p-1)$! and $|f(z)| \leq 1$ for $|z|<1$. Here we prescribe that $\mathcal{H}_{0}=\emptyset$.

For a fixed point $z_{0} \in \mathbb{D}$, let

$$
V_{p}\left(z_{0}\right)=\left\{f\left(z_{0}\right): f \in \mathcal{H}_{p} \backslash \mathcal{H}_{p-1}\right\} .
$$

Now, we have
Theorem 5.2. (a) If $p=1$, then $V_{1}\left(z_{0}\right)=\{1\}$;
(b) If $p \geq 2, V_{p}\left(z_{0}\right)=\overline{\mathbb{D}}$.

Proof. We first prove (a). Let $f \in \mathcal{H}_{1}$ and $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}+\sum_{n=1}^{\infty} \bar{b}_{n} \bar{z}^{n}$. By Parseval's identity and the hypotheses $|f(z)| \leq 1$ and $f(0)=1$, we have

$$
\begin{aligned}
\lim _{r \rightarrow 1-} \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{2} d \theta & =\lim _{r \rightarrow 1-} \frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\left|h\left(r e^{i \theta}\right)\right|^{2}+\left|g\left(r e^{i \theta}\right)\right|^{2}\right) d \theta \\
& =\left|a_{0}\right|^{2}+\sum_{n=1}^{\infty}\left(\left|a_{n}\right|^{2}+\left|b_{n}\right|^{2}\right) \leq 1
\end{aligned}
$$

This inequality implies that for any $n \geq 1, a_{n}=b_{n}=0$ which gives that $f(z) \equiv 1$ for $z \in \mathbb{D}$. Thus, we have $V_{1}\left(z_{0}\right)=\{1\}$.

In order to prove (b), we consider the function

$$
\phi(z)=\frac{z^{p-1}-w}{1-w \bar{z}^{p-1}}=|z|^{2(p-1)} \sum_{n=1}^{\infty} w^{n} \bar{z}^{(n-1)(p-1)}+z^{p-1}-w-\sum_{n=1}^{\infty} w^{n+1} \bar{z}^{(p-1) n},
$$

where $w \in \overline{\mathbb{D}}$ and $p \geq 2$.
Then $\phi_{z^{p-1}}(0)=(p-1)!, \Delta^{p} \phi=0$ and therefore, $\phi \in \mathcal{H}_{p} \backslash \mathcal{H}_{p-1}$. For each fixed $a \in \overline{\mathbb{D}}, z \mapsto f_{a}(z)=$ $\left(z^{p-1}-a\right) /\left(1-a \bar{z}^{p-1}\right)$ is a p-harmonic mapping and $f_{a}(\mathbb{D}) \subset \mathbb{D}$.

Obviously, $a \mapsto f_{a}\left(z_{0}\right)=\frac{z_{0}^{p-1}-a}{1-a \overline{z_{0}}}$ is a conformal automorphism of \mathbb{D} and the image of $\overline{\mathbb{D}}$ under $f_{a}\left(z_{0}\right)$ is $\overline{\mathbb{D}}$ itself. By hypotheses, we obtain that for any $g \in \mathcal{H}_{p} \backslash \mathcal{H}_{p-1}, g\left(z_{0}\right) \in \overline{\mathbb{D}}$. Hence $V_{0}\left(z_{0}\right)$ coincides with $\overline{\mathbb{D}}$. The proof of this theorem is complete.

By the method of proof used in Theorem 5.2(a), we obtain the following generalization of Cartan's uniqueness theorem (see [5] or [27, p. 23]) for harmonic mappings.

Theorem 5.3. Let f be a harmonic mapping in \mathbb{D} with $f(\mathbb{D}) \subseteq \mathbb{D}$ and $f_{z}(0)=1$. Then $f(z)=z$ in \mathbb{D}.

6. Estimates for Bloch norm for bi- and tri-harmonic mappings

In the case of p-harmonic Bloch mappings, the authors in [10] obtained the following result.
Theorem 6.1. Let f be a p-harmonic mapping in \mathbb{D} of the form (1) satisfying $B_{f}<\infty$, where

$$
B_{f}:=\sup _{z, w \in \mathbb{D}, z \neq w} \frac{|f(z)-f(w)|}{\rho(z, w)}<\infty \text { with } \rho(z, w)=\frac{1}{2} \log \left(\frac{1+\left|\frac{z-w}{1-\bar{z} w}\right|}{1-\left|\frac{z-w}{1-\bar{z} w}\right|}\right) .
$$

Then

$$
\begin{align*}
B_{f}:= & \sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)\left\{\left.\left|\sum_{k=1}^{p}\right| z\right|^{2(k-1)}\left(G_{p-k+1}\right)_{z}(z)\right. \\
& +\sum_{k=1}^{p}(k-1) \bar{z}|z|^{2(k-2)} G_{p-k+1}(z)\left|+\left|\sum_{k=1}^{p}\right| z\right|^{2(k-1)}\left(G_{p-k+1}\right)_{\bar{z}}(z) \\
& \left.+\sum_{k=1}^{p}(k-1) z|z|^{2(k-2)} G_{p-k+1}(z) \mid\right\} \\
\geq & \sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)| | \sum_{k=1}^{p}|z|^{2(k-1)}\left(G_{p-k+1}\right)_{z}(z)\left|-\left|\sum_{k=1}^{p}\right| z\right|^{2(k-1)}\left(G_{p-k+1}\right)_{\bar{z}}(z)| | \tag{6}
\end{align*}
$$

and (6) is sharp. The equality sign in (6) occurs when f is analytic or anti-analytic.
Furthermore, if for each $k \in\{1,2, \ldots, p\}$, the harmonic functions G_{p-k+1} in (1) are such that $\left|G_{p-k+1}(z)\right| \leq M$, then

$$
\begin{equation*}
B_{f} \leq 2 M \phi_{p}\left(y_{0}\right) \tag{7}
\end{equation*}
$$

Here y_{0} is the unique root in $(0,1)$ of the equation $\phi_{p}^{\prime}(y)=0$, where

$$
\begin{equation*}
\phi_{p}(y)=\frac{2}{\pi} \sum_{k=1}^{p} y^{2(k-1)}+y\left(1-y^{2}\right) \sum_{k=2}^{p}(k-1) y^{2(k-2)} \tag{8}
\end{equation*}
$$

The bound in (7) is sharp when $p=1$, where M is a positive constant. The extremal functions are

$$
f(z)=\frac{2 M \alpha}{\pi} \operatorname{Im}\left(\log \frac{1+S(z)}{1-S(z)}\right)
$$

where $|\alpha|=1$ and $S(z)$ is a conformal automorphism of \mathbb{D}.
In order to emphasize the importance of this result, we recall that, when $p=1$, (6) (resp. (7)) is a generalization of [12, Theorem 1] (resp. [12, Theorem 3]). In the case of $p=2$ of Theorem 6.1, after some computation, one has the following simple formulation for biharmonic mappings.

Corollary 6.2. Let $f=H+|z|^{2} G$ be a biharmonic mapping of \mathbb{D} such that $B_{f}<\infty$. Then, we have

$$
\begin{equation*}
B_{f} \geq \sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)| | H_{z}+|z|^{2} G_{z}\left|-\left|H_{\bar{z}}+|z|^{2} G_{z}\right|\right| \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{f} \leq \frac{4 M}{27 \pi^{3}}\left(8+36 \pi^{2}+\left(4+3 \pi^{2}\right)^{3 / 2}\right) \approx 30.7682 M \tag{10}
\end{equation*}
$$

Proof. According to our notation, (6) is equivalent to (9). In order to prove (10), we first observe that (7) is equivalent to

$$
B_{f} \leq 2 M \sup _{0<y<1} \phi_{2}(y)
$$

where

$$
\phi_{2}(y)=\frac{2}{\pi}\left(1+y^{2}\right)+y\left(1-y^{2}\right)
$$

Now, to find $\sup _{0<y<1} \phi_{2}(y)$, we compute the derivative

$$
\phi_{2}^{\prime}(y)=1+\frac{4}{\pi} y-3 y^{2}=-3\left(y-y_{0}\right)\left(y-\frac{2-\sqrt{4+3 \pi^{2}}}{3 \pi}\right)
$$

so that $\phi_{2}^{\prime}(y) \geq 0$ for $0 \leq y \leq y_{0}$ and $\phi_{2}^{\prime}(y) \leq 0$ for $y_{0} \leq y<1$. Hence

$$
y_{0}=\frac{2+\sqrt{4+3 \pi^{2}}}{3 \pi} \approx 0.82732
$$

is the critical point of $\phi_{2}(y)$. Consequently, $\phi_{2}(y) \leq \phi_{2}\left(y_{0}\right)$. A simple calculation shows that

$$
\begin{aligned}
\phi_{2}\left(y_{0}\right) & =\frac{2}{\pi}\left(1+y_{0}^{2}\right)+y_{0}\left(1-y_{0}^{2}\right) \\
& =\frac{2}{\pi}\left(\frac{8+12 \pi^{2}+4 \sqrt{4+3 \pi^{2}}}{9 \pi^{2}}\right)+\left(\frac{2}{3 \pi}+\frac{\sqrt{4+3 \pi^{2}}}{3 \pi}\right)\left(\frac{6 \pi^{2}-8-4 \sqrt{4+3 \pi^{2}}}{9 \pi^{2}}\right) \\
& =\frac{2}{27 \pi^{3}}\left(16+42 \pi^{2}+8 \sqrt{4+3 \pi^{2}}+\sqrt{4+3 \pi^{2}}\left(3 \pi^{2}-4-2 \sqrt{3 \pi^{2}+4}\right)\right) \\
& =\frac{2}{27 \pi^{3}}\left(8+36 \pi^{2}+\left(4+3 \pi^{2}\right)^{3 / 2}\right) \approx 15.3841
\end{aligned}
$$

and therefore, $B_{f} \leq 2 M \phi_{2}\left(y_{0}\right)$ which is the desired inequality (10). The result follows.
In the case of $p=3$ of Theorem 6.1, we have
Corollary 6.3. Let $f=H+|z|^{2} G+|z|^{4} K$ be a triharmonic (i.e. 3-harmonic) mapping of the unit disk \mathbb{D} such that $B_{f}<\infty$, where H, G and K are harmonic in \mathbb{D}. Then we have

$$
\begin{equation*}
B_{f} \geq \sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)| | H_{z}+|z|^{2} G_{z}+|z|^{4} K_{z}\left|-\left|H_{\bar{z}}+|z|^{2} G_{\bar{z}}+|z|^{4} K_{\bar{z}}\right|\right| \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{f} \leq 2 M \phi_{3}\left(y_{1}\right) \approx 4.037006 M \tag{12}
\end{equation*}
$$

where $\phi_{3}\left(y_{1}\right)=\sup _{0<y<1} \phi_{3}(y)$ and

$$
\phi_{3}(y)=\frac{2}{\pi}\left(1+y^{2}+y^{4}\right)+y\left(1+y^{2}-2 y^{4}\right)
$$

Proof. Set $p=3$ in Theorem 6.1. Then, (11) is equivalent to (6) and therefore, it suffices to prove (12). The choice $p=3$ in (7) shows that

$$
B_{f} \leq 2 M \sup _{0<y<1} \phi_{3}(y)
$$

where $\phi_{3}(y)$ is obtained from (8).
We see that $\phi_{3}(y)$ has a unique positive root in $(0,1)$. Also,

$$
\phi_{3}^{\prime}(y)=\frac{4}{\pi}\left(y+2 y^{3}\right)+1+3 y^{2}-10 y^{4}
$$

Computations show that $\phi_{3}^{\prime}(y) \geq 0$ for $0 \leq y \leq y_{1}$ and $\phi_{3}^{\prime}(y) \leq 0$ for $y_{1} \leq y<1$. Hence

$$
y_{1} \approx 0.891951
$$

is the only critical point of $\phi_{3}(y)$ in the interval $(0,1)$. It follows that

$$
\phi_{3}(y) \leq \phi_{3}\left(y_{1}\right) \approx 2.018503
$$

Thus, $B_{f} \leq 2 M \phi_{3}\left(y_{1}\right)$ which is the desired inequality (12).

References

[1] Z. Abdulhadi and Y. Abu Muhanna, Landau's theorem for biharmonic mappings, J. Math. Anal. Appl. 338 (2008) 705-709.
[2] Z. Abdulhadi, Y. Abu Muhanna and S. Khoury, On univalent solutions of the biharmonic equations, J. Inequal. Appl 5 (2005) 469-478.
[3] Z. Abdulhadi, Y. Abu Muhanna and S. Khoury, On some properties of solutions of the biharmonic equation, Appl. Math. Comput. 177 (2006) 346-351.
[4] H. Al-Amiri and P. T. Mocanu, Certain sufficient conditions for univalency of the class C ${ }^{1}$, J. Math. Anal. Appl. 80 (1981) $387-392$.
[5] H. Cartan, Les fonctions de deux variables complexes et le problème de la reprèsentation analytique, J. de Math. Pures et Appl. 96 (1931) 1-114.
[6] H. Chen, P. M. Gauthier and W. Hengartner, Bloch constants for planar harmonic mappings, Proc. Amer. Math. Soc. 128 (2000) 3231-3240.
[7] SH. Chen, S. Ponnusamy and X. Wang, Landau's theorem for certain biharmonic mappings, Appl. Math. Comput. 208 (2009) 427-433.
[8] SH. Chen, S. Ponnusamy and X. Wang, Properties of some classes of planar harmonic and planar biharmonic mappings, Complex Anal. Oper. Theory., 5 (2011) 901-916.
[9] SH. Chen, S. Ponnusamy and X. Wang, Coefficient estimates and Landau-Bloch's constant for planar harmonic mappings, Bull. Malaysian Math. Sci. Soc., 34 (2011) 255-265.
[10] SH. Chen, S. Ponnusamy and X. Wang, Bloch constant and Landau's theorems for planar p-harmonic mappings, J. Math. Anal. Appl., 373 (2011) 102-110.
[11] J. G. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A.I. 9 (1984) 3-25.
[12] F. Colonna, The Bloch constant of bounded harmonic mappings, Indiana Univ. Math. J. 38 (1989) 829-840.
[13] M. Dorff and M. Nowark, Landau's theorem for planar harmonic mappings, Comput. Methods Funct. Theory 4 (2004) $151-158$.
[14] P. Duren, Univalent function (Grundlehren der mathematicchen Wissenschaften 259, New York, Berlin, Heidelberg, Tokyo), Spring-Verlag 1983.
[15] P. Duren, Harmonic mappings in the plane, Cambridge Univ. Press, 2004.
[16] A. Grigoryan, Landau and Bloch theorems for planar harmonic mappings, Complex Var. Elliptic Equ. 51 (2006) 81-87.
[17] E. Heinz, On one-to-one harmonic mappings, Pacific J. Math. 9 (1959) 101-105.
[18] S. Khoury, Biorthogonal series solution of Stokes flow problems in sectorial regions, SIAM J. Appl. Math. 56 (1996) 19-39.
[19] W. E. Langlois, Slow Viscous Flow, Macmillan Company, 1964.
[20] E. Landau, Über die Bloch'sche konstante und zwei verwandte weltkonstanten, Math. Z. 30 (1929) 608-634.
[21] M. Liu, Landau theorems for biharmonic mappings, Complex Var. Elliptic Equ. 53 (2008) 843-855.
[22] M. Liu, Landau's theorem for planar harmonic mappings, Comput. Math. Appl. 57 (2009) 1142-1146.
[23] P. T. Mocanu, Starlikeness and convexity for nonanalytic functions in the unit disc, Mathematica (Cluj) 22 (1980) no. 1, 77-83.
[24] S. Ponnusamy and A. Vasudevarao, Region of variability of two subclasses of univalent functions, J. Math. Anal. Appl. 332 (2007) 1322-1333.
[25] S. Ponnusamy, A. Vasudevarao and H. Yanagihara, Region of variability of univalent functions $f(z)$ for which $z f^{\prime}(z)$ is spirallike, Houston J. Math. 34 (2008) 1037-1048.
[26] W. Rogosinski, On the coefficients of subordinate functions, Proc. London Math. Soc. 48 (1943) 48-82.
[27] W. Rudin, Function theory in the unit ball of \mathbb{C}^{n}, Spring-Verlag, New York, Heidelberg, Berlin, 1980.
[28] H. Xinzhong, Estimates on Bloch constants for planar harmonic mappings, J. Math. Anal. Appl. 337 (2008) 880-887.
[29] H. Yanagihara, Regions of variability for functions of bounded derivatives, Kodai Math. J. 28 (2005) 452-462.
[30] H. Yanagihara, Regions of variability for convex functions, Math. Nachr. 279 (2006) 1723-1730.

[^0]: 2010 Mathematics Subject Classification. Primary 30C65, 30C45; Secondary 30C20
 Keywords. p-harmonic mapping, starlikeness, convexity, region of variability, Landau's theorem
 Received: 15 February 2012; Accepted: 15 June 2012
 Communicated by Miodrag Mateljević
 Research supported by NSFs of Chna (No: 11071063), the Construct Program of the Key Discipline in Hunan Province and the Start Project of Hengyang Normal University (No. 12B34).

 Email addresses: mathechen@126.com (SH. Chen), samy@iitm.ac.in (S. Ponnusamy), xtwang@hunnu.edu.cn (X. Wang)

