Additive-cubic functional equations from additive groups into non-Archimedean Banach spaces

M. Eshaghi Gordji ${ }^{\text {a }}$, M. Bavand Savadkouhi ${ }^{\text {b }}$, M. Bidkham ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, Semnan University, P. O. Box 35195-363, Semnan, Iran
${ }^{b}$ Department of Mathematics, Islamic Azad University, Mahdi shahr Branch, Semnan , Iran

Abstract

In this paper, we establish the generalized Hyres-Ulam stability of the mixed type additive-cubic functional equation $$
f(2 x+y)+f(2 x-y)=2 f(x+y)+2 f(x-y)+2 f(2 x)-4 f(x)
$$ from additive groups into non-Archimedean Banach spaces.

1. Introduction

We recall that a field \mathbb{K}, equipped with a function (non-Archimedean absolute value, valuation) $|\cdot|$ from \mathbb{K} into $[0, \infty)$, is called a non-Archimedean field if the function $|\cdot|: \mathbb{K} \rightarrow[0, \infty)$ satisfies the following conditions:

1. $|r|=0$ if and only if $r=0$;
2. $|r s|=|r||s|$;
3. the strong triangle inequality, namely, $|r+s| \leq \max \{|r|,|s|\}$ for all $r, s \in \mathbb{K}$.

Clearly, $|1|=1=|-1|$ and $|n| \leq 1$ for all nonzero integer n.
Let Y be a vector space over the non-Archimedean field \mathbb{K} with a non-trivial non-Archimedean valuation $|\cdot|$. A function $\|\cdot\|: Y \rightarrow[0, \infty)$ is called a non-Archimedean norm (valuation) if it satisfies the following conditions:

1. $\|x\|=0$ if and only if $x=0$;
2. $\|r x\|=|r|\|x\|$ for all $x \in Y$ and all $r \in \mathbb{K}$;
3. the strong triangle inequality, namely,

$$
\|x+y\| \leq \max \{\|x\|,\|y\|\}
$$

for all $x, y \in Y$.

[^0]In this case, the pair $(Y,\|\cdot\|)$ is called a non-Archimedean space. By a Banach non-Archimedean space we mean one in which every Cauchy sequence is convergent. It follows from the strong triangle inequality that

$$
\left\|x_{n}-x_{m}\right\| \leq \max \left\{\left\|x_{j+1}-x_{j}\right\|: m \leq j<n-1\right\}
$$

for all $x_{n}, x_{m} \in Y$ and all $m, n \in \mathbb{N}$ with $n>m$. Therefore, a sequence $\left\{x_{n}\right\}$ is a Cauchy sequence in non-Archimedean space $(Y,\|\cdot\|)$ if and only if the sequence $\left\{x_{n+1}-x_{n}\right\}$ converges to zero in the space $(Y,\|\cdot\|)$.

In 1940, S. M. Ulam [21] in the University of Wisconsin proposed his famous question about the stability of homomorphisms. In the next year, D. H. Hyers [15] gave a positive answer to the above question for additive groups under the assumption that the groups are Banach spaces. In 1978, Th. M. Rassias [19] proved a generalization of Hyers theorem which allows the Cauchy difference to be unbounded. According to Th. M. Rassias theorem:

Theorem 1.1. Let $f: E \longrightarrow E^{\prime}$ be a mapping from a norm vector space E into a Banach space E^{\prime} subject to the inequality

$$
\|f(x+y)-f(x)-f(y)\| \leq \epsilon\left(\|x\|^{p}+\|y\|^{p}\right)
$$

for all $x, y \in E$, where ϵ and p are constants with $\epsilon>0$ and $p<1$. Then there exists a unique additive mapping $T: E \longrightarrow E^{\prime}$ such that

$$
\|f(x)-T(x)\| \leq \frac{2 \epsilon}{2-2^{p}}\|x\|^{p}
$$

for all $x \in E$. If $p<0$ then inequality (1.1) holds for all $x, y \neq 0$, and (1.2) for $x \neq 0$. Also, if the function $t \mapsto f(t x)$ from \mathbb{R} into E^{\prime} is continuous for each fixed $x \in E$, then T is linear.

The result of Th. M. Rassias has influenced the development of what is now called the Hyers-Ulam-Rassias stability theory for functional equations. In 1994, a generalization of Rassias theorem was obtained by Gфavruta [12] by replacing the bound $\epsilon\left(\|x\|^{p}+\|y\|^{p}\right)$ by a general control function $\phi(x, y)$. Several stability results have been recently obtained for various equations, also for mappings with more general domains and ranges (see [1, 2, 11, 13, 14, 16] and [20]).
K. Jun and H. Kim [17] introduced the following cubic functional equation

$$
\begin{equation*}
f(2 x+y)+f(2 x-y)=2 f(x+y)+2 f(x-y)+12 f(x) \tag{1.1}
\end{equation*}
$$

and they established the general solution and the generalized Hyers-Ulam-Rassias stability problem for the functional equation (1.1). They proved that a function $f: E_{1} \rightarrow E_{2}$ satisfies the functional equation (1.1) if and only if there exists a function $B: E_{1} \times E_{1} \times E_{1} \rightarrow E_{2}$ such that $f(x)=B(x, x, x)$ for all x in E_{1}, and B is symmetric for each fixed one variable and additive for each fixed two variables. The function is given by

$$
B(x, y, z)=\frac{1}{24}[f(x+y+z)+f(x-y-z)-f(x+y-z)-f(x-y+z)]
$$

for all $x, y, z \in E_{1}$.
It is easy to see that the function $f(x)=c x^{3}$ is a solution of the functional equation (1.1). Thus, it is natural that (1.1) is called a cubic functional equation and every solution of the cubic functional equation (1.1) is said to be a cubic function. K. Jun and H. Kim [17], investigated the generalized Hyers-Ulam-Rassias stability for a mixed type cubic and additive functional equation. For more detailed definitions of mixed type functional equations, we can refer to [6] and [8].
M. S. Moslehian and Th. M. Rassias [18] proved the generalized Hyers-Ulam stability of the Cauchy functional equation and the quadratic functional equation in non-Archimedean spaces.
Recently, M. Eshaghi Gordji and M. Bavand Savadkouhi [5] proved the generalized Hyers-Ulam-Rassias stability of the cubic and quartic functional equations in non-Archimedean spaces (see also [3, 4, 7, 9] and
[10]).
In this paper, we investigate the stability of following functional equation

$$
\begin{equation*}
f(2 x+y)+f(2 x-y)=2 f(x+y)+2 f(x-y)+2 f(2 x)-4 f(x) \tag{1.2}
\end{equation*}
$$

in non-Archimedean space. The function $f(x)=a x+b x^{3}$ satisfies the functional equation (1.2), which explains why it is called additive-cubic functional equation.

2. Main Results

Throughout this section, we assume that G is an additive group and X is a Banach non-Archimedean space. For a given function $T: G \rightarrow X$, we define the difference operator

$$
\Delta T(x, y)=T(2 x+y)+T(2 x-y)-2 T(x+y)-2 T(x-y)-2 T(2 x)+4 T(x)
$$

for all $x, y \in G$.
Theorem 2.1. Let $\varphi: G \times G \rightarrow[0, \infty)$ be a function such that

$$
\begin{gather*}
\lim _{n \rightarrow \infty} \frac{\varphi\left(2^{n} x, 2^{n} y\right)}{|2|^{n}}=0 \tag{2.1}\\
\lim _{n \rightarrow \infty} \frac{1}{\left|2^{n}\right|} \max \left\{|2| \varphi\left(2^{n} x, 2^{n} x\right), \max \left\{|2| \varphi\left(0,2^{n} x\right), \varphi\left(2^{n} x, 2^{n+1} x\right)\right\}\right\}=0 \tag{2.2}
\end{gather*}
$$

for all $x, y \in G$ and let for each $x \in G$ the limit

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \max \left\{\frac{1}{\left|2^{j}\right|} \max \left\{|2| \varphi\left(2^{j} x, 2^{j} x\right), \max \left\{|2| \varphi\left(0,2^{j} x\right), \varphi\left(2^{j} x, 2^{j+1} x\right)\right\}\right\}: 0 \leq j<n\right\}, \tag{2.3}
\end{equation*}
$$

denoted by $\tilde{\varphi}_{A}(x)$, exists. Suppose that $f: G \rightarrow X$ is a function satisfying

$$
\begin{equation*}
\|f(2 x+y)+f(2 x-y)-2 f(x+y)-2 f(x-y)-2 f(2 x)+4 f(x)\| \leq \varphi(x, y) \tag{2.4}
\end{equation*}
$$

for all $x, y \in G$. Then there exists an additive function $A: G \rightarrow X$ such that

$$
\begin{equation*}
\|f(2 x)-8 f(x)-A(x)\| \leq \frac{1}{|2|} \tilde{\varphi}_{A}(x) \tag{2.5}
\end{equation*}
$$

for all $x \in G$. Moreover, if

$$
\begin{aligned}
\lim _{i \rightarrow \infty} \lim _{n \rightarrow \infty} \max \{ & \frac{1}{\left|2^{j}\right|} \max \left\{|2| \varphi\left(2^{j} x, 2^{j} x\right),\right. \\
& \left.\left.\max \left\{|2| \varphi\left(0,2^{j} x\right), \varphi\left(2^{j} x, 2^{j+1} x\right)\right\}\right\}: i \leq j<n+i\right\}=0
\end{aligned}
$$

then A is the unique additive function satisfying (2.5).
Proof. Setting $x=0$ in (2.4), we get

$$
\begin{equation*}
\|f(y)+f(-y)\| \leq \varphi(0, y) \tag{2.6}
\end{equation*}
$$

for all $y \in G$. If we replace y in (2.6) by x, we obtain

$$
\begin{equation*}
\|f(x)+f(-x)\| \leq \varphi(0, x) \tag{2.7}
\end{equation*}
$$

for all $x \in G$. Replacing y by x and $2 x$ in (2.4), respectively, we get the inequalities

$$
\begin{equation*}
\|f(3 x)-4 f(2 x)+5 f(x)\| \leq \varphi(x, x) \tag{2.8}
\end{equation*}
$$

$$
\begin{equation*}
\|f(4 x)-2 f(3 x)-2 f(2 x)-2 f(-x)+4 f(x)\| \leq \varphi(x, 2 x) \tag{2.9}
\end{equation*}
$$

for all $x \in G$. It follows from (2.7) and (2.9) that

$$
\begin{equation*}
\|f(4 x)-2 f(3 x)-2 f(2 x)+6 f(x)\| \leq \max \{|2| \varphi(0, x), \varphi(x, 2 x)\} \tag{2.10}
\end{equation*}
$$

for all $x \in G$. combining (2.8) and (2.10) to get

$$
\begin{equation*}
\|f(4 x)-10 f(2 x)+16 f(x)\| \leq \max \{|2| \varphi(x, x), \max \{|2| \varphi(0, x), \varphi(x, 2 x)\}\} \tag{2.11}
\end{equation*}
$$

for all $x \in G$. Let $g: G \rightarrow X$ be a mapping defined by $g(x)=f(2 x)-8 f(x)$ for all $x \in G$. Therefore, we have

$$
\begin{equation*}
\|g(2 x)-2 g(x)\| \leq \max \{|2| \varphi(x, x), \max \{|2| \varphi(0, x), \varphi(x, 2 x)\}\} \tag{2.12}
\end{equation*}
$$

for all $x \in G$. Hence,

$$
\begin{equation*}
\left\|\frac{g(2 x)}{2}-g(x)\right\| \leq \frac{1}{|2|} \max \{|2| \varphi(x, x), \max \{|2| \varphi(0, x), \varphi(x, 2 x)\}\} \tag{2.13}
\end{equation*}
$$

Replacing x by $2^{n-1} x$ in (2.13) to get

$$
\begin{align*}
& \left\|\frac{1}{2^{n}} g\left(2^{n} x\right)-\frac{1}{2^{(n-1)}} g\left(2^{n-1} x\right)\right\| \\
& \leq \frac{1}{\left|2^{n}\right|} \max \left\{|2| \varphi\left(2^{n-1} x, 2^{n-1} x\right), \max \left\{|2| \varphi\left(0,2^{n-1} x\right), \varphi\left(2^{n-1} x, 2^{n} x\right)\right\}\right\} \tag{2.14}
\end{align*}
$$

for all $x \in G$. It follows from (2.2) and (2.14) that the sequence $\left\{\frac{g\left(2^{n} x\right)}{2^{n}}\right\}$ is Cauchy. Since X is complete, we conclude that $\left\{\frac{g\left(2^{n} x\right)}{2^{n}}\right\}$ is convergent. Set $A(x):=\lim _{n \rightarrow \infty} \frac{g\left(2^{n} x\right)}{2^{n}}$.
Using induction one can show that

$$
\begin{align*}
\left\|\frac{g\left(2^{n} x\right)}{2^{n}}-g(x)\right\| & \leq \frac{1}{|2|} \max \left\{\frac { 1 } { | 2 ^ { i } | } \operatorname { m a x } \left\{\operatorname { m a x } \left\{|2| \varphi\left(2^{i} x, 2^{i} x\right),\right.\right.\right. \\
& \max \left\{|2| \varphi\left(0,2^{i} x\right), \varphi\left(2^{i} x, 2^{i+1} x\right): 0 \leq i<n\right\} \tag{2.15}
\end{align*}
$$

for all $n \in \mathbb{N}$ and all $x \in G$. Letting $n \rightarrow \infty$ in (2.15) and using (2.3) one can obtain (2.5). By (2.1) and (2.4), we get

$$
\begin{aligned}
\|\Delta A(x, y)\| & =\lim _{n \rightarrow \infty} \frac{1}{\left|2^{n}\right|}\left\|\Delta g\left(2^{n} x, 2^{n} y\right)\right\| \\
& \leq \lim _{n \rightarrow \infty} \max \left\{\left\|\frac{\Delta f\left(2^{n+1} x, 2^{n+1} y\right)}{2^{n}}\right\|,\left\|\frac{8 \Delta f\left(2^{n} x, 2^{n} y\right)}{2^{n}}\right\|\right\} \\
& \leq \lim _{n \rightarrow \infty} \max \left\{|2| \frac{\varphi\left(2^{n+1} x, 2^{n+1} y\right)}{2^{n+1}},|8| \frac{\varphi\left(2^{n} x, 2^{n} y\right)}{2^{n}}\right\}=0
\end{aligned}
$$

for all $x, y \in G$. Therefore the function $A: G \rightarrow X$ satisfies (1.2). If A^{\prime} is another additive function satisfying (2.5), then

$$
\begin{aligned}
\left\|A(x)-A^{\prime}(x)\right\| & =\lim _{i \rightarrow \infty}|2|^{-i}\left\|A\left(2^{i} x\right)-A^{\prime}\left(2^{i} x\right)\right\| \\
& \leq \lim _{i \rightarrow \infty}|2|^{-i} \max \left\{\left\|A\left(2^{i} x\right)-f\left(2^{i} x\right)\right\|,\left\|f\left(2^{i} x\right)-A^{\prime}\left(2^{i} x\right)\right\|\right\} \\
& \leq \frac{1}{|2|} \lim _{i \rightarrow \infty} \lim _{n \rightarrow \infty} \max \left\{\frac { 1 } { | 2 ^ { j } | } \operatorname { m a x } \left\{|2| \varphi\left(2^{j} x, 2^{j} x\right),\right.\right. \\
& \max _{\left.\left.\left.1|2| \varphi\left(0,2^{j} x\right), \varphi\left(2^{j} x, 2^{j+1} x\right)\right\}\right\}: i \leq j<n+i\right\}} \\
& =0 .
\end{aligned}
$$

for all $x \in G$. Therefore $A=A^{\prime}$. This completes the proof of the uniqueness of A.

Theorem 2.2. Let $\varphi: G \times G \rightarrow[0, \infty)$ be a function such that

$$
\begin{gather*}
\lim _{n \rightarrow \infty} \frac{\varphi\left(2^{n} x, 2^{n} y\right)}{|2|^{n}}=0 \tag{2.16}\\
\lim _{n \rightarrow \infty} \frac{1}{\left|2^{3 n}\right|} \max \left\{|2| \varphi\left(2^{n} x, 2^{n} x\right), \max \left\{|2| \varphi\left(0,2^{n} x\right), \varphi\left(2^{n} x, 2^{n+1} x\right)\right\}\right\}=0 \tag{2.17}
\end{gather*}
$$

for all $x, y \in G$ and let for each $x \in G$ the limit

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \max \left\{\frac{1}{\left|2^{3 j}\right|} \max \left\{|2| \varphi\left(2^{j} x, 2^{j} x\right), \max \left\{|2| \varphi\left(0,2^{j} x\right), \varphi\left(2^{j} x, 2^{j+1} x\right)\right\}\right\}: 0 \leq j<n\right\} \tag{2.18}
\end{equation*}
$$

denoted by $\tilde{\varphi}_{C}(x)$, exists. Suppose that $f: G \rightarrow X$ is a function satisfying

$$
\begin{equation*}
\|f(2 x+y)+f(2 x-y)-2 f(x+y)-2 f(x-y)-2 f(2 x)+4 f(x)\| \leq \varphi(x, y) \tag{2.19}
\end{equation*}
$$

for all $x, y \in G$. Then there exists a cubic function $C: G \rightarrow X$ such that

$$
\begin{equation*}
\|f(2 x)-2 f(x)-C(x)\| \leq \frac{1}{|8|} \tilde{\varphi}_{C}(x) \tag{2.20}
\end{equation*}
$$

for all $x \in G$. If moreover,

$$
\begin{aligned}
\lim _{i \rightarrow \infty} \lim _{n \rightarrow \infty} \max \{ & \frac{1}{\left|2^{3 j}\right|} \max \left\{|2| \varphi\left(2^{j} x, 2^{j} x\right),\right. \\
& \left.\left.\max \left\{|2| \varphi\left(0,2^{j} x\right), \varphi\left(2^{j} x, 2^{j+1} x\right)\right\}\right\}: i \leq j<n+i\right\}=0
\end{aligned}
$$

then C is the unique cubic function satisfying (2.20).
Proof. Similar to the proof of Theorem 2.1, we have

$$
\begin{equation*}
\|f(4 x)-10 f(2 x)+16 f(x)\| \leq \max \{|2| \varphi(x, x), \max \{|2| \varphi(0, x), \varphi(x, 2 x)\}\} \tag{2.21}
\end{equation*}
$$

for all $x \in G$. Let $h: G \rightarrow X$ be a mapping defined by $h(x)=f(2 x)-2 f(x)$ for all $x \in G$. Therefore, we have

$$
\begin{equation*}
\|h(2 x)-8 h(x)\| \leq \max \{|2| \varphi(x, x), \max \{|2| \varphi(0, x), \varphi(x, 2 x)\}\} \tag{2.22}
\end{equation*}
$$

for all $x \in G$. Then we have

$$
\begin{equation*}
\left\|\frac{h(2 x)}{8}-h(x)\right\| \leq \frac{1}{|8|} \max \{|2| \varphi(x, x), \max \{|2| \varphi(0, x), \varphi(x, 2 x)\}\} . \tag{2.23}
\end{equation*}
$$

Replacing x by $2^{n-1} x$ in (2.23) to obtain

$$
\begin{align*}
& \left\|\frac{1}{2^{3 n}} h\left(2^{n} x\right)-\frac{1}{2^{3(n-1)}} h\left(2^{n-1} x\right)\right\| \\
& \leq \frac{1}{\left|2^{3 n}\right|} \max \left\{|2| \varphi\left(2^{n-1} x, 2^{n-1} x\right), \max \left\{|2| \varphi\left(0,2^{n-1} x\right), \varphi\left(2^{n-1} x, 2^{n} x\right)\right\}\right\} \tag{2.24}
\end{align*}
$$

for all $x \in G$. It follows from (2.17) and (2.24) that the sequence $\left\{\frac{h\left(2^{n} x\right)}{2^{3 n}}\right\}$ is Cauchy. Since X is complete, we conclude that $\left\{\frac{h\left(2^{n} x\right)}{2^{3 n}}\right\}$ is convergent. Set $C(x):=\lim _{n \rightarrow \infty} \frac{h\left(2^{n} x\right)}{2^{3 n}}$.
Using induction to get

$$
\begin{align*}
\left\|\frac{h\left(2^{n} x\right)}{2^{3 n}}-h(x)\right\| & \leq \frac{1}{|8|} \max \left\{\frac { 1 } { | 2 ^ { 3 i } | } \operatorname { m a x } \left\{|2| \varphi\left(2^{i} x, 2^{i} x\right),\right.\right. \\
& \left.\left.\max \left\{|2| \varphi\left(0,2^{i} x\right), \varphi\left(2^{i} x, 2^{i+1} x\right)\right\}\right\}: 0 \leq i<n\right\} \tag{2.25}
\end{align*}
$$

for all $n \in \mathbb{N}$ and all $x \in G$. By taking n to approach infinity in (2.25) and using (2.18) one can obtain (2.20). By (2.16) and (2.19), we get

$$
\begin{aligned}
\|\Delta C(x, y)\| & =\lim _{n \rightarrow \infty} \frac{1}{\left|2^{3 n}\right|}\left\|\Delta h\left(2^{n} x, 2^{n} y\right)\right\| \\
& \leq \lim _{n \rightarrow \infty} \max \left\{\left\|\frac{\Delta f\left(2^{n+1} x, 2^{n+1} y\right)}{2^{3 n}}\right\|,\left\|\frac{2 \Delta f\left(2^{n} x, 2^{n} y\right)}{2^{3 n}}\right\|\right\} \\
& \leq \lim _{n \rightarrow \infty} \max \left\{|8| \frac{\varphi\left(2^{n+1} x, 2^{n+1} y\right)}{2^{3(n+1)}},|2| \frac{\varphi\left(2^{n} x, 2^{n} y\right)}{2^{3 n}}\right\}=0
\end{aligned}
$$

for all $x, y \in G$. Therefore the function $C: G \rightarrow X$ satisfies (1.2). If C^{\prime} is another cubic function satisfying (2.20), then

$$
\begin{aligned}
\left\|C(x)-C^{\prime}(x)\right\| & =\lim _{i \rightarrow \infty}|2|^{-3 i}\left\|C\left(2^{i} x\right)-C^{\prime}\left(2^{i} x\right)\right\| \\
& \leq \lim _{i \rightarrow \infty}|2|^{-3 i} \max \left\{\left\|C\left(2^{i} x\right)-f\left(2^{i} x\right)\right\|,\left\|f\left(2^{i} x\right)-C^{\prime}\left(2^{i} x\right)\right\|\right\} \\
& \leq \frac{1}{|8|} \lim _{i \rightarrow \infty} \lim _{n \rightarrow \infty} \max \left\{\frac { 1 } { 2 ^ { 3 j } | } \operatorname { m a x } \left\{|2| \varphi\left(2^{j} x, 2^{j} x\right),\right.\right. \\
& \left.\left.\max \left\{|2| \varphi\left(0,2^{j} x\right), \varphi\left(2^{j} x, 2^{j+1} x\right)\right\}\right\}: i \leq j<n+i\right\} \\
& =0 .
\end{aligned}
$$

for all $x \in G$. Therefore $C=C^{\prime}$.
Theorem 2.3. Let $\varphi: G \times G \rightarrow[0, \infty)$ be a function such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\varphi\left(2^{n} x, 2^{n} y\right)}{\mid 2^{n}}=\lim _{n \rightarrow \infty} \frac{\varphi\left(2^{n} x, 2^{n} y\right)}{|2|^{3 n}}=0 \tag{2.26}
\end{equation*}
$$

for all $x, y \in G$ and let for each $x \in G$ the limit

$$
\lim _{n \rightarrow \infty} \max \left\{\frac{1}{\left|2^{j}\right|} \max \left\{|2| \varphi\left(2^{j} x, 2^{j} x\right), \max \left\{|2| \varphi\left(0,2^{j} x\right), \varphi\left(2^{j} x, 2^{j+1} x\right)\right\}\right\}: 0 \leq j<n\right\}
$$

denoted by $\tilde{\varphi}_{A}(x)$, and

$$
\lim _{n \rightarrow \infty} \max \left\{\frac{1}{\left|2^{3 j}\right|} \max \left\{|2| \varphi\left(2^{j} x, 2^{j} x\right), \max \left\{|2| \varphi\left(0,2^{j} x\right), \varphi\left(2^{j} x, 2^{j+1} x\right)\right\}\right\}: 0 \leq j<n\right\}
$$

denoted by $\tilde{\varphi}_{C}(x)$, exist. Suppose that $f: G \rightarrow X$ is a function satisfying

$$
\begin{equation*}
\|f(2 x+y)+f(2 x-y)-2 f(x+y)-2 f(x-y)-2 f(2 x)+4 f(x)\| \leq \varphi(x, y) \tag{2.27}
\end{equation*}
$$

for all $x, y \in G$. Then there exist an additive function $A: X \rightarrow Y$ and a cubic function $C: G \rightarrow X$ such that

$$
\begin{equation*}
\|f(x)-A(x)-C(x)\| \leq \frac{1}{|12|} \max \left\{\tilde{\varphi}_{A}(x), \frac{1}{|4|} \tilde{\varphi}_{C}(x)\right\} \tag{2.28}
\end{equation*}
$$

for all $x \in G$. Moreover, if

$$
\begin{aligned}
& \lim _{i \rightarrow \infty} \lim _{n \rightarrow \infty} \max \left\{\frac { 1 } { | 2 ^ { j } | } \operatorname { m a x } \left\{|2| \varphi\left(2^{j} x, 2^{j} x\right),\right.\right. \\
& \left.\left.\quad \max \left\{|2| \varphi\left(0,2^{j} x\right), \varphi\left(2^{j} x, 2^{j+1} x\right)\right\}\right\}: i \leq j<n+i\right\}=0, \\
& \lim _{i \rightarrow \infty} \lim _{n \rightarrow \infty} \max \left\{\frac { 1 } { | 2 ^ { 3 j } | } \operatorname { m a x } \left\{|2| \varphi\left(2^{j} x, 2^{j} x\right),\right.\right. \\
& \left.\left.\quad \max \left\{|2| \varphi\left(0,2^{j} x\right), \varphi\left(2^{j} x, 2^{j+1} x\right)\right\}\right\}: i \leq j<n+i\right\}=0
\end{aligned}
$$

then A is the unique additive function and C is the unique cubic function satisfying (2.28).

Proof. By Theorems 2.1 and 2.2, there exist an additive mapping $A_{1}: G \rightarrow X$ and a cubic mapping $C_{1}: G \rightarrow X$ such that

$$
\begin{aligned}
& \|f(2 x)-8 f(x)-A(x)\| \leq \frac{1}{|2|} \tilde{\varphi}_{A}(x) \\
& \|f(2 x)-2 f(x)-C(x)\| \leq \frac{1}{|8|} \tilde{\varphi}_{A}(x)
\end{aligned}
$$

for all $x \in G$. So we obtain (2.28) by letting $A(x)=\frac{-1}{6} A_{1}(x)$ and $C(x)=\frac{1}{6} C_{1}(x)$ for all $x \in G$. To prove the uniqueness property of A and C, let $A_{0}, C_{0}: G \rightarrow X$ be another additive and cubic mappings satisfying (2.28). Let $A^{\prime}=A-A_{0}$ and $C^{\prime}=C-C_{0}$. So

$$
\begin{aligned}
& \|f(x)-A(x)-C(x)\| \leq \frac{1}{|12|} \max \left\{\tilde{\varphi}_{A}(x), \frac{1}{|4|} \tilde{\varphi}_{C}(x)\right\} \\
& \left\|f(x)-A_{1}(x)-C_{1}(x)\right\| \leq \frac{1}{|12|} \max \left\{\tilde{\varphi}_{A}(x), \frac{1}{|4|} \tilde{\varphi}_{C}(x)\right\}
\end{aligned}
$$

thus we get

$$
\begin{align*}
\left\|A^{\prime}(x)+C^{\prime}(x)\right\| & \leq \max \left\{\|f(x)-A(x)-C(x)\|,\left\|f(x)-A_{1}(x)-C_{1}(x)\right\|\right\} \\
& \leq \frac{1}{|12|} \max \left\{\tilde{\varphi}_{A}(x), \frac{1}{|4|} \tilde{\varphi}_{C}(x)\right\} \tag{2.29}
\end{align*}
$$

for all $x \in G$. Since

$$
\begin{aligned}
& \lim _{i \rightarrow \infty} \lim _{n \rightarrow \infty} \max \left\{\frac { 1 } { | 2 ^ { j } | } \operatorname { m a x } \left\{|2| \varphi\left(2^{j} x, 2^{j} x\right),\right.\right. \\
& \\
& \left.\left.\quad \max \left\{|2| \varphi\left(0,2^{j} x\right), \varphi\left(2^{j} x, 2^{j+1} x\right)\right\}\right\}: i \leq j<n+i\right\}=0, \\
& \lim _{i \rightarrow \infty} \lim _{n \rightarrow \infty} \max \left\{\frac { 1 } { | 2 ^ { 3 j } | } \operatorname { m a x } \left\{|2| \varphi\left(2^{j} x, 2^{j} x\right),\right.\right. \\
& \left.\left.\quad \max \left\{|2| \varphi\left(0,2^{j} x\right), \varphi\left(2^{j} x, 2^{j+1} x\right)\right\}\right\}: i \leq j<n+i\right\}=0
\end{aligned}
$$

for all $x \in G$, then (2.29) implies that

$$
\lim _{n \rightarrow \infty} \frac{1}{|2|^{3 n}}\left\|A^{\prime}\left(2^{n} x\right)+C^{\prime}\left(2^{n} x\right)\right\|=0
$$

for all $x \in G$. So it follows from (2.29) that

$$
\left\|A^{\prime}(x)\right\| \leq \frac{1}{|12|} \tilde{\varphi}_{A}(x)
$$

for all $x \in G$. Therefore $A^{\prime}=0$.

References

[1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan. 2 (1950), 64-66.
[2] D. G. Bourgin, Classes of transformations and bordering transformations, Bull. Amer. Math. Soc. 57 (1951) 223-237.
[3] M. Eshaghi Gordji, Nearly ring homomorphisms and nearly ring derivations on non-Archimedean Banach algebras, Abs. Appl. Anal., Volume 2010, Article ID 393247, 12 pages, doi:10.1155/2010/393247.
[4] M. Eshaghi Gordji and Z. Alizadeh, Stability and superstability of ring homomorphisms on non-Archimedean Banach algebras, Abstract and Applied Analysis, Vol. 2011, Article ID:123656, (2011), 10 pages.
[5] M. Eshaghi Gordji and M. B. Savadkouhi, Stability of cubic and quartic functional equations in non-Archimedean spaces, Acta Appl. Math. 110 (2010) 1321-1329.
[6] M. Eshaghi Gordji, A. Ebadian and S. Zolfaghari, Stability of a functional equation deriving from cubic and quartic functions, Abstract and Applied Analysis Volume 2008, Article ID 801904, 17 pages.
[7] M. Eshaghi Gordji, R. Khodabakhsh, S. M. Jung and H. Khodaei, AQCQ-functional equation in non-Archimedean normed spaces, Abs. Appl. Anal., Volume 2010, Article ID 741942, 22 pages.
[8] M. Eshaghi Gordji, H. Khodaei, Solution and stability of generalized mixed type cubic, quadratic and additive functional equation in quasi-Banach spaces, Nonlinear Analysis-TMA 71 (2009) 5629-5643.
[9] M. Eshaghi Gordji, H. Khodaei and R. Khodabakhsh, General quartic-cubic-quadratic functional equation in non-Archimedean normed spaces, U.P.B. Sci. Bull., Series A, Vol. 72, Iss. 3, 2010, 69-84.
[10] M. Eshaghi Gordji and M. B. Savadkouhi, Stability of a mixed type cubicquartic functional equation in non-Archimedean spaces, Appl. Math. Lett. 23, No.10, (2010), 1198-1202.
[11] Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci. 14 (1991), 431-434.
[12] P. Gǎvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.
[13] A. Grabiec, The generalized Hyers-Ulam stability of a class of functional equations, Publ. Math. Debrecen. 48 (1996) $217-235$.
[14] D. H. Hyers, G. Isac and Th. M. Rassias, Stability of functional equations in several variables, Birkhaĕr, Basel, 1998.
[15] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. 27 (1941), 222-224.
[16] G. Isac and Th. M. Rassias, On the Hyers-Ulam stability of ψ-additive mappings, J. Approx. Theory 72 (1993), 131-137.
[17] K. W. Jung and H. M. Kim, The generalized Hyers-Ulam-Rassias stability of a cubic functional equation, J. Math. Anal. Appl. 274, (2002), no. 2, 267-278.
[18] M. S. Moslehian and Th. M. Rassias, Stability of functional equations in non-Archimedean spaces, Applicable Analysis and Discrete Mathematics. 1 (2007), 325-334.
[19] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
[20] Th. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Math. Appl. 62 (2000), 23-130.
[21] S. M. Ulam, Problems in modern mathematics, Chapter VI, science ed., Wiley, New York, 1940.

[^0]: 2010 Mathematics Subject Classification. Primary 46S40,54E40; Secondary 39B82
 Keywords. Stability; Additive functional equation; Cubic functional equation; Non-Archimedean Banach space
 Received: 13 March 2012; Accepted: 27 May 2012
 Communicated by Dragan S. Djordjević
 Research supported by Semnan University
 Email addresses: meshaghi@semnan.ac.ir, madjid.eshaghi@gmail.com (M. Eshaghi Gordji), bavand.m@gmail.com (M. Bavand Savadkouhi), mdbidkham@gmail.com (M. Bidkham)

