The characterizations and representations for the generalized inverses with prescribed idempotents in Banach algebras

Jianbing Cao ${ }^{\text {a }}$, Yifeng Xue ${ }^{\text {b }}$
${ }^{a}$ Department of mathematics, Henan Institute of Science and Technology
Xinxiang, Henan, 453003, P.R. China
Department of Mathematics, East China Normal University, Shanghai 200241, P.R. China
${ }^{b}$ Department of mathematics, East China Normal University Shanghai 200241, P.R. China

Abstract

In this paper, we investigate the various different generalized inverses in a Banach algebra with respect to prescribed two idempotents p and q. Some new characterizations and explicit representations for these generalized inverses, such as $a_{p, q}^{(2)} a_{p, q}^{(1,2)}$ and $a_{p, q}^{(2, l)}$ will be presented. The obtained results extend and generalize some well-known results for matrices or operators.

1. Introduction and preliminaries

Let X be a Banach space and $B(X)$ be the Banach algebra of all bounded linear operators on X. For $A \in B(X)$, let T and S be closed subspaces of X. Recall that the out inverse $A_{T, S}^{(2)}$ with prescribed the range T and the kernel S is the unique operator $G \in B(X)$ satisfying $G A G=G, \operatorname{Ran}(G)=T, \operatorname{Ker}(G)=S$. It is well known that $A_{T, S}^{(2)}$ exists if and only if

$$
\begin{equation*}
\operatorname{Ker}(A) \cap T=\{0\}, \quad A T+S=Y \tag{1.1}
\end{equation*}
$$

This type of general inverse was generalized to the case of rings by Djordjević and Wei in [4]. Let \mathcal{R} be a unital ring and let \mathcal{R}^{\bullet} denote the set of all idempotent elements in \mathcal{R}. Given $p, q \in \mathcal{R}^{\bullet}$. Recall that an element $a \in \mathcal{R}$ has the (p, q)-outer generalized inverse $b=a_{p, q}^{(2)} \in \mathcal{R}$ if

$$
b a b=b, \quad b a=p, \quad 1-a b=q .
$$

If $b=a_{p, q}^{(2)}$ also satisfies the equation $a b a=a$, then we say $a \in \mathcal{R}$ has the (p, q)-generalized inverse b, in this case, written $b=a_{p, q}^{(1,2)}$. If an outer generalized inverse with prescribed idempotents exists, it is necessarily unique [4]. According to this definition, many generalized inverses such as the Moore-Penrose inverses in a C^{*}-algebra and (generalized) Drazin inverses in a Banach algebra can be expressed by some (p, q)-outer generalized inverses [4,5].

[^0]Now we give some notations in this paper. Throughout this paper, \mathscr{A} is always a complex Banach algebra with the unit 1 . Let $a \in \mathscr{A}$. If there exists $b \in \mathscr{A}$ such that $a b a=a$, then a is called inner regular and b is called an inner generalized inverse (or $\{1\}$ inverse) of a, denoted by $b=a^{-}$. If there is an element $b \in \mathscr{A}$ such that $b a b=b$, then b is called an outer generalized inverse (or \{2\} inverse) of a. We say that b is a (reflexive) generalized inverse(or $\{1,2\}$ inverse) of a, if b is both an inner and an outer generalized inverse of a (certainly such an element b is not unique). In this case, we let a^{+}denote one of the generalized inverses of a. Let $\operatorname{Gi}(\mathscr{A})$ denote the set of a in \mathscr{A} such that a^{+}exists. It is well-known that if b is an inner generalized inverse of a, then $b a b$ is a generalized inverse of a (cf. [1, 11, 16]).

Let \mathscr{A}^{\bullet} denote the set of all idempotent elements in \mathscr{A}. If $a \in G i(\mathscr{A})$, then $a^{+} a$ and $1-a a^{+}$are all idempotent elements. For $a \in \mathscr{A}$, set

$$
\begin{array}{ll}
K_{r}(a)=\{x \in \mathscr{A} \mid a x=0\}, & R_{r}(a)=\{a x \mid x \in \mathscr{A}\} ; \\
K_{l}(a)=\{x \in \mathscr{A} \mid x a=0\}, & R_{l}(a)=\{x a \mid x \in \mathscr{A}\} .
\end{array}
$$

Clearly, if $p \in \mathscr{A}^{\bullet}$, then \mathscr{A} has the direct sum decompositions:

$$
\mathscr{A}=K_{r}(p)+R_{r}(p) \quad \text { or } \quad \mathscr{A}=K_{l}(p)+R_{l}(p) .
$$

In this paper, we give a new definition of the generalized inverse with prescribed idempotents and discuss the existences of various different generalized inverses with prescribed idempotents in a Banach algebra. We also give some new characterizations and explicit representations for these generalized inverses. Also, we corrected Theorem 1.4 from [5].

2. Some existence conditions for the (p, q)-outer generalized inverse

Theorem 1.4 of [5] gives three equivalent characterizations of the (p, q)-outer generalized inverse $a_{p, q}^{(2)}$ which says:

Let $a \in \mathscr{A}$ and $p, q \in \mathscr{A}^{\bullet}$. Then the following statements are equivalent:
(i) $a_{p, q}^{(2)}$ exists;
(ii) There exists some element $b \in \mathscr{A}$ satisfying

$$
b a b=b, \quad R_{r}(b)=R_{r}(p), \quad K_{r}(b)=R_{r}(q) ;
$$

(iii) There exists some element $b \in \mathscr{A}$ satisfying

$$
b a b=b, \quad b=p b, \quad p=b a p, \quad b(1-q)=b, \quad 1-q=(1-q) a b .
$$

We see that $\mathbf{b a b}=\mathbf{b}$ is redundant in Statement (iii). In fact, by using some other equations in (iii), we can check that $b a b=b a p b=p b=b$. Also from the definition of $a_{p, q}^{(2)}$, it is easy to check that if $a_{p, q}^{(2)}$ exists, then Statements (ii) and (iii) hold. But we can show by following example that Statement (iii) does not imply Statement (i).

Example 2.1. Consider the matrix algebra $\mathscr{A}=M_{2}(\mathbb{C})$, Let

$$
a=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right], p=\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right], 1_{2}-q=\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right], b=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] .
$$

It is obvious that p and $1_{2}-q$ are idempotents. Moreover, we have

$$
\begin{gathered}
p b=\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]=b, \quad \text { bap }=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]=p, \\
b\left(1_{2}-q\right)=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right]=b, \quad\left(1_{2}-q\right) a b=\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]=1_{2}-q,
\end{gathered}
$$

i.e., a, b, p, q satisfy Statement (iii) of Theorem 1.4 in [5], where 1_{2} is the unit of \mathscr{A}. But

$$
b a=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \neq p, \quad a b=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] \neq 1_{2}-q .
$$

Therefore, by the uniqueness of $a_{p, q}^{(2)}$, we see $a_{p, q}^{(2)}$ does not exist.
By using the following auxiliary lemma, without equation $b a b=b$, we prove that statements (ii) and (iii) in [5, Theorem 1.4] are equivalent, and we can also prove that the b is unique if it exists.

Lemma 2.2. Let $x \in \mathscr{A}$ and $p \in \mathscr{A}^{\bullet}$. Then
(1) $K_{r}(p)$ and $R_{r}(p)$ are all closed and $K_{r}(p)=R_{r}(1-p), R_{r}(p) \mathscr{A} \subset R_{r}(p)$;
(2) $p x=x$ if and only if $R_{r}(x) \subset R_{r}(p)$ or $K_{l}(p) \subset K_{l}(x)$;
(3) $x p=x$ if and only if $K_{r}(p) \subset K_{r}(x)$ or $R_{l}(x) \subset R_{l}(p)$.

Proposition 2.3. Let $a \in \mathscr{A}$ and $p, q \in \mathscr{A}^{\bullet}$. Then the following statements are equivalent:
(1) There is $b \in \mathscr{A}$ satisfying $b a b=b, R_{r}(b)=R_{r}(p)$ and $K_{r}(b)=R_{r}(q)$;
(2) There is $b \in \mathscr{A}$ satisfying $b=p b, p=b a p, b(1-q)=b, 1-q=(1-q) a b$.

If there exists some b satisfying (1) or (2), then it is unique.
Proof. (1) \Rightarrow (2) From $b a b=b$, we know that $b a, a b \in \mathscr{A}^{\bullet}$. Then by using $R_{r}(b)=R_{r}(p)$ and $K_{r}(b)=R_{r}(q)$, we get

$$
R_{r}(b a)=R_{r}(b)=R_{r}(p), \quad K_{r}(a b)=K_{r}(b)=R_{r}(q)=K_{r}(1-q) .
$$

Since $b a, a b \in \mathscr{A}^{\bullet}$, then by Lemma 2.2, we have

$$
b=p b, \quad p=b a p, \quad b(1-q)=b, \quad 1-q=(1-q) a b .
$$

$(2) \Rightarrow(1)$ We have already known that $b a b=b a p b=p b=b$.
From $p b=b$ we get $R_{r}(b) \subset R_{r}(p)$. Since $p=b a p$ and $b a b=b$, we get $R_{r}(p) \subset R_{r}(b a)=R_{r}(b)$. Thus $R_{r}(b)=R_{r}(p)$.

Similarly, From $b(1-q)=b, 1-q=(1-q) a b$, we can check that $K_{r}(b)=R_{r}(q)$ by using Lemma 2.2.
Now we show b is unique if it exists. In fact, if there exist b_{1} and b, then

$$
b_{1}=p b_{1}=b a p b_{1}=b(1-q) a b_{1}(1-q)=b(1-q)=b .
$$

That is, b is unique.
By means of Lemma 2.2 and Proposition 2.3, we can give a correct version of [5, Theorem 1.4] as follows.
Theorem 2.4. Let $a \in \mathscr{A}$ and $p, q \in \mathscr{A}^{\bullet}$. Then the following statements are equivalent:
(1) There exists $b \in \mathscr{A}$ satisfying $b a b=b, b a=p$ and $1-a b=q$.
(2) There exists $b \in \mathscr{A}$ satisfying

$$
b a b=b \quad \text { and } \quad\left\{\begin{array}{l}
R_{r}(b a)=R_{r}(p), K_{r}(a b)=R_{r}(q) \\
R_{l}(b a)=R_{l}(p), K_{l}(a b)=R_{l}(q) .
\end{array}\right.
$$

Proof. The implication $(1) \Rightarrow(2)$ is obvious. We now prove $(2) \Rightarrow(1)$.
Suppose that (2) holds. Then $b a b=b$ is a known equivalent condition. By Proposition 2.3, we have

$$
\begin{equation*}
b=p b, \quad p=b a p, \quad b(1-q)=b, \quad 1-q=(1-q) a b . \tag{2.1}
\end{equation*}
$$

Since $b a, a b \in \mathscr{A}^{\bullet}$, then by Lemma 2.2, we have

$$
\begin{equation*}
\text { bap }=b a, \quad p=p b a, \quad a b(1-q)=(1-q), \quad(1-q) a b=a b . \tag{2.2}
\end{equation*}
$$

Then from Eq. (2.1) and Eq. (2.2), we can get $b a=p b a=p$ and $a b=(1-q) a b=1-q$. This completes the proof.

Obviously, for an operator $A \in B(X)$, if $A_{T, S}^{(2)}$ exists, we can set $P=A_{T, S}^{(2)} A$ and $Q=I-A A_{T, S^{\prime}}^{(2)}$, then we have $\operatorname{Ran}\left(A_{T, S}^{(2)}\right)=\operatorname{Ran}(P)$ and $\operatorname{Ker}\left(A_{T, S}^{(2)}\right)=\operatorname{Ran}(Q)$. Thus the (p, q)-outer generalized inverse is a natural algebraic extension of the generalized inverse of linear operators with prescribed range and kernel. Similar to some characterizations of the outer generalized inverse $A_{T, S}^{(2)}$ about matrix and operators, we present the following statements relative to the (p, q)-outer generalized inverse $a_{p, q}^{(2)}$.
Statement 2.5. Let $a \in \mathscr{A}$ and $p, q \in \mathscr{A}^{\bullet}$. Consider the following four statements:
(1) $a_{p, q}^{(2)}$ exists;
(2) There exists $b \in \mathscr{A}$ such that $b a b=b, R_{r}(b)=R_{r}(p)$ and $K_{r}(b)=R_{r}(q)$;
(3) $K_{r}(a) \cap R_{r}(p)=\{0\}$ and $\mathscr{A}=a R_{r}(p) \dot{+} R_{r}(q)$;
(4) $K_{r}(a) \cap R_{r}(p)=\{0\}$ and $a R_{r}(p)=R_{r}(1-q)$.

If we assume statements (1) in 2.5 holds, i.e., $a_{p, q}^{(2)}$ exists, then we can check easily that the other three statements (2), (3) and (4) in Statements 2.5 will hold. Here we give a proof of (1) $\Rightarrow(4)$.
Proposition 2.6. Let $a \in \mathscr{A}$ and $p, q \in \mathscr{A}^{\bullet}$. If $a_{p, q}^{(2)}$ exists, then $K_{r}(a) \cap R_{r}(p)=\{0\}$ and $a R_{r}(p)=R_{r}(1-q)$.
Proof. Suppose that $a_{p, q}^{(2)}$ exists, then from its definition, we have $b a=p$ and $a b=1-q$. Let $x \in K_{r}(a) \cap R_{r}(p)$, then there exists some $t \in R_{r}(p)$ such that $x=p t$ and $a x=0$, it follows that $x=b a t=b a b a t=b a p t=b a x=0$, i.e., $K_{r}(a) \cap R_{r}(p)=0$.

Let $y \in a R_{r}(p)$, then $y=a p s$ for some $s \in \mathscr{A}$, that is $y=a p s=a b a s=(1-q) a s$, thus $y \in R_{r}(1-q)$. For any $x \in R_{r}(1-q)$, there is some $t \in R_{r}(1-q)$ with $x=(1-q) t$, then $x=a b t=a b a b t=a p b t$ and hence $x \in a R_{r}(p)$. This completes the proof.

It is obvious that $(4) \Rightarrow(3)$ holds, but the following example shows that (3) and (4) are not equivalent in general.

Example 2.7. We also consider the matrix algebra $\mathscr{A}=M_{2}(\mathbb{C})$, and take the same elements $a, p, q \in \mathscr{A}$ as in Example 2.1. Then

$$
\begin{array}{rlr}
a R_{r}(p) & =\left\{\left.\left[\begin{array}{ll}
0 & 0 \\
s & t
\end{array}\right] \right\rvert\, s, t \in \mathbb{C}\right\}, & R_{r}\left(1_{2}-q\right)=\left\{\left.\left[\begin{array}{ll}
s & t \\
s & t
\end{array}\right] \right\rvert\, s, t \in \mathbb{C}\right\}, \\
K_{r}(a)=\left\{\left.\left[\begin{array}{ll}
0 & 0 \\
s & t
\end{array}\right] \right\rvert\, s, t \in \mathbb{C}\right\}, & R_{r}(p)=\left\{\left.\left[\begin{array}{ll}
s & t \\
0 & 0
\end{array}\right] \right\rvert\, s, t \in \mathbb{C}\right\} .
\end{array}
$$

It follows that $a R_{r}(p) \neq R_{r}(1-q)$ when $s \neq t \neq 0$ and $\mathscr{A}=a R_{r}(p)+R_{r}(q)$.
Therefore, from above arguments, (3) and (4) in Statement 2.5 are not equivalent in general.
But similar to the outer inverse $A_{T, S^{\prime}}^{(2)}$ as described by Eq. (1.1), we can prove (2) and (3) in Statements 2.5 are equivalent.
Theorem 2.8. Let $a \in \mathscr{A}$ and $p, q \in \mathscr{A}^{\bullet}$. Then the following statements are equivalent:
(1) There exists $b \in \mathscr{A}$ such that $b a b=b, R_{r}(b)=R_{r}(p)$ and $K_{r}(b)=R_{r}(q)$,
(2) $K_{r}(a) \cap R_{r}(p)=\{0\}$ and $\mathscr{A}=a R_{r}(p) \dot{+} R_{r}(q)$.

Proof. (1) \Rightarrow (2) Suppose that there exists $b \in \mathscr{A}$ satisfying (1). Since $b a b=b$, then $a b$ is idempotent. Thus we have $\mathscr{A}=R_{r}(a b)+K_{r}(a b)$. It is easy to check that

$$
R_{r}(a b)=a R_{r}(b)=a R_{r}(p) \text { and } K_{r}(a b)=K_{r}(b)=R_{r}(q) .
$$

Hence $\mathscr{A}=a R_{r}(b)+R_{r}(q)$.
Next we show that $K_{r}(a) \cap R_{r}(p)=0$. Let $x \in K_{r}(a) \cap R_{r}(p)$. Since $R_{r}(p)=R_{r}(b)$, then there exists some $y \in \mathscr{A}$ such that $x=b y$ and $a x=0$. So $x=b y=b a b y=b a x=0$. Therefore, we have $K_{r}(a) \cap R_{r}(p)=\{0\}$.
(2) \Rightarrow (1) Suppose that (2) is true. From $\mathscr{A}=a R_{r}(p) \dot{+} R_{r}(q)$ and \mathscr{A} is a Banach algebra, we see that $a R_{r}(p)=R_{r}(a p)$ is closed in \mathscr{A}. Let $L_{a}: \mathscr{A} \rightarrow \mathscr{A}$ be the left multiplier on \mathscr{A}, i.e., $L_{a}(x)=a x$ for all $x \in \mathscr{A}$. Let ϕ be the restriction of L_{a} on $R_{r}(p)$, Since $\left\|L_{a}\right\| \leq\|a\|$, we have $\phi \in B\left(R_{r}(p), a R_{r}(p)\right)$ with $\operatorname{Ker}(\phi)=\{0\}$ and $\operatorname{Ran}(\phi)=a R_{r}(p)$. Thus $\phi^{-1}: a R_{r}(p) \rightarrow R_{r}(p)$ is bounded. Since for any $x \in R_{r}(p)$ and $z \in \mathscr{A}, x z \in R_{r}(p)$, it follows that $\phi(x z)=\phi(x) z, \forall x \in R_{r}(p)$ and $z \in \mathscr{A}$, and then $\phi^{-1}(y z)=\phi^{-1}(y) z$ for any $y \in a R_{r}(p)$ and $z \in \mathscr{A}$.

Let $Q: \mathscr{A} \rightarrow a R_{r}(p)$ be the bounded idempotent mapping. Since

$$
\mathscr{A}=a R_{r}(p)+R_{r}(q), R_{r}(q) \mathscr{A} \subset R_{r}(q) \text { and } a \operatorname{Rr}(p) \mathscr{A} \subset a \operatorname{Rr}(p),
$$

it follows that for any $x, z \in \mathscr{A}, x=x_{1}+x_{2}$ and $x z=x^{\prime}+x_{2} z$, where $x^{\prime}=x_{1} z \in a R_{r}(p)$ and $x_{2} \in R_{r}(q)$, and hence $Q(x z)=Q(x) z$. Set $W=\phi^{-1} \circ Q$. Then

$$
W(x z)=W(x) z, \quad\left(W L_{a} W\right)(x)=W(x), \quad \forall x, z \in \mathscr{A} .
$$

Put $b=W(1)$. Then from the above arguments, we get that $b a b=b$. Since $W(x)=W(1) x$ for any $x \in \mathscr{A}$, we have

$$
\begin{aligned}
& R_{r}(b)=R_{r}(W(1))=\operatorname{Ran}(W)=R_{r}(p) \\
& K_{r}(b)=K_{r}(W(1))=\operatorname{Ker}(W)=R_{r}(q)
\end{aligned}
$$

Thus (1) holds.
Now for four statements in Statement 2.5, we have $(1) \Rightarrow(4) \Rightarrow(3) \Leftrightarrow(2)$, and in general, $(3) \neq(4)$. The following example also shows that statements (1) and (4) in Statement 2.5 are not equivalent in general.
Example 2.9. Let $\mathscr{A}=M_{2}(\mathbb{C})$ and let $a=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right], p=\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right], 1_{2}-q=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$. Then $a R_{r}(p)=R_{r}\left(1_{2}-q\right)$ and $K_{r}(a) \cap R_{r}(p)=\{0\}$, i.e., Statement (4) holds.

If $a_{p, q}^{(2)}$ exists, that is, there is $b \in \mathscr{A}$ such that $b a b=b, b a=p$ and $1_{2}-a b=q$. But we could not find $b \in \mathscr{A}$ such that $b a=p$. Thus (4) $\Rightarrow(1)$.

Based on above arguments, we give the following new definition with respect to the outer generalized inverse with prescribed idempotents in a general Banach algebra.
Definition 2.10. Let $a \in \mathscr{A}$ and $p, q \in \mathscr{A}^{\bullet}$. An element $c \in \mathscr{A}$ satisfying

$$
c a c=c, \quad R_{r}(c)=R_{r}(p), \quad K_{r}(c)=R_{r}(q)
$$

will be called the (p, q, l)-outer generalized inverse of a, written as $a_{p, q}^{(2, l)}=c$.
Remark 2.11. For $a \in \mathscr{A}$ and $p, q \in \mathscr{A}^{\bullet}$. Let $L_{a}: \mathscr{A} \rightarrow \mathscr{A}$ be the left multiplier on \mathscr{A}. If we set $T=R_{r}(p)$ and $S=R_{r}(q)$. Then it is obvious that $a_{p, q}^{(2, l)}$ exists in \mathscr{A} if and only if $\left(L_{a}\right)_{T, S}^{(2)}$ exists in the Banach algebra $B(\mathscr{A})$. This shows that why we use the letter " l " in Definition 2.10.
Example 2.12. Let $\mathscr{A}=M_{2}(\mathbb{C})$ and $a, p, q \in \mathscr{A}$ be as in Example 2.1. Simple computation shows that $a_{p, q}^{(2, l)}=b$.
By Lemma 2.2 and Definition 2.10, we have
Corollary 2.13. Suppose that $a, w \in \mathscr{A}$ and $a_{p, q}^{(2, l)}$ exists. Then
(1) $a_{p, q}^{(2, l)} a w=w$ if and only if $R_{r}(w) \subset R_{r}(p)$,
(2) $w a a_{p, q}^{(2, l)}=w$ if and only if $R_{r}(q) \subset K_{r}(w)$.

From Theorem 2.3 and Theorem 2.8, we know that if $a_{p, \eta}^{(2, l)}$ exists, then it is unique, and the properties of $a_{p, q}^{(2, l)}$ are much more similar to $A_{T, S}^{(2)}$ than $a_{p, q}^{(2)}$. Thus the outer generalized inverse $a_{p, q}^{(2, l)}$ is also a natural extension of the generalized inverses $A_{T, S}^{(2)}$. Also from Definition 2.10, we can see that if $a_{p, \eta}^{(2, l)}=c$ exists, then we also have $R_{r}(c a)=R_{r}(c)=R_{r}(p)$ and $K_{r}(a c)=K_{r}(c)=R_{r}(q)$.

3. Characterizations for the generalized inverses with prescribed idempotents

By using idempotent elements, firstly, we give the following new characterization of generalized invertible elements in a Banach algebra.

Proposition 3.1 ([16, Theorem 2.4.4]). Let $a \in \mathscr{A}$. Then $a \in G i(\mathscr{A})$ if and only if there exist $p, q \in \mathscr{A} \bullet$ such that $K_{r}(a)=K_{r}(p)$ and $R_{r}(a)=R_{r}(q)$.
Proof. Suppose that $a \in G i(\mathscr{A})$. Put $p=a^{+} a$ and $q=a a^{+}$. Then $p, q \in \mathscr{A}$. Let $x \in K_{r}(a)$. Then $a x=0$ and $p x=a^{+} a x=0$, that is $x \in K_{r}(p)$. On the other hand, let $y \in K_{r}(p)$, then $a y=a a^{+} a x=a p y=0$. So we have $K_{r}(a)=K_{r}(p)$.

Similarly, we can check $R_{r}(a)=R_{r}(q)$.
Now assume that $K_{r}(a)=K_{r}(p)$ and $R_{r}(a)=R_{r}(q)$ for $p, q \in \mathscr{A}^{\bullet}$. Then

$$
\mathscr{A}=R_{r}(p) \dot{+} K_{r}(p)=R_{r}(p) \dot{+} K_{r}(a) .
$$

Let L be the restriction of L_{a} on $R_{r}(p)$. Then L is a mapping from $R_{r}(p)$ to $R_{r}(a)$ with $\operatorname{Ker}(L)=\{0\}$ and $\operatorname{Ran}(L)=R_{r}(a)=R_{r}(q)$. Thus $L^{-1}: R_{r}(a) \rightarrow R_{r}(p)$ is well-defined. Note that $x t \in R_{r}(p)$ for any $x \in R_{r}(p)$ and $t \in \mathscr{A}$. So we have

$$
L(x t)=L_{a}(x t)=a x t=L_{a}(x) t=L(x) t
$$

and hence $L^{-1}(s t)=L^{-1}(s) t$ for any $s \in R_{r}(a)$ and $t \in \mathscr{A}$.
Put $G=L^{-1} \circ L_{q}$. Since $q \in \mathscr{A} \cdot{ }^{\bullet}$, we have $L_{q}: \mathscr{A} \rightarrow R_{r}(q)$ is an idempotent mapping. Put $b=G(1)$. It is easy to check that $a b a=a$ and $b a b=b$, i.e., $a \in G i(\mathscr{A})$.

We now present the equivalent conditions about the existence of $a_{p, q}^{(2, l)}$ as follows.
Theorem 3.2. Let $a \in \mathscr{A}$ and $p, q \in \mathscr{A}$. Then the following statements are equivalent:
(1) $a_{p, q}^{(2, l)}$ exists,
(2) There exists $b \in \mathscr{A}$ such that $b a b=b, R_{r}(b)=R_{r}(p)$ and $K_{r}(b)=R_{r}(q)$,
(3) $K_{r}(a) \cap R_{r}(p)=\{0\}$ and $\mathscr{A}=a R_{r}(p) \dot{+} R_{r}(q)$.
(4) There is some $b \in \mathscr{A}$ satisfying $b=p b, p=b a p, b(1-q)=b, 1-q=(1-q) a b$.
(5) $p \in R_{l}((1-q) a p)=\{x(1-q) a p \mid x \in \mathscr{A}\}$ and $1-q \in R_{r}((1-q) a p)$,
(6) There exist some $s, t \in \mathscr{A}$ such that $p=t(1-q) a p, 1-q=(1-q)$ aps.

Proof. (1) $\Leftrightarrow(2)$ comes from the definition of $a_{p, q}^{(2, l)}$. The implication (2) $\Leftrightarrow(3)$ is Theorem 2.8 and the implication $(3) \Leftrightarrow(4)$ is Proposition 2.3. The implication $(5) \Rightarrow(6)$ is obvious.
$(1) \Rightarrow(5)$ Choose $x=b$, then $p=b a p=b(1-q) a p \in R_{l}((1-q) a p)$. Since $1-q=(1-q) a b=(1-q) a b p$, then, $1-q \in R_{r}((1-q) a p)$.
(6) \Rightarrow (4) If $p=t(1-q) a p$ and $1-q=(1-q) a p s$ for some $s, t \in \mathscr{A}$, then $t(1-q)=p s$. Set $b=t(1-q)=p s$. Then $p b=p p s=b$, bap $=t(1-q) a p=p$ and $b(1-q)=t(1-q)(1-q)=b,(1-q) a b=(1-q) a p s=1-q$.

If the generalized inverse $a_{p, q}^{(2, l)}$ satisfies $a a_{p, q}^{(2, l)} a=a$, then we call it the $\{1,2\}$ generalized inverse of $a \in \mathscr{A}$ with prescribed idempotents p and q. It is denoted by $a_{p, q}^{(l)}$. Obviously, $a_{p, q}^{(l)}$ is unique if it exists. The following theorem gives some equivalent conditions about the existence of $a_{p, q}^{(l)}$.
Theorem 3.3. Let $a \in \mathscr{A}$ and $p, q \in \mathscr{A}^{\bullet}$. Then the following conditions are equivalent:
(1) $a_{p, q}^{(l)}$ exists, i.e.,there exists some $b \in \mathscr{A}$ such that

$$
a b a=a, \quad b a b=b, \quad R_{r}(b)=R_{r}(p), \quad K_{r}(b)=R_{r}(q),
$$

(2) $\mathscr{A}=R_{r}(a)+R_{r}(q)=K_{r}(a) \dot{+} R_{r}(p)$,
(3) $\mathscr{A}=a R_{r}(p)+R_{r}(q), R_{r}(a) \cap R_{r}(q)=\{0\}, K_{r}(a) \cap R_{r}(p)=\{0\}$.

Proof. (1) $\Rightarrow(2)$ From (1), we have that $(a b)^{2}=a b$ and $(b a)^{2}=b a$. Also we have the following relation:

$$
\begin{aligned}
& K_{r}(b) \subset K_{r}(a b) \subset K_{r}(b a b)=K_{r}(b), K_{r}(b a) \subset K_{r}(a b a)=K_{r}(a) \subset K_{r}(b a), \\
& R_{r}(b a) \subset R_{r}(b)=R_{r}(b a b) \subset R_{r}(b a), R_{r}(a b) \subset R_{r}(a)=R_{r}(a b a) \subset R_{r}(a b) .
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
& R_{r}(b a)=R_{r}(b)=R_{r}(p), R_{r}(a b)=R_{r}(a), \\
& K_{r}(a b)=R_{r}(b)=R_{r}(q), K_{r}(b a)=K_{r}(a) .
\end{aligned}
$$

From above equations, we can get

$$
\mathscr{A}=R_{r}(a)+R_{r}(q)=K_{r}(a)+R_{r}(p) .
$$

(2) \Rightarrow (3) If $\mathscr{A}=R_{r}(a) \dot{+} R_{r}(q)=K_{r}(a) \dot{+} R_{r}(p)$, then it is obvious that

$$
R_{r}(a) \cap R_{r}(q)=\{0\}, K_{r}(a) \cap R_{r}(p)=\{0\} .
$$

So we need only to check that $a K_{r}(p)=R_{r}(a)$.
Obviously, we have $a R_{r}(p) \subset R_{r}(a)$. Now for any $x \in R_{r}(a)$, we have $x=$ at for some $t \in \mathscr{A}$. Since $\mathscr{A}=K_{r}(a)+R_{r}(p)$, we can write $t=t_{1}+t_{2}$, where $t_{1} \in K_{r}(a)$ and $t_{2} \in R_{r}(p)$. Thus $x=a t=a t_{2} \in a R_{r}(p)$. Therefore $R_{r}(a) \subset a R_{r}(p)$ and $R_{r}(a)=a R_{r}(p)$.
$(3) \Rightarrow(1)$ Suppose that (3) is true, then by Theorem 3.2, we know that $a_{p, q}^{(2, l)}$ exists, and $R_{r}(b)=R_{r}(p), K_{r}(b)=$ $R_{r}(q)$. We need to show $a b a=a$. Since $b a b=b$, then $b(a b a-a)=0$. it follows that

$$
a b a-a \subset R_{r}(a) \cap K_{r}(b)=R_{r}(a) \cap R_{r}(q)=\{0\}
$$

i.e., $a b a=a$. This completes the proof.

The following proposition gives a characterization of $a_{p, q}^{(1,2)}$ in a Banach algebra \mathscr{A}.
Proposition 3.4. Let $a \in \mathscr{A}$ and $p, q \in \mathscr{A}^{\bullet}$. Then the following statements are equivalent:
(1) $a_{p, q}^{(1,2)}$ exists,
(2) There exists some $b \in \mathscr{A}$ satisfying

$$
\left\{\begin{array} { l }
{ a b a = a } \\
{ b a b = b }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
R_{r}(b)=R_{r}(p), K_{r}(b)=R_{r}(q) \\
R_{r}(a)=R_{r}(1-q), K_{r}(a)=R_{r}(1-p)
\end{array}\right.\right.
$$

Proof. (1) \Rightarrow (2) This is obvious by the Definition of $a_{p, q}^{(1,2)}$.
(2) \Rightarrow (1) Since $a b a=a$ and $b a b=b$, so by (2) we have

$$
\left\{\begin{array}{l}
R_{r}(b a)=R_{r}(b)=R_{r}(p), \quad K_{r}(a b)=K_{r}(b)=R_{r}(q) \\
R_{r}(a b)=R_{r}(a)=R_{r}(1-q), \quad K_{r}(b a)=K_{r}(a)=R_{r}(1-p)
\end{array} .\right.
$$

Then by Lemma 2.2 and Theorem 3.2, we have

$$
b=p b, \quad(1-q)=(1-q) a b, \quad a=(1-q) a, \quad p=p b a .
$$

Thus, we get

$$
b a=p b a=p, \quad a b=(1-q) a b=1-q .
$$

Since $a_{p, q}^{(1,2)}$ is unique, it follows that $a_{p, q}^{(1,2)}=b$.

4. Some representations for the generalized inverses with prescribed idempotents

Let $a \in \mathscr{A}$. If for some positive integer k, there exists an element $b \in \mathscr{A}$ such that

$$
\text { (1 } \left.{ }^{k}\right) \quad a^{k+1} b=a^{k}, \quad \text { (2) } \quad b a b=b, \quad \text { (5) } \quad a b=b a
$$

Then a is Drazin invertible and b is called the Drazin inverse of a, denoted by a^{D} (cf. [1,3]). The least integer k is the index of a, denoted by ind (a). When $\operatorname{ind}(a)=1, a^{D}$ is called the group inverse of a, denoted by $a^{\#}$. It is well-known that if the Drazin (group) inverse of a exists, then it is unique. Let \mathscr{A}^{D} (resp. \mathscr{A}^{g}) denote the set of all Drazin (resp. group) invertible elements in \mathscr{A}.

The representations of $A_{T, S}^{(2)}$ of a matrix or an operator have been extensively studied. We know that if $A_{T, S}^{(2)}$ exists, then it can be explicitly expressed by the group inverse of $A G$ or $G A$ for some matrix or an operator G with $\operatorname{Ran}(G)=T$ and $\operatorname{Ker}(G)=S$ (cf. [13-15, 18]). By using the left multiplier representation, we give an explicit representation for the $a_{p, q}^{(2, l)}$ by the group inverse as follows.
Theorem 4.1. Let $a \in \mathscr{A}$ and $p, q \in \mathscr{A}^{\bullet}$ such that $a_{p, q}^{(2, l)}$ exists. Let $w \in \mathscr{A}$ such that $R_{r}(w)=R_{r}(p)$ and $K_{r}(w)=R_{r}(q)$. Then $w a, a w \in \mathscr{A}^{g}$ and $a_{p, q}^{(2, l)}=(w a)^{\#} w=w(a w)^{\#}$.
Proof. Firstly, we show that $a_{p, \eta}^{(2, l)}=w(a w)^{\#}$.
Obviously, $R_{r}(a w)=a R_{r}(w)=a R_{r}(p)$. For any $y \in K_{r}(a w), a w y=0$ and

$$
w y \in K_{r}(a) \cap R_{r}(w)=K_{r}(a) \cap R_{r}(p)=\{0\} .
$$

It follows that $w y=0$ and $y \in K_{r}(w)$. Thus $K_{r}(a w) \subset K_{r}(w)$ and consequently $K_{r}(a w)=K_{r}(w)=R_{r}(q)$. Therefore, $\mathscr{A}=R_{r}(a w)+K_{r}(a w)$. Set $L=\left.L_{a w}\right|_{R_{r}(a w)}$. Then $\operatorname{Ker}(L)=\{0\}$ and $\operatorname{Ran}(L)=R_{r}(a w)$. Let $P: \mathscr{A} \rightarrow$ $R_{r}(a w)$ be a projection (idempotent operator). Then $P \in B(\mathscr{A})$ and $L^{-1} \in B\left(R_{r}(a w)\right)$. Put $G=L^{-1} \circ P \in B(\mathscr{A})$. Then we have $G(x y)=G(x) y, \forall x, y \in \mathscr{A}$ and

$$
G L_{a w} G=G, L_{a w} G L_{a w}=L_{a w}, L_{a w} G=G L_{a w} .
$$

Put $c=G(1)$. Then $(a w) c(a w)=a w, c(a w) c=c$ and $c(a w)=(a w) c$, i.e., $(a w)^{\#}=c$. So $R_{r}\left(a w(a w)^{\#}\right)=R_{r}(a w)=$ $a R_{r}(p)$. Put $b=w(a w)^{\#}$. Then

$$
b a b=w(a w)^{\#} a w(a w)^{\#}=w(a w)^{\#}=b
$$

and $R_{r}(b)=R_{r}\left(w(a w)^{\#}\right) \subset R_{r}(w)=R_{r}(p)$. On the other hand, since

$$
K_{r}\left((a w)^{\#} a w\right)=K_{r}\left(a w(a w)^{\#}\right)=K_{r}(a w)=R_{r}(q)=K_{r}(w),
$$

it follows from Lemma 2.2 that $w(a w)^{\#} a w=w$. Thus

$$
R_{r}(p)=R_{r}(w)=R_{r}\left(w(a w)^{\#} a w\right) \subset R_{r}(b) \subset R_{r}(p)
$$

Similarly, we have

$$
\begin{aligned}
K_{r}(b)=K_{r}\left(w(a w)^{\#}\right) & \subset K_{r}\left(a w(a w)^{\#}\right)=K_{r}(a w)=R_{r}(q), \\
R_{r}(q)=K_{r}(w) & =K_{r}\left(a w(a w)^{\#}\right) \subset K_{r}\left(w(a w)^{\#} a w(a w)^{\#}\right) \\
& =K_{r}\left(w(a w)^{\#}\right)=K_{r}(b) .
\end{aligned}
$$

Thus, $K_{r}(b)=R_{r}(q)$. So by the unique of $a_{p, q}^{(2, l)}$, we have $b=w(a w)^{\#}=a_{p, q}^{(2, l)}$.
Similarly, if we put $d=(w a)^{\#} w$, then we can prove $d=a_{p, q}^{(2, l)}=b$.
Corollary 4.2. Let $a \in \mathscr{A}$ and $p, q \in \mathscr{A} \cdot$ such that $a_{p, q}^{(2, l)}$ exists. Let $w \in \mathscr{A}$ with $R_{r}(w)=R_{r}(p)$ and $K_{r}(w)=R_{r}(q)$. Then there exists some $c \in \mathscr{A}$ such that

$$
\begin{equation*}
w a w c=w \quad \text { and } \quad a_{p, q}^{(2, l)} a w c=a_{p, q}^{(2, l)} \tag{4.1}
\end{equation*}
$$

Proof. From Theorem 4.1 above, we know that $(a w)^{\#}$ exists. Put $c=(a w)^{\#}$. Then by Lemma 2.2 and Theorem 4.1, we see that

$$
K_{r}\left(a_{p, q}^{(2, l)}\right)=R_{r}(q)=K_{r}(w)=K_{r}(a w)=K_{r}(a w c) .
$$

Thus $c=(a w)^{\#}$ satisfies Eq.(4.1).
Similar to Theorem 4.1, we have the following easy representation of $a_{p, q}^{(2)}$.
Theorem 4.3. Let $a \in \mathscr{A}$ and $p, q \in \mathscr{A}^{\bullet}$ such that $a_{p, q}^{(2)}$ exists. Let $w \in \mathscr{A}$ such that $w a=p$ and $a w=1-q$. Then $a_{p, q}^{(2)}=(w a)^{\#} w=w(a w)^{\#}$.

Proof. Obviously, $w a, a w \in \mathscr{A}^{g}$ for $w a=p$ and $a w=1-q$. We also have $(w a)^{\#}=p$ and $(a w)^{\#}=1-q$. Then by using the uniqueness of $a_{p, q}^{(2)}$, we can prove this theorem by simple computation.

From the Definition of $a_{p, q}^{(2)}$ and $a_{p, q}^{(2, l)}$, it is easy to see that if $a_{p, q}^{(2)}$ exists, then $a_{p, q}^{(2, l)}$ exists. In this case, $a_{p, q}^{(2)}=a_{p, q}^{(2, l)}=b$ by the uniqueness. Thus, Theorem 4.1 and Corollary 4.2 also hold if we replace $a_{p, q}^{(2, l)}$ by $a_{p, q}^{(2)}$. The following result also gives some generalizations of [4, Theorem 2.2] and [5, Theorem 1.2].

Corollary 4.4. Let $a, c \in \mathscr{A}$ and $p, q \in \mathscr{A} \cdot$ such that $a_{p, q}^{(2, l)}$ and $c_{1-q, 1-p}^{(1,2)}$ exist. Then ac and $c a$ is group invertible and $a_{p, q}^{(2, l)}=(c a)^{\#} c=c(a c)^{\#}$.

Proof. Since $c_{1-q, 1-p}^{(1,2)}$ exists, then by Proposition 3.4, we have $R_{r}(c)=R_{r}(p), K_{r}(c)=R_{r}(q)$. Thus, we can get our results by using Theorem 4.1.

In the following theorem, we give a simple representation of $a_{p, q}^{(2, l)}$ based on $\{1\}$ inverse. The analogous results about outer generalized inverse with prescribed range and null space of Banach space operators were presented in [20, Theorem 2.1].

Theorem 4.5. Let $p, q \in \mathscr{A}^{\bullet}$. Let $a, w \in \mathscr{A}$ with $R_{r}(w)=R_{r}(p)$ and $K_{r}(w)=R_{r}(q)$. Then the following conditions are equivalent:
(1) $a_{p, q}^{(2, l)}$ exists;
(2) $(a w)^{\#}$ exists and $K_{r}(a) \cap R_{r}(w)=\{0\}$;
(3) $(w a)^{\#}$ exists and $R_{r}(w)=R_{r}(w a w)$.

In this case, waw is regular and

$$
\begin{equation*}
a_{p, q}^{(2, l)}=(w a)^{\#} w=w(a w)^{\#}=w(w a w)^{-} w \tag{4.2}
\end{equation*}
$$

Proof. $(1) \Rightarrow(2)$ follows from Theorem 3.2 and Theorem 4.1.
$(2) \Rightarrow(3)$ Since $(a w)^{\#}$ exists, we have $a\left(w a w(a w)^{\#}-w\right)=0$. So

$$
\operatorname{wazw}(a w)^{\#}-w \in K_{r}(a) \cap R_{r}(w)=\{0\}
$$

i.e., $w a w(a w)^{\#}=w$. Therefore $R_{r}(w)=R_{r}(w a w)$.

Let $c=w\left((a w)^{\#}\right)^{2} a$, we show that c is the group inverse of $w a$. In fact,

$$
\begin{aligned}
& c(w a) c=w\left((a w)^{\#}\right)^{2}(a w)(a w)\left((a w)^{\#}\right)^{2} a=w(a w)^{\#}(a w)^{\#} a=c, \\
& (w a) c(w a)=w a w\left((a w)^{\#}\right)^{2} a w a=\left(w a w(a w)^{\#}\right) a=w a, \\
& (w a) c=w a w\left((a w)^{\#}\right)^{2} a=w\left(\left((a w)^{\#}\right)^{2} a w\right) a=c(w a) .
\end{aligned}
$$

i.e., $(w a)^{\#}$ exists and $c=(w a)^{\#}$.
(3) \Rightarrow (1) Since $R_{r}(w)=R_{r}($ waw $), R_{r}(w a) \subset R_{r}(w)=R_{r}(w a w) \subset R_{r}(w a)$. So $R_{r}(w)=R_{r}(w a)$. The existence of $(w a)^{\#}$ means that

$$
K_{r}(w a) \cap R_{r}(w a)=\{0\} \text { and } w a\left(w a(w a)^{\#} w-w\right)=0
$$

So

$$
w a(w a)^{\#} w-w \in K_{r}(w a) \cap R_{r}(w)=K_{r}(w a) \cap R_{r}(w a)=\{0\} .
$$

Hence $w=w a(w a)^{\#} w$. Set $b=(w a)^{\#} w$, then we have

$$
\begin{aligned}
b a b & =(w a)^{\#} w a(w a)^{\#} w=(a w)^{\#} w=b, \\
R_{r}(p) & =R_{r}(w)=R_{r}\left(w a(w a)^{\#} w\right)=R_{r}\left((w a)^{\#} w a w\right) \subset R_{r}\left((w a)^{\#} w\right) \\
& =R_{r}(b)=R_{r}\left((w a)^{\#} w a(w a)^{\#} w\right) \\
& =R_{r}\left(w a\left((w a)^{\#}\right)^{2} w\right) \subset R_{r}(w) \\
& =R_{r}(p), \\
R_{r}(q) & =K_{r}(w) \subset K_{r}\left((w a)^{\#} w\right)=K_{r}(b) \subset K_{r}\left(w a(w a)^{\#} w\right)=K_{r}(w) \\
& =R_{r}(q) .
\end{aligned}
$$

Thus, $R_{r}(b)=R_{r}(p)$ and $K_{r}(b)=R_{r}(q)$ and consequently, by Theorem 3.2 , we see $a_{p, q}^{(2, l)}$ exists and $a_{p, q}^{(2, l)}=(w a)^{\#} w$.
Now we show that waw is regular and Eq. (4.2) is true when one of (1),(2) or (3) in the Theorem 4.5 holds. Since

$$
R_{r}\left((w a)^{\#} w a\right)=R_{r}(w a)=R_{r}(w) \supset R_{r}\left(w(a w)^{\#}\right)
$$

therefore, by Lemma 2.2, we have $\left((w a)^{\#} w a\right) w(a w)^{\#}=w(a w)^{\#}$. Then

$$
\begin{aligned}
w(a w)^{\#} & =\left((w a)^{\#} w a\right) w(a w)^{\#}=\left((w a)^{\#} w a\right)^{2} w(a w)^{\#} \\
& =\left((w a)^{\#}\right)^{2} w a w=(w a)^{\#} w .
\end{aligned}
$$

Thus we have $a_{p, q}^{(2, l)}=w(a w)^{\#}$.
Set $\left.x=a(w a)^{\#}\right)^{2}$. Then it is easy to check that

$$
\left.(w a w) x(w a w)=(w a w) a(w a)^{\#}\right)^{2}(w a w)=\text { waw. }
$$

i.e., waw is regular and $\left.(w a w)^{-}=a(w a)^{\#}\right)^{2}$. Furthermore, we have the following,

$$
\left.w(w a w)^{-} w=w a(w a)^{\#}\right)^{2} w=(w a)^{\#} w=a_{p, q}^{(2, l)} .
$$

This completes the proof.
The following result is an improvement of Theorem 4.5, which removes the existence of the group inverses of wa or aw.

Theorem 4.6. Let $a, w \in \mathscr{A}$ and $p, q \in \mathscr{A}^{\bullet}$ such that $w_{1-q, 1-p}^{(1,2)}$ exist $\left(\operatorname{or} R_{r}(w)=R_{r}(p)\right.$ and $\left.K_{r}(w)=R_{r}(q)\right)$. Then the following statements are equivalent:
(1) $a_{p, q}^{(2, l)}$ exists;
(2) $(\text { aw })^{(1,5)}$ exists and $K_{r}(a) \cap R_{r}(w)=\{0\}$;
(3) $(w a)^{(1,5)}$ exists and $R_{r}(w)=R_{r}(w a)$.

In this case, waw is inner regular and

$$
a_{p, q}^{(2, l)}=(w a)^{(1,5)} w=w(a w)^{(1,5)}=w(w a w)^{-} w .
$$

Proof. We only need to follow the line of proof Theorem 2.1 in [5], but make some essential modifications by using Definition 2.10 and Theorem 3.2. Here we omit the detail.

Based on an explicit representation for $a_{p, q}^{(2, l)}$ by the group inverse, now we can give some limit and integral representations of the (p, q, l)-outer generalized inverse $a_{p, q}^{(2, l)}$, the analogous result is well-known for operators on Banach space (see [16]).

Theorem 4.7. Let $a \in \mathscr{A}$ and $p, q \in \mathscr{A}^{\bullet}$ such that $a_{p, q}^{(2, l)}$ exists. Let $w \in \mathscr{A}$ such that $R_{r}(w)=R_{r}(p)$ and $K_{r}(w)=R_{r}(q)$. Then $a_{p, q}^{(2, l)}=\lim _{\substack{\lambda \rightarrow 0 \\ \lambda \notin \sigma(-a w)}} w(\lambda 1+a w)^{-1}$.

Proof. By Theorem 4.1, we know that $a w \in \mathscr{A}^{g}$ and $a_{p, q}^{(2, l)}=w(a w)^{\#}$. Let $f=a a_{p, q}^{(2, l)}$, Then $f \in \mathscr{A}^{\bullet}$ and $f=a w(a w)^{\#}$. Also from the proof of Theorem 4.1, we see that $a w,(a w)^{\#} \in f \mathscr{A} f$ and $a w$ is invertible in $f \mathscr{A} f$ with $\left(\left.a w\right|_{f \mathscr{A} f}\right)^{-1}=(a w)^{\#}$. Consider the decomposition $\mathscr{A}=f \mathscr{A} f \oplus(1-f) \mathscr{A}(1-f)$. Then we can write $\lambda 1+a w$ as the following matrix form

$$
\lambda 1+a w=\left[\begin{array}{cc}
\lambda f+a w & \tag{4.3}\\
& \lambda(1-f)
\end{array}\right] \begin{gathered}
f \mathscr{A} f \\
(1-f) \mathscr{A}(1-f)
\end{gathered}
$$

It is well-known that if $\lambda \notin \sigma(-a w) \cup\{0\}$, then $\lambda f+a w$ is invertible in $f \mathscr{A} f$. Thus, in the case, by Eq.(4.3) we have

$$
(\lambda 1+a w)^{-1}=\left[\begin{array}{ll}
(\lambda f+a w)^{-1} & \tag{4.4}\\
& \lambda^{-1}(1-f)
\end{array}\right] \begin{gathered}
f \mathscr{A} f \\
(1-f) \mathscr{A}(1-f)
\end{gathered}
$$

Since $K_{r}(w)=R_{r}(q)$, then from the proof of Theorem 4.1, we see that $K_{r}(w)=R_{r}(q)=K_{r}\left(a w(a w)^{\#}\right)=K_{r}(f)=$ $R_{r}(1-f)$. So by Eq. (4.4) we have $w(\lambda 1+a w)^{-1}=w(\lambda 1+a w)^{-1} f$, where the inverse is taken in $f \mathscr{A} f$. Then we can compute in the following way

$$
a_{p, q}^{(2, l)}=w(a w)^{\#} f=\lim _{\substack{\lambda \rightarrow 0 \\ \lambda \notin \sigma(-a v)}} w(\lambda 1+a w)^{-1} f=\lim _{\substack{\lambda \rightarrow 0 \\ \lambda \& \sigma(-a v)}} w(\lambda 1+a w)^{-1} .
$$

This completes the proof.
We need the following lemma in a Banach algebra.
Lemma 4.8 ([16, Proposition 1.4.17]). Let $a \in \mathscr{A}$. Suppose that $\operatorname{Re}(\lambda)<0$ for every $\lambda \in \sigma(a)$. Then

$$
a^{-1}=\int_{0}^{+\infty} e^{a t} d t \triangleq \lim _{x \rightarrow+\infty} \int_{0}^{x} e^{a t} d t
$$

Theorem 4.9. Let $a \in \mathscr{A}$ and $p, q \in \mathscr{A} \cdot$ such that $a_{p, q}^{(2, l)}$ exists. Let $w \in \mathscr{A}$ such that $R_{r}(w)=R_{r}(p)$ and $K_{r}(w)=R_{r}(q)$. Suppose that $\operatorname{Re}(\lambda) \geq 0$ for every $\lambda \in \sigma(a w)$. Then

$$
a_{p, q}^{(2, l)}=\int_{0}^{+\infty} w e^{-(a w) t} d t
$$

Proof. We follow the method of proof [16, Corollary 4.2.11], but by using Theorem 4.1 above. It follows from Theorem 4.1 that $a w \in \mathscr{A}^{g}$ and $a_{p, g}^{(2, l)}=w(a w)^{\#}$. Similar to Theorem 4.7, Put $g=a w(a w)^{\#}$. Then $g \in \mathscr{A} \bullet$ and $a w$ is invertible in $g \mathscr{A} g$ with $\left(\left.a w\right|_{g \mathscr{A} g}\right)^{-1}=(a w)^{\#}$. Obviously, from the proof of Theorem 4.1, we can write $a w$ and $(a w)^{\#}$ as the following matrix forms, respectively.

$$
a w=\left[\begin{array}{ll}
a w & \\
& 0
\end{array}\right] \begin{gathered}
g \mathscr{A} g \\
(1-g) \mathscr{A}(1-g)
\end{gathered}, \quad(a w)^{\#}=\left[\begin{array}{ll}
(a w)^{-1} & \\
& 0
\end{array}\right] \begin{gathered}
g \mathscr{A} g \\
(1-g) \mathscr{A}(1-g)
\end{gathered}
$$

Since $\operatorname{Re}(\lambda) \geq 0$ for every $\lambda \in \sigma(a w)$, then we have $\operatorname{Re}(\lambda)>0$ for every $\lambda \in \sigma\left(\left.a w\right|_{g \mathscr{A} g}\right)$. Thus by Lemma 4.8, we have $\left(\left.a w\right|_{g \mathscr{A} g}\right)^{-1}=\int_{0}^{+\infty} e^{-(a w) t} d t$. Note that $K_{r}(w)=R_{r}(1-g)$. Thus, we have

$$
a_{p, q}^{(2, l)}=w(a w)^{\#}=w\left[\begin{array}{cc}
(a w)^{-1} & \\
& 1-g
\end{array}\right]=\int_{0}^{+\infty} w e^{-(a w) t} d t .
$$

This completes the proof.
Let $a \in \mathscr{A}$. The element a^{d} is the generalized Drazin inverse, or Koliha-Drazin inverse of $a \in \mathscr{A}$ (see [7]), provided that the following hold:
$\left(1^{\infty}\right) a\left(1-a^{d}\right)$ is quasinilpotent,
(2) $a^{d} a a^{d}=a^{d}$,
(5) $a a^{d}=d^{d} a$.

It is known that $a \in \mathscr{A}$ is generalized Drazin invertible if and only if 0 is not the point of accumulation of the spectrum of a (see $[7,16]$).

In the case when \mathscr{A} is a unital C^{*}-algebra, then the Moore-Penrose inverse of $a \in \mathscr{A}$ (see $[8,12]$) is the unique $a^{\dagger} \in \mathscr{A}$ (in the case when it exists), such that the following hold:
(1) $a a^{\dagger} a=a$,
(2) $a^{\dagger} a a^{\dagger}=a^{\dagger}$,
(3) $\left(a a^{\dagger}\right)^{*}=a a^{\dagger}$,
(4) $\left(a^{\dagger} a\right)^{*}=a^{\dagger} a$.

For an element $a \in \mathscr{A}$, if a^{\dagger} exists, then a is called Moore-Penrose invertible. The set of all $a \in \mathscr{A}$ that possess the Moore-Penrose inverse will be denoted by \mathscr{A}^{\dagger}. It is well-known that for $a \in \mathscr{A}, a^{\dagger}$ exists if and only if a is inner regular (see $[6,9]$). The following corollary shows that for any $a \in \mathscr{A}, a^{\dagger}, a^{d}$ and $a^{\#}$, if they exist, are all the special cases of $a_{p, q}^{(2)}$, in this case, we have $a_{p, q}^{(2)}=a_{p, q}^{(2, l)}$.
Corollary 4.10. Let \mathscr{A} be a unital C^{*}-algebra and $a \in \mathscr{A}$.
(1) If $a \in \mathscr{A}^{d}$ and $p=1-q=1-a^{\pi}=1-a a^{d}=1-a^{d} a$ is the spectral idempotent of a, then $a^{d}=a_{1-p, p}^{(2)}=a_{q, 1-q}^{(2, l)}=$ $a_{q, 1-q}^{(2)}$.
(2) If $a \in \mathscr{A}^{\dagger}, p=a^{\dagger} a, q=1-a a^{\dagger}$, then $a^{\dagger}=a_{p, q}^{(2)}=a_{p, q}^{(2, l)}$.

Proof. It is routine to check these by the definitions of $a^{\dagger}, a^{d}, a_{p, q}^{(2)}$ and $a_{p, q}^{(2, l)}$.
In this paper, we give some characterizations and representations for the various different generalized inverses with prescribed idempotents in Banach algebras. Obviously, most of our results can be proved in a ring. But in our forthcoming paper, we will use the main results in this paper to discuss the perturbation analysis of the generalized inverses $a_{p, q}^{(2)}$ and $a_{p, q}^{(2, l)}$ in a Banach algebra.

Acknowledgement. The authors thank to the referee for his (or her) helpful comments and suggestions.

References

[1] A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and Applications,, 2ed., Springer-Verlag, New York, 2003.
[2] N. Castro-Gonz\&lez, J.J. Koliha and Y.M. Wei, On integral representation of the Drazin inverse in Banach algebra, Proc. Edinb. Math. Soc., 45 (2) (2002), 327-331.
[3] M.P. Drazin, Pseudoinverse in associative rings and semigroups, Amer. Math. Mon., 65 (1958), 506-514.
[4] D.S. Djordjević and Y. M. Wei, Outer generalized inverses in rings, Comm. Algebra, 33 (2005), 3051-3060.
[5] D. Cvetkovic-Ilic, X. J. Liu and J. Zhong, On the (p, q)-outer generalized inverse in Banach algebras, Appl. Math. Compt., 209 (2) (2009), 191-196.
[6] R.E. Harte and M. Mbekhta, On generalized inverses in C*-algebras, Studia Math., 103 (1992), 71-77.
[7] J.J. Koliha, A generalized Drazin inverse, Glasgow Math. J., 38 (1996), 367-381.
[8] J.J. Koliha, The Drazin and Moore-Penrose inverse in C*-algebras, Math. Proc. R. Irish Acad., 99A (1999), 17-27.
[9] J.J. Koliha and P. Patricio, Elements of rings with equal spectral idempotents, J. Aust. Math. Soc., 72 (2002), 137-152.
[10] M.Z. Nashed, Inner, outer and generalized inverses in Banach and Hilbert spaces, Numer. Funct. Anal. Optim., 9 (1987), $261-325$.
[11] M.Z. Nashed and G.F. Votruba, A unified operator theory of generalized inverses, In: M. Z. Nashed, ed. Generalized Inverses and Applications, Academic Press, (1976), pp. 1-109.
[12] P. Penrose, A generalized inverse for matrices, Proc. Cambridge Philos. Soc., 51 (1955), 406-413.
[13] Y.M. Wei, A characterization and representation of the generalized inverse $A_{T, S}^{(2)}$ and its applications, Linear Algebra Appl., 280 (1998), 87-96.
[14] Y.M. Wei and H.B. Wu, The representation and approximation for the generalized inverse $A_{T, S^{\prime}}^{(2)}$ Appl. Math. Comput., 135 (2-3) (2003), 263-276.
[15] Y.M. Wei and H.B. Wu, On the perturbation and subproper splitting for the generalized inverse $A_{T, S}^{(2)}$ of regular matrix A, J. Comput. Appl. Math., 137 (2) (2001), 317-329.
[16] Y.F. Xue, Stable Perturbations of Operators and Related Topics, World Scientific, 2012.
[17] Y.M. Yu and G.R. Wang, The generalized inverse $A_{T, S}^{(2)}$ of a matrices over an associative ring, J. Aust. Math. Soc., 83 (2007), 423-437.
[18] Y.M. Yu and G.R. Wang, The generalized inverse $A_{T, S}^{(2)}$ over commutative rings, Linear Multilinear Algebra, 53 (2005), $293-302$.
[19] Y.M. Yu and G.R. Wang, On the generalized inverse $A_{T, S}^{(2)}$ over integral domains, J. Aust. Math. Appl., 4 (2007), 1-20.
[20] Y.M. Yu and Y.M. Wei, The representation and computational procedures for the generalized inverse $A_{T, S}^{(2)}$ of an operator A in Hilbert spaces, Numer. Funct. Anal. Optim., 30 (2009), 168-182.

[^0]: 2010 Mathematics Subject Classification. Primary 46L05; Secondary 15A09
 Keywords. generalized inverse, (p, q)-inverse, group inverse, idempotent
 Received: 15 September 2012; Accepted: 20 December 2012
 Communicated by Dragana Cvetković - Ilić
 Corresponding author: Yifeng Xue
 Email addresses: caocjb@163.com (Jianbing Cao), yfxue@math.ecnu.edu.cn (Yifeng Xue)

