A note on Putinar's matricial models

Jaewoong Kim ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, Seoul National University, Seoul 151-742, Korea

Abstract

In this note we consider the conjecture that every hyponormal Putinar's matricial model of rank two is subnormal. Related to this conjecture, we show that there exists a non rationally cyclic subnormal Putinar's matricial model of rank two and then give a sufficient condition for it to be a subnormal operator.

1. Introducton

Let \mathcal{H} and \mathcal{K} be complex Hilbert spaces, let $\mathcal{L}(\mathcal{H}, \mathcal{K})$ be the set of bounded linear operators from \mathcal{H} and \mathcal{K} and write $\mathcal{L}(\mathcal{H}):=\mathcal{L}(\mathcal{H}, \mathcal{H})$. An operator $T \in L(\mathcal{H})$ is said to be normal if $T^{*} T=T T^{*}$, quasinormal if $T^{*} T^{2}=T T^{*} T$, hyponormal if the self commutator $\left[T^{*}, T\right]=T^{*} T-T T^{*} \geq 0$, and subnormal if it has a normal extension, i.e., $T=\left.N\right|_{\mathcal{H}}$, where N is a normal operator on some Hilbert space \mathcal{K} containing \mathcal{H}. In general it is quite difficult to determine the subnormality of an operator by definition. An alternative description of subnormality is given by the Bram-Halmos criterion, which states that an operator T is subnormal if and only if

$$
\sum_{i, j}\left(T^{i} x_{j}, T^{j} x_{i}\right) \geq 0
$$

for all finite collections $x_{0}, x_{1}, \cdots, x_{k} \in \mathcal{H}([2],[4])$. It is easy to see that this is equivalent to the following positivity test:

$$
\left(\begin{array}{cccc}
I & T^{*} & \cdots & T^{* k} \tag{1}\\
T & T^{*} T & \cdots & T^{* k} T \\
\vdots & \vdots & \ddots & \vdots \\
T^{k} & T^{*} T^{k} & \cdots & T^{* k} T^{k}
\end{array}\right) \geq 0 \quad(\text { all } k \geq 1)
$$

Condition (1) provides a measure of the gap between hyponormality and subnormality. In fact, the positivity condition (1) for $k=1$ is equivalent to the hyponormality of T, while subnormality requires the validity (1) for all k. Let $[A, B]:=A B-B A$ denote the commutator of two operators A and B, and define T to be k-hyponormal whenever the $k \times k$ operator matrix

[^0]\[

$$
\begin{equation*}
M_{k}(T):=\left(\left[T^{* j}, T^{i}\right]\right)_{i, j=1}^{k} \tag{2}
\end{equation*}
$$

\]

is positive. An application of the Choleski algorithm for operator matrices shows that the positivity of (2) is equivalent to the positivity of the $(k+1) \times(k+1)$ operator matrix in (1); the Bram-Halmos criterion can be then rephrased as saying that T is subnormal if and only if T is k-hyponormal for every $k \geq 1$ ([15]). The classes of k-hyponormal operators have been studied in an attempt to bridge the gap between subnormality and hyponormality (cf. [5]-[9],[12]-[16],[21]).

In view of the gap theory, it seems to be interesting to consider the following problem:
Which 2-hyponormal operators are subnormal?
The first inquiry involves the self commutator. Subnormal operators with finite rank self commutators have been extensively studied ([1],[20],[26]-[28]). Particular attention has been paid to hyponormal operators with rank one or rank two self commutators ([17],[22],[24],[25],[26],[29]). In particular, B. Morrel [22] showed that a pure subnormal operator with rank one self commutator (pure means having no normal summand) is unitarily equivalent to a linear function of the unilateral shift. Morrel's theorem can be essentially stated (also see [4, p. 162]) that if
$\left\{\begin{array}{l}\text { (i) } T \text { is hyponormal; } \\ \text { (ii) }\left[T^{*}, T\right] \text { is of rank one; and } \\ \text { (iii) } \operatorname{ker}\left[T^{*}, T\right] \text { is invariant for } T,\end{array}\right.$
then $T-\beta$ is quasinormal for some $\beta \in \mathbb{C}$. It would be interesting (in the sense of giving a simple sufficiency for the subnormality) to note that Morrel's theorem gives that

$$
\text { If } T \text { satisfies the condition (4), then } T \text { is submormal. }
$$

On the other hand, it was shown [13, Lemma 2.2] that if T is 2-hyponormal then

$$
T\left(\operatorname{ker}\left[T^{*}, T\right]\right) \subset \operatorname{ker}\left[T^{*}, T\right] .
$$

Therefore by Morrel's theorem, we can see that
every 2-hyponormal operator with rank one self commutator is subnormal.
Recently, S.H. Lee and W.Y. Lee [19] obtained an extension of Morrel's theorem to the case of rank two self commutators:

Theorem 1.1. ([19]) Let $T \in L(\mathcal{H})$. If
(i) T is a pure hyponormal operator;
(ii) $\left[T^{*}, T\right]$ is of rank two; and
(iii) $\operatorname{ker}\left[T^{*}, T\right]$ is invariant for T,
then we have
(1) If $\left.T\right|_{r a n\left[T^{*}, T\right]}$ has a rank one self commutator then T is subnormal;
(2) If $\left.T\right|_{r a n[T *, T]}$ has a rank two self commutator then T is either a subnormal operator or a "Putinar's martricial model" of rank two; that is, T has the following two diagonal structure, with respect to the orthogonal decomposition $\mathcal{H}=\mathcal{H}_{0} \oplus \mathcal{H}_{1} \oplus \cdots:$

$$
T=\left(\begin{array}{ccccc}
B_{0} & 0 & 0 & 0 & \cdots \tag{5}\\
A_{0} & B_{1} & 0 & 0 & \cdots \\
0 & A_{1} & B_{2} & 0 & \cdots \\
0 & 0 & A_{2} & B_{3} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right),
$$

where

$$
\left\{\begin{array}{l}
\text { (i) } \operatorname{dim} \mathcal{H}_{n}=\operatorname{dim} \mathcal{H}_{n+1}=2(n \geq 0) \tag{6}\\
\text { (ii) }\left[T^{*}, T\right]=\left(\left[B_{0}^{*}, B_{0}\right]+A_{0}^{*} A_{0}\right) \oplus 0_{\infty} \\
\text { (iii) } A_{n}^{*} B_{n+1}=B_{n} A_{n}^{*} \quad(n \geq 0)
\end{array}\right.
$$

and if T_{n} denotes the compression of T to the space $\mathcal{H}_{n} \oplus \mathcal{H}_{n+1} \oplus \cdots$ for $n \geq 0$, then

$$
\mathcal{H}_{n}=\operatorname{ran}\left[T_{n}^{*}, T_{n}\right] \text { for every } n \geq 0
$$

 that all A_{n} are positive and invertible.

And they conjectured:
Conjecture 1.1. The Putinar's matricial model of rank two is subnormal.
If T is a rationally cyclic subnormal operator of rank two self commutator, then there is a good characterization ([18], [20]). By Morrel's theorem ([22]), they have two diagonal structure. So we can ask the following: If a Putinar's matricial model of rank two is a subnormal operator, is it rationally cyclic? In this note we will give the negative answer to this question and also give a sufficient condition for a Putinar's matricial model of rank two to be subnormal.

2. The main result

We first review a few essential facts concerning weak subnormality that we will need to begin with. An operator $T \in L(\mathcal{H})$ is said to be weakly subnormal if there exist operator $A \in L\left(\mathcal{H}^{\prime}, \mathcal{H}\right)$ and $B \in L\left(\mathcal{H}^{\prime}\right)$ such that the following conditions hold:

$$
\left[T^{*}, T\right]=A A^{*} \text { and } A^{*} T=B A^{*},
$$

or equivalently there is an extension $\widehat{T}:=\left(\begin{array}{ll}T & A \\ 0 & B\end{array}\right)$ of T such that

$$
\widehat{T}^{*} \widehat{T} f=\widehat{T T^{*}} f \text { for all } f \in \mathcal{H}
$$

The operator \widehat{T} is called a partially normal extension (briefly, p.n.e.) of T. We also say that \widehat{T} in $L(\mathcal{K})$ is a minimal partially normal extension (briefly, m.p.n.e.) of T if \mathcal{K} has no proper subspace containing \mathcal{H} to which the restriction of \widehat{T} is also a partially normal extension of T. For convenience, if $\widehat{T}=$ m.p.n.e. (T) is also weakly subnormal then we write $\widehat{T}^{(2)}:=\widehat{\widehat{T}}$ and more generally,

$$
\widehat{T}^{(n)}:=\widehat{T^{(n-1)}}
$$

which will be called the n-th minimal partially normal extension of T. It was ([10], [11], [13]) shown that

$$
\text { 2-hyponormal } \Longrightarrow \text { weakly subnormal } \Longrightarrow \text { hyponormal }
$$

and the converses of both implications are not true in general. It was [13] known that

$$
T \text { is weakly subnormal } \Longrightarrow T\left(\operatorname{ker}\left[T^{*}, T\right]\right) \subset \operatorname{ker}\left[T^{*}, T\right]
$$

and it was [11] known that if $\widehat{T}:=$ m.p.n.e.(T) then for any $k \geq 1$,
T is $(k+1)$-hyponormal $\Longleftrightarrow T$ is weakly subnormal and \widehat{T} is k-hyponormal.

So, in particular, one can see that

$$
\text { If } T \text { is subnormal, then } \widehat{T} \text { is subnormal. }
$$

It is worth to noticing that Morrel's theorem gives that
every weakly subnormal operator with rank one self commutator is subnormal.

Now we will show that there exists a Putinar's matricial model of rank two which is subnormal but not rationally cyclic.
Theorem 2.1. There is a non rationally cyclic subnormal Putinar's matricial model of rank two.
Proof. Let $B_{0}=\left(\begin{array}{cc}0 & \sqrt{\frac{\alpha}{2+2 \alpha}} \\ \sqrt{\frac{\alpha}{2+2 \alpha}} & 0\end{array}\right)(0<\alpha<1)$ and $A_{0}=\left(\begin{array}{cc}\sqrt{\alpha} & 0 \\ 0 & 1\end{array}\right)$. Then using the relations

$$
\left[B_{n+1}^{*}, B_{n+1}\right]+A_{n+1}^{2}=A_{n}^{2} \text { and } A_{n} B_{n+1}=B_{n} A_{n} \text { for } n \geq 0
$$

we can successively define $A_{n}{ }^{\prime}$ s and $B_{n}{ }^{\prime}$ s. A straightforward calculation shows that $A_{n+6}=A_{n}$ and $B_{n+6}=B_{n}$. Hence we have the following operator

$$
T=\left(\begin{array}{ccccc}
B_{0} & 0 & 0 & 0 & \cdots \\
A_{0} & B_{1} & 0 & 0 & \cdots \\
0 & A_{1} & B_{2} & 0 & \cdots \\
0 & 0 & A_{2} & B_{3} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right) \text { on } \mathcal{H}=\mathcal{H}_{0} \oplus \mathcal{H}_{1} \oplus \cdots
$$

Since $\left[T^{*}, T\right]=C \oplus 0_{\infty}$, where $C=\left(\begin{array}{ll}1 & 0 \\ 0 & \alpha\end{array}\right), T$ is hyponormal and has a rank two self commutator. So it is a pure hyponormal operator. By [19, Theorem 2], it is subnormal. On the other hand, if $\Lambda:=B_{0}$, then $\{\Lambda, C\}$ are complete unitary invariants, so that

$$
\Lambda:=\left(\left.T^{*}\right|_{r a n\left[T^{*}, T\right]}\right)^{*} \text { and } C:=\left.\left[T^{*}, T\right]\right|_{r a n\left[T^{*}, T\right]} .
$$

Recall ([20], [18]) that the characterization of rationally cyclic subnormal operators with rank two self commutators as follows: If S is a pure rationally cyclic subnormal operator with rank two self commutator, then S is unitarily equivalent to a dilation and shift of one of the following operators:
(a) $S=S_{1} \oplus S_{2}$, where $S_{j}=\alpha_{j} U+\beta_{j}$ with $\beta_{j} \in \mathbb{C}$ and $\alpha_{j}>0$ for $j=1,2$,
(b) $S=U_{\lambda}$,
(c) $S=U(U+\alpha)$ for some $\alpha \in \mathbb{C} \backslash\{0\}$,
(d) $S=\alpha U+\delta U(1-\delta U)^{-1}$, where $\alpha \in \mathbb{C} \backslash\{0\}$ and $0<|\delta|<1$,
where if we let $\mathbb{T}_{a}=\partial \mathbb{D} \cup\{a\}(0<a<1)$ and λ be a measure on \mathbb{T}_{a} such that $d \lambda\left(e^{i \theta}\right)=\frac{d \theta}{2 \pi}$ and $\lambda(\{a\})=v$, then U_{λ} is the multiplication by z on $P^{2}(\lambda)$ which is the closure of the polynomials under the inner product

$$
\langle f, g\rangle=\int_{\mathbb{T}_{a}} f(z) \overline{g(z)} d \lambda(z)=\frac{1}{2 \pi i} \int_{\partial \mathrm{D}} f(z) \overline{g(z)} \frac{d z}{z}+v f(a) \overline{g(a)},
$$

and U is the unilateral shift. Then Λ and C are given by:
(1) For case (a), $\Lambda=\left(\begin{array}{cc}\beta_{1} & 0 \\ 0 & \beta_{2}\end{array}\right)$ and $C=\left(\begin{array}{cc}\alpha_{1}^{2} & 0 \\ 0 & \alpha_{2}^{2}\end{array}\right)$.
(2) For case (b),
$a=0: \Lambda=\left(\begin{array}{cc}0 & 0 \\ \frac{1}{\sqrt{1+v}} & 0\end{array}\right)$ and $C=\left(\begin{array}{cc}\frac{1}{1+v} & 0 \\ 0 & \frac{1}{1+v}\end{array}\right)$.
$a \neq 0 \quad(|a|<1): \Lambda=\left(\begin{array}{cc}0 & 0 \\ \frac{a\left(1-\left.|a|\right|^{2}\right)}{|a| \sqrt{1+v-|a|^{2}}} & a\end{array}\right)$ and

$$
C=\left(\begin{array}{cc}
1-v\left(1-|a|^{2}\right)^{3}\left(\frac{1+v|a|^{2}-|a|^{2}}{1+v-|a|^{2}}\right) & -\frac{v|a|\left(1-|a|^{2}\right)}{\left(1+v|a|^{2}-|a|^{2}\right) \sqrt{1+v-|a|^{2}}} \\
-\frac{v|a|\left(1-|a|^{2}\right)}{\left(1+v|a|^{2}-|a|^{2}\right) \sqrt{1+v-|a|^{2}}} & v\left(1-|a|^{2}\right)^{3}\left(\frac{1+v|a|^{2}-|a|^{2}}{1+v-|a|^{2}}\right)
\end{array}\right) .
$$

(3) For case (c), $\Lambda=\left(\begin{array}{ll}0 & 0 \\ \alpha & 0\end{array}\right)$ and $C=\left(\begin{array}{cc}1+|\alpha|^{2} & \alpha \\ \bar{\alpha} & 1\end{array}\right)$.
(4) For case (d), $\Lambda=\left(\begin{array}{cc}0 & 0 \\ \left(\alpha \bar{\delta}+\rho^{2}\right) \rho & \alpha \bar{\delta}+\rho^{2}\end{array}\right)$ and

$$
C=\left(\begin{array}{cc}
|\alpha|^{2}+\alpha \bar{\delta}+\bar{\alpha} \delta+\rho^{2} & \left(\alpha \bar{\delta}+\rho^{2}\right) \rho \\
\left(\bar{\alpha} \delta+\rho^{2}\right) \rho & \rho^{4}
\end{array}\right) \quad\left(\text { with } \rho=\sqrt{\frac{|\delta|^{2}}{1-|\delta|^{2}}}\right)
$$

We next find the rank of $\left[\Lambda^{*}, \Lambda\right]$ for each case:
(1) $\left[\Lambda^{*}, \Lambda\right]=0$, and so $\operatorname{rank}\left[\Lambda^{*}, \Lambda\right]=0$,
(2) $a=0:\left[\Lambda^{*}, \Lambda\right]=\left(\begin{array}{cc}\frac{1}{1+v} & 0 \\ 0 & -\frac{1}{1+v}\end{array}\right)$, and so $\operatorname{rank}\left[\Lambda^{*}, \Lambda\right]=2$
$a \neq 0:\left[\Lambda^{*}, \Lambda\right]=\left(\begin{array}{cc}|\alpha|^{2} & \bar{\alpha} a \\ \alpha \bar{a} & -|\alpha|^{2}\end{array}\right)$, where $\alpha=\frac{a\left(1-|a|^{2}\right)}{|a| \sqrt{1+v-\left.|a|\right|^{2}}}$. Since $\operatorname{det}\left[\Lambda^{*}, \Lambda\right]=-|\alpha|^{2}\left(|\alpha|^{2}+|a|^{2}\right) \neq 0, \operatorname{rank}\left[\Lambda^{*}, \Lambda\right]=2$.
(3) $\left[\Lambda^{*}, \Lambda\right]=\left(\begin{array}{cc}|\alpha|^{2} & 0 \\ 0 & -|\alpha|^{2}\end{array}\right)$, and so $\operatorname{rank}\left[\Lambda^{*}, \Lambda\right]=2$,
(4) $\left[\Lambda^{*}, \Lambda\right]=\left|\alpha \bar{\delta}+\rho^{2}\right|^{2}\left(\begin{array}{cc}\rho^{2} & \rho \\ \rho & -\rho^{2}\end{array}\right)$. Since $\operatorname{det}\left(\begin{array}{cc}\rho^{2} & \rho \\ \rho & -\rho^{2}\end{array}\right)=-\rho^{2}\left(1+\rho^{2}\right) \neq 0, \operatorname{rank}\left[\Lambda^{*}, \Lambda\right]=2$.

Assume that T is rationally cyclic. Then T must be unitarily equivalent to a dilation and shift of one of the above operators. Since $\operatorname{rank}\left[\Lambda^{*}, \Lambda\right]$ is invariant under dilation and shift, and $\operatorname{rank}\left[B_{0}^{*}, B_{0}\right]=0, T$ is not unitarily equivalent to a dilation and shift of one of the cases (b), (c), and (d). Hence T must be the case (a). Since, for C and Λ for T,

$$
\left(\begin{array}{cc}
0 & \sqrt{\frac{\alpha}{2+2 \alpha}} \\
\alpha \sqrt{\frac{\alpha}{2+2 \alpha}} & 0
\end{array}\right)=C \Lambda \neq \Lambda C=\left(\begin{array}{cc}
0 & \alpha \sqrt{\frac{\alpha}{2+2 \alpha}} \\
\sqrt{\frac{\alpha}{2+2 \alpha}} & 0
\end{array}\right)
$$

C and Λ for T are not simultaneously diagonalizable. Since the simultaneous diagonalization is invariant under a dilation and shift, T is not unitarily equivalent to the case (a) and so T is not rationally cyclic. Hence T is the desired operator.
Corollary 2.2. Let T be a Putinar matricial model of rank two. If $A_{-1}^{2}\left(:=\left[B_{0}^{*}, B_{0}\right]+A_{0}^{2}\right)$ and B_{0} are simultaneously diagonalizable, then T is a subnormal operator.
Proof. Since A_{-1}^{2} and B are simultaneously diagonalizable, we may write that

$$
A_{-1}^{2}=\left(\begin{array}{cc}
\alpha_{1}^{2} & 0 \\
0 & \alpha_{2}^{2}
\end{array}\right), \quad B_{0}=\left(\begin{array}{cc}
\beta_{1} & 0 \\
0 & \beta_{2}
\end{array}\right) .
$$

Now we can find a rationally cyclic subnormal operator S with its complete unitary invariants such as (see the proof of Theorem 2.1.):

$$
\Lambda=\left(\begin{array}{cc}
\beta_{1} & 0 \\
0 & \beta_{2}
\end{array}\right) \quad \text { and } \quad C=\left(\begin{array}{cc}
\alpha_{1}^{2} & 0 \\
0 & \alpha_{2}^{2}
\end{array}\right)
$$

By Morrel's Theorem [22], S has two diagonal structure as in (5). Since T is a Putinar's matricial model of rank two, it also satisfies the relation (6). So S and T must be the same and T is subnormal.

If a Putinar's matricial model of rank two T is rationally cyclic, then we can get the following:
Corollary 2.3. Let T be a rationally cyclic operator represented by a Putinar matricial model of rank two. If $\operatorname{rank}\left[B_{0}^{*}, B_{0}\right]=1$, then T can not be a subnormal operator.
Proof. If T is subnormal, then it is a dilation and shift of one of the four cases in the proof of Theorem 2.1. For them, $\operatorname{rank}\left[\Lambda^{*}, \Lambda\right]=0$ or 2 . Since $\operatorname{rank}\left[\Lambda^{*}, \Lambda\right]$ is invariant under dilation and shift and B_{0} is Λ for T, $\operatorname{rank}\left[B_{0}^{*}, B\right]$ can not be 1 . Hence T can not be subnormal.

Now we will give a sufficient condition for a Putinar's matricial model of rank two to be subnormal.
Theorem 2.4. Let T be a Putinar's matricial model of rank two as in (5). If $B_{n}=B_{n+1}^{*}$ for some $n \geq 0$, then T is a subnormal operator.

Proof. Consider the operator

$$
T_{n+1}=\left(\begin{array}{ccccc}
B_{n+1} & 0 & 0 & 0 & \cdots \\
A_{n+1} & B_{n+2} & 0 & 0 & \cdots \\
0 & A_{n+2} & B_{n+3} & 0 & \cdots \\
0 & 0 & A_{n+3} & B_{n+4} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right) \text { on } \widetilde{\mathcal{H}}_{n+1}=\mathcal{H}_{n+1} \oplus \mathcal{H}_{n+2} \oplus \cdots
$$

Since T is a Putinar's matricial model of rank two, A_{n} is positive and invertible and so we can find $\sqrt{A_{n}}$ and ${\sqrt{A_{n}}}^{-1}$. Let $\widetilde{B}=\sqrt{A_{n}} B_{n+1}{\sqrt{A_{n}}}^{-1}$ and define operators A and B on $\widetilde{\mathcal{H}}_{n+1}$.

$$
A=\left(\begin{array}{ccccc}
\sqrt{A_{n}} & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right), B=\left(\begin{array}{ccccc}
\widetilde{B} & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right) .
$$

Then

$$
B A=\left(\begin{array}{ccccc}
\widetilde{B} & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)\left(\begin{array}{ccccc}
\sqrt{A_{n}} & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)=\left(\begin{array}{ccccc}
\widetilde{B} \sqrt{A_{n}} & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

and

$$
A T_{n+1}=\left(\begin{array}{ccccc}
\sqrt{A_{n}} & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)\left(\begin{array}{ccccc}
B_{n+1} & 0 & 0 & 0 & \cdots \\
A_{n+1} & B_{n+2} & 0 & 0 & \cdots \\
0 & A_{n+2} & B_{n+3} & 0 & \cdots \\
0 & 0 & A_{n+3} & B_{n+4} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)=\left(\begin{array}{ccccc}
\sqrt{A_{n}} B_{n+1} & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

So $B A=A T_{n+1}$. On the other hand,

$$
T_{n+1}^{*} A=\left(\begin{array}{ccccc}
B_{n+1}^{*} & A_{n+1}^{*} & 0 & 0 & \cdots \\
0 & B_{n+2}^{*} & A_{n+2}^{*} & 0 & \cdots \\
0 & 0 & B_{n+3}^{*} & A_{n+3}^{*} & \cdots \\
0 & 0 & 0 & B_{n+4}^{*} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)\left(\begin{array}{ccccc}
\sqrt{A_{n}} & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)=\left(\begin{array}{ccccc}
B_{n+1}^{*} \sqrt{A_{n}} & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

and

$$
A B=\left(\begin{array}{ccccc}
\sqrt{A_{n}} \widetilde{B} & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right) .
$$

Since $A_{n} B_{n+1}=B_{n} A_{n}$,

$$
\sqrt{A_{n} B}=\sqrt{A_{n}} \sqrt{A_{n}} B_{n+1}{\sqrt{A_{n}}}^{-1}=A_{n} B_{n+1}{\sqrt{A_{n}}}^{-1}=B_{n} A_{n}{\sqrt{A_{n}}}^{-1}=B_{n+1}^{*} \sqrt{A_{n}}
$$

So $A B=T_{n+1}^{*} A$.
Now let N be an operator defined on $\widetilde{\mathcal{H}}_{n+1} \bigoplus \widetilde{\mathcal{H}}_{n+1} \bigoplus \widetilde{\mathcal{H}}_{n+1}$.

$$
N=\left(\begin{array}{ccc}
T_{n+1}^{*} & 0 & 0 \\
A & B & 0 \\
0 & A & T_{n+1}
\end{array}\right)
$$

Then

$$
N^{*} N=\left(\begin{array}{ccc}
T_{n+1} & A & 0 \\
0 & B & A \\
0 & 0 & T_{n+1}^{*}
\end{array}\right)\left(\begin{array}{ccc}
T_{n+1}^{*} & 0 & 0 \\
A & B & 0 \\
0 & A & T_{n+1}
\end{array}\right)=\left(\begin{array}{ccc}
T_{n+1} T_{n+1}^{*}+A^{2} & A B & 0 \\
B A & B^{2}+A^{2} & A T_{n+1} \\
0 & T_{n+1}^{*} A & T_{n+1}^{*} T_{n+1}
\end{array}\right)
$$

and

$$
N N^{*}=\left(\begin{array}{ccc}
T_{n+1}^{*} & 0 & 0 \\
A & B & 0 \\
0 & A & T_{n+1}
\end{array}\right)\left(\begin{array}{ccc}
T_{n+1} & A & 0 \\
0 & B & A \\
0 & 0 & T_{n+1}^{*}
\end{array}\right)=\left(\begin{array}{ccc}
T_{n+1}^{*} T_{n+1} & T_{n+1}^{*} A & 0 \\
A T_{n+1} & A^{2}+B^{2} & B A \\
0 & A B & A^{2}+T_{n+1} T_{n+1}^{*}
\end{array}\right)
$$

Since T is a Putinar's matricial model of rank two, $\left[T_{n+1}^{*}, T_{n+1}\right]=\left(\left[B_{n+1}^{*}, B_{n+1}\right]+A_{n+1}^{2}\right) \oplus 0_{\infty}=A_{n}^{2} \oplus 0_{\infty}=A^{2}$. Hence, by the previous calculations, we have $N^{*} N=N N^{*}$, i.e., it is normal. Since N is clearly a normal extension of T_{n+1}, T_{n+1} is subnormal. Since T is the $(n+1)$-th minimal partially normal extension of T_{n+1}, T should be subnormal.

References

[1] A. Aleman, Subnormal operators with compact self commutator, Manuscripta Math. 91 (1996), 353-367.
[2] J. Bram, Subnormal operators, Duke Math. J. 22 (1955), 75-94.
[3] S. Campbell, Linear operators for which $T^{*} T$ and $T+T^{*}$ commute III, Pacific J. Math. 76 (1978), 17-19.
[4] J. Conway, The theory of subnormal operators, Math. Surveys Monogr., vol 36, Amer. Math. Soc., Providence 1991.
[5] R. Curto, Quadratically hyponormal weighted shifts, Integral Equations Operator Theory 13 (1990), 49-66.
[6] R. Curto, Joint hyponormality: A bridge between hyponormality and subnormality, Operator Theory: Operator Algebras and Its Applications (Durham, NH, 1988) (W.B. Arveson, R.G. Douglas, eds), Proc. Sympos. Pure Math., vol 51, part II, American Mathematical Society, Providence, (1990), part II 69-91.
[7] R. Curto and L. Fialkow, Recursiveness, positivity, and truncated moment problems, Houston J. Math. 17 (1991), 603-635.
[8] R. Curto and L. Fialkow, Recursively generated weighted shifts and the subnormal completion problem, Integral Equations Operator Theory 17 (1993), 202-246.
[9] R. Curto and L. Fialkow, Recursively generated weighted shifts and the subnormal completion problem II, Integral Equations Operator Theory 18 (1994), 369-426.
[10] R. Curto, I.S. Hwang and W.Y. Lee, Weak subnormality of operators, Arch. Math. (Basel) 79 (2002), 360-371.
[11] R. Curto, I.B. Jung and S.S. Park, A characterization of k-hyponormality via weak subnormality, J. Math. Anal. Appl. 279 (2003), 556-568.
[12] R. Curto and W.Y. Lee, Joint hyponormality of Toeplitz pairs, Mem. Amer. Math. Soc. 712 (2001).
[13] R. Curto and W.Y. Lee, Towards a model theory for 2-hyponormal operators, Integral Equations Operator Theory 44 (2002), 290-315.
[14] R. Curto, and W.Y. Lee, Subnormality and k-hyponormality of Toeplitz operators: A brief survey and open questions, Operator theory and Banach algebras (Rabat, 1999), Theta. Bucharest (2003), 73-81.
[15] R. Curto, P. Muhly and J. Xia, Hyponormal pairs of commuting operators, Contributions to Operator Theory and Its Applications (Mesa, AZ, 1987) (I. Gohbergm J.W. Helton and L. Rodman, eds), Operator Theory: Advances and Applications, vol 35, Birkhäuser, Basel-Boston (1988), 1-22.
[16] M. Embry, A generalization of the Halmos-Bram criterion for subnormality, Acta Sci. Math. (Szeged) 35 (1973), 61-64.
[17] B. Gustafsson and M. Putinar, Linear analysis of quadrature domains. II, Israel J. Math. 119 (2000), 187-195.
[18] J. Gleason and R. Rosentrater, Xia's analytic model of a subnormal operator and its applications, Rocky Mountain J. Math. 38 (2008), 849-889.
[19] S.H. Lee and W.Y. Lee, Hyponormal operators with rank two self commutatiors, J. Math. Anal. Appl. 351 (2009), 616-626.
[20] J. McCarthy and L. Yang, Subnormal operators and quadrature domains, Adv. Math. 127 (1997), 52-72.
[21] S. McCullough and V. Paulsen, A note on joint hyponormality, Proc. Amer. Math. Soc. 107 (1989), 187-195.
[22] B. Morrel, A decomposition for some operators, Indiana Univ. Math. J. 23 (1973), 497-511.
[23] R. Olin, J. Thomson and R. Trent, Subnormal operators with finite rank self commutator, preprint (1990).
[24] M. Putinar, Linear analysis of quadrature domains, Ark. Mat. 33 (1995), 357-376.
[25] M. Putinar, Linear analysis of quadrature domains. III, J. Math. Anal. Appl. 239 (1999), 101-117.
[26] S. Stewart and D. Xia, A class of subnormal operators with finite rank self commutators, Integral Equations Operator Theory 44 (2002), 370-382.
[27] D. Xia, Analytic theory of subnormal operators, Integral Equations Operator Theory 10 (1987), 880-903.
[28] D. Xia, On pure subnormal operators with finite rank self commutators and related operator tuples, Integral Equations Operator Theory 24 (1996), 107-125.
[29] D. Xia, Hyponormal operators with rank one self commutator and quadrature domains, Integral Equations Operator Theory 48 (2004), 115-135.

[^0]: 2010 Mathematics Subject Classification. Primary 47B20
 Keywords. hyponormal operators, subnormal operators, finite rank self commutators, weakly subnormal operators, Putinar's matricial models

 Received: 16 October 2012; Accepted: 14 February 2013
 Communicated by Dragana S. Cvetković-Ilić
 Email address: kim2@snu.ac.kr (Jaewoong Kim)

