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The mixed-type reverse order laws for generalized inverses
of the product of two matrices
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Abstract. The relationship between generalized inverses of AB and the product of generalized inverses of
A and B have been studied in this paper. The necessary and sufficient conditions for a number of mixed-type
reverse order laws of generalized inverses of two matrix products are derived by using the maximal ranks
of the generalized Schur complements.

1. Introduction

Let Cm×n denote the set of m × n matrices with complex entries and Cm denote the set of m-dimensional
vectors. Ik denotes the identity matrix of order k and Om×n be the m × n matrix of all zero entries (if no
confusion occurs, we will drop the subscript). For a matrix A ∈ Cm×n, A∗ and r(A) denote the conjugate
transpose and the rank of the matrix A, respectively.

The concept of generalized inverses of a matrix A ∈ Cm×n has a long history. The most commonly used
definition of generalized inverses was introduced by Penrose in [11], now is known as the Moore-Penrose
conditions, which is a matrix X ∈ Cn×m satisfying some of the following four equations:

(1) AXA = A, (2) XAX = X, (3) (AX)∗ = AX, (4) (XA)∗ = XA. (1.1)

For a subset {i, j, · · · , k} of the set {1, 2, 3, 4}, the set of n×m matrices satisfying the equations (i), ( j), · · · , (k)
from among equations (1) − (4) is denoted by A{i, j, · · · , k}. A matrix in A{i, j, · · · , k} is called an {i, j, · · · , k}-
inverse of A and is denoted by A(i, j,··· ,k). For example, a matrix X of the set A{1} is called a 1-inverse of A and
is denoted by X = A(1). One usually denotes any {1, 3}-inverse of the set A{1, 3} as A(1,3) which is also called
a least squares 1-inverse of A. Any {1, 4}-inverse of the set A{1, 4} is denoted by A(1,4) which is also called a
minimum norm 1-inverse of A. Similarly, any {1, 3, 4}-inverse of the set A{1, 3, 4} is denoted by A(1,3,4). The
unique {1, 2, 3, 4}-inverse of A is denoted by A†, which is called the Moore-Penrose inverse of A. We refer
the reader to [1, 12, 20] for basic results on generalized inverses.

Let Ai, i = 1, 2, · · · ,n, be n matrices such that the product A1A2 · · ·An exists. If each of the n matrices
is nonsingular, then the product A1A2 · · ·An is nonsingular too, and the inverse of A1A2 · · ·An satisfies the
reverse order law (A1A2 · · ·An)−1 = A−1

n A−1
n−1 · · ·A−1

1 . However, this reverse order law does not hold for
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generalized inverses. Naturally, the reverse order laws for the generalized inverses of products of multiple
matrices yield a class of interesting problems that are fundamental in the theory of generalized inverses
of matrices see [1, 14, 20]. The reverse order law for the Moore-Penrose inverse seems first to have been
studied by Greville [7], in the 60’s, giving a necessary and sufficient condition for the reverse order law
(AB)† = B†A†, for matrices A and B. This was followed (see [6]) by further equivalent conditions for the
same thing. Sun and Wei [15] extended the reverse order law conditions to the weighted Moore-Penrose
inverse, and Hartwig [8] and Tian [16, 17] to the product of three and more matrices, respectively. The next
step was to consider the reverse order law for {i, j, · · · , k}-inverses, where {i, j, · · · , k} ⊆ {1, 2, 3, 4}. Werner
[21] presented conditions for the reverse order law B{1}A{1} ⊆ (AB){1} to hold. Wei [4, 22], Wei and Guo
[23] studied reverse order laws for {1}-inverses, {1, 2}-inverses, {1, 3}-inverses and {1, 4}-inverses of matrix
products. In [3, 5, 24–26], the reverse order laws for {1, 3}, {1, 4}, {1, 2, 3}, {1, 2, 4}-inverses were considered.
For other interesting results on this subject see [2, 9, 10, 13, 18].

In this paper, by applying the maximal ranks of generalized Schur complement [18, 19], we obtain
necessary and sufficient conditions for the following mixed-type reverse order laws:

B{1, 3, 4}A{1, 3, 4} ⊆ (AB){1}, (1.2)

B{1}A{1} ⊆ (AB){1, 3, 4}, (1.3)

B{1, 3}A{1, 3} ⊆ (AB){1, 3, 4}, (1.4)

B{1, 4}A{1, 4} ⊆ (AB){1, 3, 4}, (1.5)

B{1, 3, 4}A{1, 3, 4} ⊆ (AB){1, 3}, (1.6)

B{1, 3, 4}A{1, 3, 4} ⊆ (AB){1, 4}, (1.7)

B{1, 3, 4}A{1, 3, 4} ⊆ (AB){1, 3, 4}. (1.8)

The significance of our results lies in the fact that the conditions given in this paper are only related to the
ranks of the known matrices.

The main tools in the later discussion are the following three lemmas. The first lemma gives the formulas
of the maximal ranks of the generalized Schur complements related to the generalized inverses, and the
second shows the characterizations of some generalized inverses of a matrix.

Lemma 1.1 [18, 19] Let A ∈ Cm×n ,B ∈ Cm×k, C ∈ Cl×n and D ∈ Cl×k. Then for any A(i, j,··· ,k) ∈ A{i, j, · · · , k},

max
A(1)

r(D − CA(1)B) = min
{

r
(
C D

)
, r

(
B
D

)
, r

(
A B
C D

)
− r(A)

}
, (1.9)

max
A(1,3)

r(D − CA(1,3)B) = min
{

r
(
A∗A A∗B

C D

)
− r(A), r

(
B
D

)}
, (1.10)

max
A(1,3,4)

r(D − CA(1,3,4)B) = min
{

r
(
A∗A A∗B

C D

)
− r(A), r

(
AA∗ B
CA∗ D

)
− r(A)

}
(1.11)

and

r(D − CA†B) = r
(
A∗AA∗ A∗B

CA∗ D

)
− r(A). (1.12)
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Lemma 1.2 [17] Let A ∈ Cm×n and G ∈ Cn×m. Then

G ∈ A{1} ⇔ AGA = A, (1.13)

G ∈ A{1, 3} ⇔ A∗AG = A∗, (1.14)

G ∈ A{1, 4} ⇔ GAA∗ = A∗, (1.15)

G ∈ A{1, 3, 4} ⇔ A∗AG = A∗ and GAA∗ = A∗. (1.16)

Lemma 1.3 [1] Let A ∈ Cm×n, then the general expressions of the following types of 1-inverses of A can
be written as:

A{1} = {A(1) : A(1) = A† + FAV +WEA}, (1.17)

A{1, 3} = {A(1,3) : A(1,3) = A† + FAV}, (1.18)

A{1, 4} = {A(1,4) : A(1,4) = A† +WEA}, (1.19)

A{1, 3, 4} = {A(1,3,4) : A(1,3,4) = A† + FAVEA}, (1.20)

where FA = In − A†A, EA = Im − AA† and V ∈ Cn×m and W ∈ Cn×m are two arbitrary matrices.

2. The necessary and sufficient conditions for the mixed-type reverse order laws (1.2) and (1.3).

In this section we will present the necessary and sufficient conditions for the mixed-type reverse order
laws B{1, 3, 4}A{1, 3, 4} ⊆ (AB){1} and B{1}A{1} ⊆ (AB){1, 3, 4}. The relative results are included in the
following two theorems.

Theorem 2.1 Let A ∈ Cm×n and B ∈ Cn×m. Then B{1, 3, 4}A{1, 3, 4} ⊆ (AB){1} if and only if

r
(
A∗ B

)
+ r(AB) = r(A) + r(B). (2.21)

Proof. From the formula (1.13) in Lemma 1.2, we know that the mixed-type reverse order law
B{1, 3, 4}A{1, 3, 4} ⊆ (AB){1} holds if and only if the following equation

AB = ABB(1,3,4)A(1,3,4)AB, (2.22)

holds for any A(1,3,4) ∈ A{1, 3, 4} and B(1,3,4) ∈ B{1, 3, 4}, which is equivalent to the following rank identity

max
B(1,3,4), A(1,3,4)

r(AB − ABB(1,3,4)A(1,3,4)AB) = 0. (2.23)

Using the formula (1.11) in Lemma 1.1, we have

max
A(1,3,4)

r(AB − ABB(1,3,4)A(1,3,4)AB) = min
{

r
(

A∗A A∗AB
ABB(1,3,4) AB

)
− r(A), r

(
AA∗ AB

ABB(1,3,4)A∗ AB

)
− r(A)

}
= min

{
r
(

A AB
ABB(1,3,4) AB

)
− r(A), r

(
AA∗ AB

ABB(1,3,4)A∗ AB

)
− r(A)

}
= r

(
AA∗ AB

ABB(1,3,4)A∗ AB

)
− r(A)

= r
(

AA∗ O
ABB(1,3,4)A∗ AB − ABB(1,3,4)A∗(A∗)†B

)
− r(A)

= r(AB − ABB(1,3,4)A†AB). (2.24)
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Again by Lemma 1.1 (1.11), we have

max
B(1,3,4), A(1,3,4)

r(AB − ABB(1,3,4)A(1,3,4)AB) = max
B(1,3,4)

r(AB − ABB(1,3,4)A†AB)

= min
{

r
(
B∗B B∗A†AB
AB AB

)
− r(B), r

(
BB∗ A†AB

ABB∗ AB

)
− r(B)

}
= min

{
r
(
B∗B B∗A†AB
AB AB

)
− r(B), r

(
B A†AB

AB AB

)
− r(B)

}
= r

(
B∗B B∗A†AB
AB AB

)
− r(B)

= r(B∗B − B∗A†AB) + r(AB) − r(B). (2.25)

By the formula (1.12) in Lemma 1.1, we have

r(B∗B − B∗A†AB) = r
(
A∗AA∗ A∗AB
B∗A∗ B∗B

)
− r(A) = r(

(
A
B∗

) (
A∗ B

)
) − r(A) = r

(
A∗ B

)
− r(A). (2.26)

Combining (2.24), (2.25) with (2.26), we have

max
B(1,3,4), A(1,3,4)

r(AB − ABB(1,3,4)A(1,3,4)AB) = r
(
A∗ B

)
+ r(AB) − r(A) − r(B). (2.27)

Let the right hand side of (2.27) be zero, then we obtain the result in Theorem 2.1.
Example 1. Let

A =

1 0 0
0 1 1
0 1 1

 and B =

1 0 0
1 1 0
1 1 0

 .
Then, it is easy to obtain that r(A) = 2, r(B) = 2, r

(
A∗ B

)
= 2, r(AB) = 2 and

r
(
A∗ B

)
+ r(AB) = r(A) + r(B).

From Theorem 2.1, we can conclude that the following mixed-type reverse order law holds

B{1, 3, 4}A{1, 3, 4} ⊆ (AB){1}.

Now we verify this statement. By the definition of {1, 3, 4}-inverse in Lemma 1.3, we have

A{1, 3, 4} = {
1 0 0
0 1

2 − a a
0 a 1

2 − a

 | a ∈ C}
and

B{1, 3, 4} = {
 1 0 0
−1 1

2
1
2

0 b −b

 | b ∈ C}.
Hence the matrix set B{1, 3, 4}A{1, 3, 4} can be expressed as

B{1, 3, 4}A{1, 3, 4} = {M : M =

1 0 0
0 1

2 − a a
0 a 1

2 − a


 1 0 0
−1 1

2
1
2

0 b −b

 | a, b ∈ C}.

It is easy to verify that the identities (AB)M(AB) = AB hold for any matrix M ∈ B{1, 3, 4}A{1, 3, 4}, that is

B{1, 3, 4}A{1, 3, 4} ⊆ (AB){1}.
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Theorem 2.2 Let A ∈ Cm×n and B ∈ Cn×m. Then B{1}A{1} ⊆ (AB){1, 3, 4} if and only if AB = O or
m + n = r(A) + r(B).

Proof. From the formula (1.16) in Lemma 1.2, we know that the mixed-type reverse order law B{1}A{1} ⊆
(AB){1, 3, 4} holds if and only if the following two equations:

B∗A∗ = B∗A∗ABB(1)A(1)

and
B∗A∗ = B(1)A(1)ABB∗A∗

hold for any A(1) ∈ A{1} and B(1) ∈ B{1}, which are respectively equivalent to the following two rank
identities:

max
B(1), A(1)

r(B∗A∗ − B∗A∗ABB(1)A(1)) = 0 (2.28)

and

max
A(1), B(1)

r(B∗A∗ − B(1)A(1)ABB∗A∗) = 0. (2.29)

Using the formula (1.9) in Lemma 1.1, we have

max
A(1)

r(B∗A∗ − B∗A∗ABB(1)A(1)) = min
{

r
(
B∗A∗ABB(1) B∗A∗

)
, r

(
Im

B∗A∗

)
, r

(
A Im

B∗A∗ABB(1) B∗A∗

)
− r(A)

}
= min

{
r(AB), r(B∗A∗ABB(1) − B∗A∗A) +m − r(A)

}
. (2.30)

Again by Lemma 1.1 (1.9), we have

max
B(1)

r(B∗A∗ABB(1) − B∗A∗A) = min
{

r
(
B∗A∗AB B∗A∗A

)
, r

(
In

B∗A∗A

)
, r

(
B In

B∗A∗AB B∗A∗A

)
− r(B)

}
= min {r(AB), n − r(B)} . (2.31)

Combining (2.30) with (2.31), we have

max
B(1), A(1)

r(B∗A∗ − B∗A∗ABB(1)A(1)) = min
{
r(AB), max

B(1)
r(B∗A∗ABB(1) − B∗A∗A) +m − r(A)

}
= min {r(AB), m + n − r(A) − r(B)} . (2.32)

On the other hand, using the formula (1.9) in Lemma 1.1, we have

max
B(1)

r(B∗A∗ − B(1)A(1)ABB∗A∗) = min
{

r
(
Im B∗A∗

)
, r

(
A(1)ABB∗A∗

B∗A∗

)
, r

(
B A(1)ABB∗A∗

Im B∗A∗

)
− r(B)

}
= min

{
r(AB), r(BB∗A∗ − A(1)ABB∗A∗) +m − r(B)

}
. (2.33)

Again by Lemma 1.1 (1.9), we have

max
A(1)

r(BB∗A∗ − A(1)ABB∗A∗) = min
{

r
(
In BB∗A∗

)
, r

(
ABB∗A∗

BB∗A∗A

)
, r

(
A ABB∗A∗

In BB∗A∗

)
− r(A)

}
= min {r(AB), n − r(A)} . (2.34)

Combining (2.33) with (2.34), we have

max
A(1), B(1)

r(B∗A∗ − B(1)A(1)ABB∗A∗) = min
{
r(AB), max

A(1)
r(BB∗A∗ − A(1)ABB∗A∗) +m − r(B)

}
= min {r(AB), m + n − r(A) − r(B)} . (2.35)
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Finally, from the formulas (2.28), (2.29), (2.32) and (2.35), we obtain that the mixed-type reverse order
law B{1}A{1} ⊆ (AB){1, 3, 4} holds if and only if

min {r(AB), m + n − r(A) − r(B)} = 0.

Similar to Example 1, we can easily verify the following three matrices

A =

1 0 0
1 1 1
0 0 1

 and B =

1 0 1
1 1 0
1 1 1

 ,
satisfy the mixed-type reverse order law

B{1}A{1} ⊆ (AB){1, 3, 4}.

3. The necessary and sufficient conditions for the mixed-type reverse order laws (1.4) and (1.5).

In this section, by applying the maximal ranks of some generalized Schur complement, we will present
the necessary and sufficient conditions for the mixed-type reverse order laws B{1, 3}A{1, 3} ⊆ (AB){1, 3, 4}
and B{1, 4}A{1, 4} ⊆ (AB){1, 3, 4}.

Theorem 3.1 Let A ∈ Cm×n and B ∈ Cn×m. Then B{1, 3}A{1, 3} ⊆ (AB){1, 3, 4} if and only if

r
(

B∗

B∗A∗A

)
= r(B) and min

{
r
(

A
B∗

)
+m − r(A) − r(B), r(AB)

}
= 0.

Proof. From the formula (1.16) in Lemma 1.2, we know that the mixed-type reverse order law
B{1, 3}A{1, 3} ⊆ (AB){1, 3, 4} holds if and only if the following two equations:

B∗A∗ = B∗A∗ABB(1,3)A(1,3)

and
B∗A∗ = B(1,3)A(1,3)ABB∗A∗

hold for any A(1,3) ∈ A{1, 3} and B(1,3) ∈ B{1, 3}, which are respectively equivalent to the following two rank
identities:

max
B(1,3), A(1,3)

r(B∗A∗ − B∗A∗ABB(1,3)A(1,3)) = 0 (3.36)

and

max
A(1,3), B(1,3)

r(B∗A∗ − B(1,3)A(1,3)ABB∗A∗) = 0. (3.37)

Using the formula (1.10) in Lemma 1.1, we have

max
A(1,3)

r(B∗A∗ − B∗A∗ABB(1,3)A(1,3)) = min
{

r
(

A∗A A∗

B∗A∗ABB(1,3) B∗A∗

)
− r(A), r

(
Im

B∗A∗

)}
= min

{
m, r(B∗A∗ABB(1,3) − B∗A∗A)

}
= r(B∗A∗ABB(1,3) − B∗A∗A). (3.38)

Again by Lemma 1.1 (1.10), we have

max
B(1,3)

r(B∗A∗ABB(1,3) − B∗A∗A) = min
{

r
(

B∗B B∗

B∗A∗AB B∗A∗A

)
− r(B), r

(
In

B∗A∗A

)}
= min

{
n, r

(
B∗

B∗A∗A

)
− r(B)

}
= r

(
B∗

B∗A∗A

)
− r(B). (3.39)
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Combining (3.38) with (3.39), we have

max
B(1,3), A(1,3)

r(B∗A∗ − B∗A∗ABB(1,3)A(1,3)) = max
B(1,3)

r(B∗A∗ABB(1,3) − B∗A∗A) = r
(

B∗

B∗A∗A

)
− r(B). (3.40)

On the other hand, using the formula (1.10) in Lemma 1.1, we have

max
B(1,3)

r(B∗A∗ − B(1,3)A(1,3)ABB∗A∗) = min
{

r
(
B∗B B∗A(1,3)ABB∗A∗

Im B∗A∗

)
− r(B), r

(
A(1,3)ABB∗A∗

B∗A∗

)}
= min

{
r(B∗BB∗A∗ − B∗A(1,3)ABB∗A∗) +m − r(B), r(AB)

}
. (3.41)

Again by Lemma 1.1 (1.10), we have

max
A(1,3)

r(B∗BB∗A∗ − B∗A(1)ABB∗A∗) = min
{

r
(
A∗A A∗ABB∗A∗

B∗ B∗BB∗A∗

)
− r(A), r

(
ABB∗A∗

B∗BB∗A∗

)}
= min

{
r
(
A∗A
B∗

)
− r(A), r(AB)

}
= min

{
r
(

A
B∗

)
− r(A), r(AB)

}
. (3.42)

Combining (3.41) with (3.42), we have

max
A(1,3), B(1,3)

r(B∗A∗ − B(1,3)A(1,3)ABB∗A∗) = min
{
r(AB), max

A(1,3)
r(B∗BB∗A∗ − B∗A(1,3)ABB∗A∗) +m − r(B)

}
= min

{
r(AB), r

(
A
B∗

)
+m − r(A) − r(B)

}
. (3.43)

Finally, from the formulas (3.36), (3.37), (3.40) and (3.43), we obtain that the mixed-type reverse order
law B{1, 3}A{1, 3} ⊆ (AB){1, 3, 4} holds if and only if

r
(

B∗

B∗A∗A

)
= r(B) and min

{
r
(

A
B∗

)
+m − r(A) − r(B), r(AB)

}
= 0.

Example 2. Let

A =
(
1 0 0
1 1 0

)
and B =

1 1
1 0
0 0

 .
It is easy to obtain that r(A) = 2, r(B) = 2, r

(
A
B∗

)
= 2, r(AB) = 2, r

(
B∗

B∗A∗A

)
= 2. Then, we have

r
(

B∗

B∗A∗A

)
= r(B) and min

{
r
(

A
B∗

)
+m − r(A) − r(B), r(AB)

}
= 0.

From Theorem 3.1, we can conclude that the following mixed-type reverse order law holds

B{1, 3}A{1, 3} ⊆ (AB){1, 3, 4}.

Now we verify this statement. By the definition of {1, 3}-inverse in Lemma 1.3, we have

A{1, 3} = {A† + (I3 − A†A)W : W ∈ C3×2} = {
 1 0
−1 1
a b

 | a, b ∈ C}
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and

B{1, 3} = {B† + (I2 − B†B)V : V ∈ C2×3} =
(
0 1 0
1 −1 0

)
.

Hence the matrix set B{1, 3}A{1, 3} can be expressed as

B{1, 3}A{1, 3} =
(
0 1 0
1 −1 0

)  1 0
−1 1
a b

 =
(
−1 1
2 −1

)
.

It is easy to verify that
B{1, 3}A{1, 3} ⊆ (AB){1, 3, 4}.

In the remainder of this section, we will present the necessary and sufficient conditions for the mixed-
type reverse order law (1.5). Notice that GAA∗ = A∗ is equivalent to the equation AA∗G∗ = A. This implies
that, by the formulas (1.14) and (1.15) in Lemma 1.2, G ∈ A{1, 4} if and only if G∗ ∈ A∗{1, 3}. So from the
results obtained in Theorem 3.1, we can immediately get the necessary and sufficient conditions for the
mixed-type reverse order law (1.5), which are stated below without proofs.

Theorem 3.2 Let A ∈ Cm×n and B ∈ Cn×m. Then B{1, 4}A{1, 4} ⊆ (AB){1, 3, 4} if and only if

r
(

A
ABB∗

)
= r(A) and min

{
r
(
B A∗

)
+m − r(A) − r(B), r(AB)

}
= 0.

4. The necessary and sufficient conditions for the mixed-type reverse order laws (1.6), (1.7) and (1.8).

In this section we will present the necessary and sufficient condition for the the reverse order laws
B{1, 3, 4}A{1, 3, 4} ⊆ (AB){1, 3} and B{1, 3, 4}A{1, 3, 4} ⊆ (AB){1, 4} and B{1, 3, 4}A{1, 3, 4} ⊆ (AB){1, 3, 4}. The
relative results are included in the following two lemmas.

Lemma 4.1 Let A ∈ Cm×n and B ∈ Cn×m. Then B{1, 3, 4}A{1, 3, 4} ⊆ (AB){1, 3} if and only if the following
condition holds:

min
{

r
(

B∗

B∗A∗A

)
− r(B), r

(
B∗B B∗A∗

B∗A∗AB B∗A∗AA∗

)
+m − r(A) − r(B)

}
= 0.

Proof. From Lemma 1.2 (1.14), we know that the mixed-type reverse order law

B{1, 3, 4}A{1, 3, 4} ⊆ (AB){1, 3}

holds if and only if the equation

B∗A∗ = B∗A∗ABB(1,3,4)A(1,3,4) (4.44)

holds for any A(1,3,4) ∈ A{1, 3, 4} and B(1,3,4) ∈ B{1, 3, 4},which is equivalent to the following rank identity:

max
A(1,3,4), B(1,3,4)

r(B∗A∗ − B∗A∗ABB(1,3,4)A(1,3,4)) = 0. (4.45)

Then using the formula (1.11) in Lemma 1.1, we have

max
B(1,3,4)

r(B∗A∗ − B∗A∗ABB(1,3,4)A(1,3,4)) = min
{

r
(

B∗B B∗A(1,3,4)

B∗A∗AB B∗A∗

)
− r(B), r

(
BB∗ A(1,3,4)

B∗A∗ABB∗ B∗A∗

)
− r(B)

}
= min

{
r
(

B∗B B∗A(1,3,4)

B∗A∗AB B∗A∗

)
− r(B), r

(
B A(1,3,4)

B∗A∗AB B∗A∗

)
− r(B)

}
= r

(
B∗B B∗A(1,3,4)

B∗A∗AB B∗A∗

)
− r(B)

= r(B∗A∗ − B∗A∗ABB†A(1,3,4)). (4.46)
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Again using the formula (1.11) in Lemma 1.1, we have

max
A(1,3,4)

r(B∗A∗A − B∗A∗ABB†A(1,3,4))

= min
{

r
(

A∗A A∗

B∗A∗ABB† B∗A∗

)
− r(A), r

(
AA∗ Im

B∗A∗ABB†A∗ B∗A∗

)
− r(A)

}
= min

{
r(B∗A∗ABB† − B∗A∗A), r(B∗A∗ABB†A∗ − B∗A∗AA∗) +m − r(A)

}
. (4.47)

By the formula (1.12) in Lemma 1.1, we have

r(B∗A∗ABB† − B∗A∗A) = r
(

B∗BB∗ B∗

B∗A∗ABB∗ B∗A∗A

)
− r(B) = r

(
B∗

B∗A∗A

)
− r(B) (4.48)

and

r(B∗A∗ABB†A∗ − B∗A∗AA∗) = r
(

B∗BB∗ B∗A∗

B∗A∗ABB∗ B∗A∗AA∗

)
− r(B) = r

(
B∗B B∗A∗

B∗A∗AB B∗A∗AA∗

)
− r(B). (4.49)

Combining (4.46), (4.47), (4.48) with (4.49), we have

max
A(1,3,4), B(1,3,4)

r(B∗A∗ − B∗A∗ABB(1,3,4)A(1,3,4))

= max
A(1,3,4)

r(B∗A∗A − B∗A∗ABB†A(1,3,4))

= min
{

r
(

B∗

B∗A∗A

)
− r(B), r

(
B∗B B∗A∗

B∗A∗AB B∗A∗AA∗

)
+m − r(A) − r(B)

}
. (4.50)

It follows from (4.44), (4.45) and (4.50) that the mixed-type reverse order law B{1, 3, 4}A{1, 3, 4} ⊆ (AB){1, 3}
holds if and only if

min
{

r
(

B∗

B∗A∗A

)
− r(B), r

(
B∗B B∗A∗

B∗A∗AB B∗A∗AA∗

)
+m − r(A) − r(B)

}
= 0. (4.51)

By Lemma 1.2 (1.14) and (1.15), G ∈ A{1, 4} if and only if G∗ ∈ A∗{1, 3}. So from the results obtained in
Lemma 4.1, we can get the necessary and sufficient conditions for the mixed-type reverse order law (1.7),
which are stated below without proofs.

Lemma 4.2 Let A ∈ Cm×n and B ∈ Cn×m. Then B{1, 3, 4}A{1, 3, 4} ⊆ (AB){1, 4} if and only if the following
condition holds:

min
{

r
(

A
ABB∗

)
− r(A), r

(
AA∗ ABB∗A∗

B∗A∗ B∗BB∗A∗

)
+m − r(A) − r(B)

}
= 0.

It is obvious that the reverse order law B{1, 3, 4}A{1, 3, 4} ⊆ (AB){1, 3, 4} holds if and only if the mixed-type
reverse order laws (1.6) and (1.7) hold. Then from Lemma 4.1 and Lemma 4.2, we immediately obtain the
following theorem.

Theorem 4.1 Let A ∈ Cm×n and B ∈ Cn×m. Then B{1, 3, 4}A{1, 3, 4} ⊆ (AB){1, 3, 4} if and only if

min
{

r
(

B∗

B∗A∗A

)
− r(B), r

(
B∗B B∗A∗

B∗A∗AB B∗A∗AA∗

)
+m − r(A) − r(B)

}
= 0,

and

min
{

r
(

A
ABB∗

)
− r(A), r

(
AA∗ ABB∗A∗

B∗A∗ B∗BB∗A∗

)
+m − r(A) − r(B)

}
= 0.
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Example 3. Let

A =

1 0 0
0 1 1
0 1 1

 and B =

1 0 0
1 1 0
1 1 0

 .
It is easy to know that

min
{

r
(

B∗

B∗A∗A

)
− r(B), r

(
B∗B B∗A∗

B∗A∗AB B∗A∗AA∗

)
+m − r(A) − r(B)

}
= min {0, 1} = 0,

and

min
{

r
(

A
ABB∗

)
− r(A), r

(
AA∗ ABB∗A∗

B∗A∗ B∗BB∗A∗

)
+m − r(A) − r(B)

}
= min {0, 1} = 0.

By the definition of {1, 3, 4}-inverse in Lemma 1.3, we have

A{1, 3, 4} = {
1 0 0
0 1

2 − a a
0 a 1

2 − a

 | a ∈ C}, B{1, 3, 4} = {
 1 0 0
−1 1

2
1
2

0 b −b

 | b ∈ C}
and

(AB){1, 3, 4} = {
 1 0 0
−1 1

4
1
4

0 e −e

 | e ∈ C}.
we easily know

B{1, 3, 4}A{1, 3, 4} = {
 1 0 0
−1 1/4 1/4
0 b

2 − 2ab 2ab − b
2

 | a, b ∈ C} ⊆ (AB){1, 3, 4}.
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