Filomat 27:5 (2013), 767–776 DOI 10.2298/FIL1305767D

Consistent in invertibility operators and SVEP

Dragan S. Djordjević^a, Bhagwati P. Duggal^b, Robin E. Harte^c

^aDept of Mathematics, Faculty of Science and Mathematics, University of Niš, Višegradska 33, P.O.Box 224, 18000 Niš, Serbia. ^b8 Redwood Grove, Northfield Avenue, Ealing, London W5 4SZ, United Kingdom. ^cSchool of Mathematics, Trinity College Dublin, Republic of Ireland.

Abstract. If $S(X) \subset B(X)$, where B(X) denotes the algebra of operators on a Banach space X, then $A \in B(X)$ is S(X) consistent if $AB \in S(X) \iff BA \in S(X)$ for every $B \in B(X)$. SVEP is a powerful tool in determining the S(X) consistency of operators A for various choices of the subset S(X).

1. Introduction

Let B(X) denote the algebra of operators (i.e., bounded linear transformations) on a Banach space X, and let $A \in B(X)$. Then the spectra of AB and BA satisfy the equality $\sigma(AB) \setminus \{0\} = \sigma(BA) \setminus \{0\}$ for every $B \in B(X)$. This equality extends to a large number of the "more distinguished parts of the spectrum", such as the point spectrum σ_p , the approximate point spectrum σ_a , the Fredholm spectrum σ_e (etc.) [3, 4, 7]. Simple examples, such as U^*U and UU^* where U is the forward unilateral shift, show that the equality can not be extended to include the point 0, and this gives rise to the question of finding conditions, necessary and/or sufficient, under which this equality extends to $\sigma_x(AB) = \sigma_x(BA)$ where σ_x is σ or a distinguished part thereof. Let S(X) denote a subset of B(X). An operator $A \in B(X)$ is said to be S(X) consistent, or consistent in S(X), if $AB \in S(X) \iff BA \in S(X)$ for every $B \in B(X)$. In general one considers sets S(X) determined by a regularity: thus S(X) may consist of invertible (left, right or both) or Fredholm (upper, lower or both), or Browder, or Weyl (etc.) elements in B(X). A study of such a "consistency in regularity", extending the work of Gong and Han [6], has been carried out by Djordjević [5].

Recall that $A \in B(X)$ has SVEP, the single-valued extension property, at a point $\lambda_0 \in C$ if for every open neighbourhood \mathcal{U}_{λ_0} of λ_0 the only analytic function $f : \mathcal{U}_{\lambda_0} \longrightarrow X$ satisfying $(A - \lambda)f(\lambda) = 0$ for every $\lambda \in \mathcal{U}_{\lambda_0}$ is the function $f \equiv 0$. Evidently, A has SVEP at every point of the resolvent set $\rho(A)$ of A.

SVEP provides a simple sufficient condition for determining S(X) consistent operators $A \in B(X)$ for a variety of choices of the subset S(X) of B(X): Sufficient for A to be consistent in invertibility is that either both A and A^* have SVEP, or neither of A and A^* has SVEP, at 0, and sufficient for A to be Fredholm (or Browder, or Weyl) consistent is that either both A and A^* have essential SVEP, or neither of A and A^* has essential SVEP, at 0 (the notion of essential SVEP is defined in the following section). It follows in particular that if an operator $A \in B(X)$ is either decomposable or an invertible isometry or a Riesz or a

Research supported by the Ministry of Education, Science and Technological Development, Republic of Serbia, grant no. 174007 Email addresses: dragan@pmf.ni.ac.rs (Dragan S. Djordjević), bpduggal@yahoo.co.uk (Bhagwati P. Duggal),

²⁰¹⁰ Mathematics Subject Classification. Primary 47B20, 47A10, 47A11

Keywords. Banach space, consistent in invertibility, semi-Fredholm consistent, Browder consistent, Weyl consistent, the single valued extension property.

Received: 20 December 2012; Accepted: 25 February 2013

Communicated by Dragana S. Cvetković-Ilić

rharte@maths.tcd.ie (Robin E. Harte)

meromorphic operator (more generally, an operator with countable spectrum or such that its spectrum has empty interior) or a Fredholm operator with index 0 or a Drazin invertible operator, then *A* is consistent in invertibility. We prove in the following that: (*i*) a necessary and sufficient condition for *A* to be inconsistent in invertibility is that either *A* is left invertible and A^* does not have SVEP at 0 or *A* is right invertible and *A* does not have SVEP at 0 (equivalently, if and only if *A* is not invertible and *A* is either left or right invertible); (*ii*) *A* is consistent in left invertible for some $B \in B(X)$ then B^* has SVEP at 0" are satisfied; ; (*iii*) a necessary and sufficient condition for *A* to be Fredholm (or Browder, or Weyl) inconsistent is that *A* is not essentially invertible and *A* is either left or right essential invertible. Extending these ideas to upper

triangular operator matrices $M_C = \begin{pmatrix} A & C \\ 0 & B \end{pmatrix} \in B(X \oplus X)$ it is proved that the consistency spectrum σ_{CI} satisfies $\sigma_{CI}(M_C) \cup \{\sigma_{CI}(A) \cap \sigma_{CI}(B)\} \cup \{\sigma_{CI}(A) \setminus \sigma_{CI}(B) \cup \sigma_{CI}(B)\} \cup \sigma_{CI}(A)\} = \sigma_{CI}(A) \cup \sigma_{CI}(B).$

2. Results

We say that the operator $A \in B(X)$ has SVEP if it has SVEP everywhere. Recall, [1, Corollary 2.24], that a necessary and sufficient condition for a surjective operator $A \in B(X)$ to be invertible is that A has SVEP at 0. Let $\Xi(A) = \{\lambda \in \sigma(A) : A \text{ does not have SVEP at } \lambda\}$, and let $\Xi(A)^C = \sigma(A) \setminus \Xi(A)$. Let Inv, Inv¹ and Inv^r denote, respectively, the class of $A \in B(X)$ such that A is invertible, A is left invertible and A is right invertible.

If $S(X) \subset B(X)$ consists of the invertibles and $A \in B(X)$ is S(X) consistent, then we say that A is a "consistent in invertibility operator", or a *CI*-operator. SVEP provides a simple sufficient condition for an operator to be a *CI*-operator.

Theorem 2.1. (*i*) Sufficient for an operator $A \in B(X)$ to be a CI-operator is that either $0 \in \Xi(A) \cap \Xi(A^*)$ or $0 \in \Xi(A)^C \cap \Xi(A^*)^C$.

(ii) Necessary and sufficient for $A \in B(X)$ to be inconsistent in invertibility is that one of the following (exclusive) conditions holds:

(a) $A \in Inv^{l} \cap 0 \in \Xi(A^{*})$; (b) $A \in Inv^{r} \cap 0 \in \Xi(A)$.

Proof. (*i*). Suppose that both *A* and *A*^{*} have SVEP. Start by assuming that *AB* is invertible for some $B \in B(X)$. Then there exists an operator $S \in B(X)$ such that SAB = I = ABS. The equality ABS = I implies that *A* is right invertible, hence surjective. Since *A* has SVEP at 0, *A* is invertible, and then $ABS = I \implies BSA = I$ which implies that *B* is surjective. Already we have from SAB = I that *B* is left invertible. Hence *B* is also invertible. But then *BA* is invertible, i.e., *AB* invertible implies *BA* invertible. Now let *BA* be invertible. Then there exists an operator $T \in B(X)$ such that TBA = I = BAT. Evidently, TBA = I implies *A* is left invertible. Hence *A*^{*} is surjective and has SVEP at 0, and so is invertible. Consequently, $TBA = I \implies ATB = I \implies B$ is left invertible and $BAT = I \implies B$ is surjective, consequently invertible. Hence *BA* invertible implies *AB* invertible.

Suppose next that neither *A* nor A^* has SVEP at 0. Then *A* is neither left nor right invertible. This implies that there can not exist operators *S* and *T* in *B*(*X*) satisfying either of the equalities ABS = I and TBA = I. Hence neither of *AB* and *BA* is invertible in this case.

(*ii*) Evidently, $A \notin CI$ if and only if there exists a $B \in B(X)$ such that $AB \in Inv$ (resp., $BA \in Inv$) and $BA \notin Inv$ (resp., $AB \notin Inv$), and this happens if and only if there exists a $B \in B(X)$ such that $A \in Inv^r$, $B \in Inv^1$, $A \notin Inv^1$ and $B \notin Inv^r$ (resp., $A \in Inv^1$, $B \in Inv^r$, $A \notin Inv^r$ and $B \notin Inv^1$). Observe that if $A \notin Inv$ and $A \in Inv^r$ (resp., $A \in Inv^1$), then the right (resp., left) inverse A_r (resp., A_l) of A is the required operator B in the implication above; observe also that if there exists a B satisfying the implication above, then $A \in Inv^1$ or $A \in Inv^r$ and $A \notin Inv$ (for the reason that if $A \in Inv$, then B is invertible and $AB \in Inv \iff BA \in Inv$). Hence $A \notin CI \iff A \notin Inv, A \in Inv^1$ or $A \in Inv^r$. (Contra positively, $A \in CI \iff A \in Inv$ or $A \notin Inv \cap Inv^1$.) Since

 $A \in \text{Inv}$ if and only if $A \in \text{Inv}^1$ and $0 \in \Xi(A^*)^C$, or $A \in \text{Inv}^r$ and $0 \in \Xi(A)^C$, we have now that the following two way implications hold:

$$A \notin CI \iff A \notin \operatorname{Inv}, A \in \operatorname{Inv}^{\mathrm{l}} \text{ or } A \in \operatorname{Inv}^{\mathrm{r}} \text{ (but not both)} \\ \iff A \in \operatorname{Inv}^{\mathrm{l}} \cap 0 \in \Xi(A^*) \text{ or } A \in \operatorname{Inv}^{\mathrm{r}} \cap 0 \in \Xi(A).$$

This completes the proof. \Box

Remark 2.2. (i) The condition of Theorem 2.1(i) is not necessary. To see this, let $A \in B(X)$ be a bounded below operator which is not left invertible. (Thus, A(X) is not complemented in X.) Then A has SVEP at 0 and A^* does not have SVEP at 0 (for if A^* were to have SVEP at 0 then the surjective operator A^* would be invertible). Evidently, both AB and BA are not invertible for any $B \in B(X)$. Hence $A \in CI$. Since a bounded below Hilbert space operator is left invertible, this argument fails for Hilbert space operators A. (ii) Note that $A \in Inv^1 \cap 0 \in \Xi(A^*) \iff A \in Inv^1$ and $A^{*-1}(0) \neq \{0\}$ and $A \in Inv^r \cap 0 \in \Xi(A) \iff A \in Inv^r$

(ii) Note that $A \in Inv^{1} \cap 0 \in \Xi(A^{*}) \iff A \in Inv^{1}$ and $A^{*-1}(0) \neq \{0\}$ and $A \in Inv^{1} \cap 0 \in \Xi(A) \iff A \in Inv^{1}$ and $A^{-1}(0) \neq \{0\}$. A more user friendly version of the necessary and sufficient condition of Theorem 2.1(ii), which we shall have occasion to use below, is the following: $A \notin CI \iff A \in Inv^{1} \setminus Inv$ or $A \in Inv^{r} \setminus Inv$.

It is immediate from the above that the following classes of operators are *CI*-operators: Operators $A \in B(X)$ such that $\operatorname{int}\sigma(A) = \emptyset$, normal operators $A \in B(X)$, decomposable operators in B(X), isometries $A \in B(X)$ such that A^* has SVEP (this forces $||Ax|| = ||x|| = ||A^{-1}x||$ for all $x \in X$ and $||A|| = ||A^{-1}||$), Riesz operators and meromorphic operators in B(X). Recall that $A \in B(X)$ has a generalized Drazin inverse if and only if $0 \in \operatorname{iso}\sigma(A)$. Thus generalized Drazin invertible operators are *CI*-operators. An operator $A \in B(X)$ is *semi-regular* if A(X) is closed and $A^{-1}(0) \subseteq A^m(X)$ for all positive integers m [1, P7]. For a Banach space operator. A such that 0 is an isolated point of $\sigma(A)$, both A and A^* have SVEP at 0; hence such an A is a *CI*-operator. Recall, [1, Theorem 2.49], that a semi-regular operator $A \in B(X)$ has SVEP at 0 (resp., A^* has SVEP at 0) if and only if it is bounded below (resp., surjective), and then $0 \in \operatorname{iso}\sigma_a(A)$ (resp., $0 \in \operatorname{iso}\sigma_a(A^*)$). Thus a semi-regular operators $A \in B(\mathcal{H})$, $AA^* \leq A^*A$ (resp., $(A - \lambda)(A - \lambda)^* \leq M(A - \lambda)^*(A - \lambda)$ for all complex λ and some $M \ge 1$), have SVEP [1, p 170]; hence a hyponormal (resp., M-hyponormal) operator if and only if either A^* has SVEP at 0, or, if A^* does not have SVEP at 0 then A is not bounded below (*cf.* [6, 2.1, 2.2 and 2.3]).

Not every Fredholm operator is a *CI*-operator: consider the unilateral shift above. However, Fredholm operators *A* such that ind(A) = 0 are *CI*-operators. (Such an operator is referred to as being Weyl at 0.)

Proposition 2.3. If an operator $A \in B(X)$ is Fredholm and ind(A) = 0, then A is CI.

Proof. We have two possibilities: either *A* has SVEP at 0 or *A* does not have SVEP at 0. If *A* has SVEP at 0, then *A*^{*} has SVEP at 0 (since *A* Weyl and *A* has SVEP implies $0 \in iso\sigma(A)$), which implies that *A* is *CI*. If, instead, *A* does not have SVEP at 0, then *BA* is not left invertible, hence not invertible, for every $B \in B(X)$. Again, if *AB* is right invertible for some $B \in B(X)$, then *A*^{*} has SVEP at 0 (which implies $0 \in iso\sigma(A)$), which in turn) implies *A* has SVEP at 0. Thus *AB* is not right invertible, hence not invertible. \Box

Remark 2.4. If $A \in \phi$ and ind(A) = 0, then either $dimA^{-1}(0)(= dim(X \setminus AX) = 0 \text{ or } dimA^{-1}(0) > 0$. If $dimA^{-1}(0) = 0$, then $A \in Inv$, and if $dimA^{-1}(0) > 0$, then $A \notin Inv^{1} \cap Inv^{r}$. This, by Theorem 2.1(ii) (see Remark 2.2(ii)), provides an alternative proof of Proposition 2.3.

The following corollary generalizes a result of Gong and Han [6, 2.5] to Banach spaces.

Corollary 2.5. If $A \in B(X)$ is invertible, then A + K is CI for every compact operator $K \in B(X)$.

Proof. A + K is Weyl. \Box

The following proposition extends our observation on Riesz operators being *CI* to perturbation of Riesz operators by commuting algebraic operators. Recall that $A \in B(X)$ is algebraic if there exists a non-constant polynomial p(.) such that p(A) = 0.

769

Proposition 2.6. *If* $A \in B(X)$ *is an algebraic operator which commutes with a Riesz operator* $R \in B(X)$ *, then* A + R *is CI.*

Proof. We prove that A + R and $A^* + R^*$ have SVEP. The operator A being algebraic, $\sigma(A) = \{\lambda_1, ..., \lambda_n\}$ for some integer $n \ge 1$, and

$$A = \bigoplus_{i=1}^{n} A_{i} = \bigoplus_{i=1}^{n} A|_{H_{0}(A-\lambda_{i})} = \bigoplus_{i=1}^{n} A|_{(A-\lambda_{i})^{-t_{i}}(0)}$$

for some integers $t_i \ge 1$. (Here $H_0(A) = \{x \in X : \lim_{m \to \infty} ||A^m x||^{\frac{1}{m}} = 0\}$ is the quasi-nilpotent part of *A*.) The commutativity of *A* and *R* implies that

$$R = \bigoplus_{i=1}^n R_i = \bigoplus_{i=1}^n R|_{H_0(A-\lambda_i)},$$

where A_i commutes with R_i for all $1 \le i \le n$ and each R_i is a Riesz operator (implies both R_i and R_i^* have SVEP for all $1 \le i \le n$). Let $d_{CD} \in B(B(X))$ denote the generalized derivation $d_{CD}(X) = CX - XD$. Set $R_i + A_i - \lambda_i = T_i$. Observe that the operator $A_i - \lambda_i$ is t_i -nilpotent. Hence

$$d_{T_iR_i}^m(I) = d_{R_iT_i}^m(I) = 0$$

for all $m \ge t_i$, which implies that T_i and R_i are quasinilpotent equivalent operators (see [8, Page 253]). Hence T_i has SVEP if and only R_i has SVEP [8, Proposition 3.4.11]. Thus $R_i + A_i$ has SVEP. Since the same argument works with T_i and R_i replaced by T_i^* and R_i^* , $R_i^* + A_i^*$ also has SVEP. But then $A + R = \bigoplus_{i=1}^n A_i + R_i$ and $A^* + R^* = \bigoplus_{i=1}^n A_i^* + R_i^*$ have SVEP. \Box

The "consistent in invertibility spectrum of A" is the set

$$\sigma_{CI}(A) = \{\lambda \in \sigma(A) : A - \lambda \notin CI\}.$$

Evidently, both *A* and *A*^{*} have SVEP at points in the boundary $\partial \sigma(A)$ of the spectrum of *A*. Hence $\sigma_{CI}(A) \subseteq int\sigma(A)$ is an open subset of $\sigma(A)$ which satisfies $\sigma_{CI}(A) \subseteq \sigma_w(A) = \{\lambda \in \sigma(A) : A - \lambda \text{ is not Weyl}\}$ (Proposition 2.3). Furthermore, if we let $S_{\ell}(A) = \{\lambda \in \sigma(A) : A - \lambda \text{ is left invertible but } A^* \text{ does not have SVEP at } \lambda\}$ and $S_r(A) = \{\lambda \in \sigma(A) : A - \lambda \text{ is right invertible but } A \text{ does not have SVEP at } \lambda\}$, then it follows from Theorem 2.1 and the implications

 $\lambda \in \sigma_{Cl}(A) \iff \text{ either } A - \lambda \text{ is left invertible but not invertible}$ or $A - \lambda$ is right invertible but not invertible \implies either $A - \lambda$ is left invertible but A^* does not have SVEP at λ or $A - \lambda$ is right invertible but A does not have SVEP at λ

that

$$\sigma_{CI}(A) = S_{\ell}(A) \cup S_{r}(A) \subseteq \{\lambda \in \sigma(A) : (\Xi(A) \cup \Xi(A^{*})) \setminus (\Xi(A) \cap \Xi(A^{*}))\}$$
$$= \{\lambda \in \sigma(A) : (\Xi(A) \cap \Xi(A^{*})^{C}) \cup (\Xi(A)^{C} \cap \Xi(A^{*}))\}.$$

Recall, [1, Theorem 2.39], that if $f : \mathcal{U} \to C$ is an analytic function from an open neighbourhood \mathcal{U} of $\sigma(A)$ such that f is non-constant on connected components of \mathcal{U} , $f \in H_c(\sigma(A))$, then f(A) has SVEP at $\lambda \in C$ if and only if A has SVEP at every $\mu \in \sigma(A)$ for which $f(\mu) = \lambda$. Furthermore, $\sigma_{CI}(f(A)) = S_\ell(f(A)) \cup S_r(f(A))$ (exclusive or) $\subseteq f(S_\ell(A)) \cup f(S_r(A)) = f(S_\ell(A) \cup S_r(A)) = f(\sigma_{CI}(A))$. Thus, $\sigma_{CI}(f(A)) \subseteq f(\sigma_{CI}(A))$ for every $f \in H_c(\sigma(A))$. The reverse inclusion fails, as follows upon considering a polynomial p(.) and an operator Asuch that $0 \in p(\sigma_{CI}(A))$ and $0 \notin \sigma_{CI}(p(A))$ [6]. If $A = A_1 \oplus A_2 \in B(X \oplus X)$, then A has SVEP at λ if and only if A_1 and A_2 have SVEP at λ , and A is left (resp., right) invertible if and only if A_1 and A_2 are left (resp., right) invertible. Hence

$$\sigma_{CI}(A_1 \oplus A_2) = \sigma_{CI}(A) = S_{\ell}(A) \cup S_r(A) \subseteq \sigma_{CI}(A_1) \cup \sigma_{CI}(A_2).$$

The inclusion can be proper: consider $A = U \oplus U^* \in B(\ell^2 \oplus \ell^2)$, where *U* is the forward unilateral shift, when it is seen that $\emptyset = \sigma_{CI}(A) \subset \sigma_{CI}(U) \cup \sigma_{CI}(U^*) =$ the interior of the unit disc D.

The Weyl essential approximate point spectrum $\sigma_{aw}(A)$ of A,

$$\sigma_{aw}(A) = \{\lambda \in \sigma(A) : A - \lambda \text{ is not upper semi Fredholm or } \operatorname{ind}(A - \lambda) > 0\},\$$

is a subset of (the Weyl spectrum $\sigma_w(A)$ and) the Browder essential approximate point spectrum

 $\sigma_{ab}(A) = \{\lambda \in \sigma(A) : A - \lambda \text{ is not upper semi Fredholm or } \operatorname{asc}(A - \lambda) = \infty\}$

of A.

Theorem 2.7. $\sigma_{ab}(A) \cap \sigma_{CI}(A) \subseteq \sigma_{aw}(A) \subseteq \sigma_{ab}(A)$ for every $A \in B(X)$.

Proof. If $\lambda \notin \sigma_{aw}(A)$, then $A - \lambda$ is upper semi Fredholm and $ind(A - \lambda) \leq 0$. Here either A^* has SVEP at λ or A^* does not have SVEP at λ . If A^* has SVEP at λ , then $ind(A - \lambda) \geq 0$. This forces $A - \lambda$ to be Weyl and such that both A and A^* have SVEP at λ . Hence $\lambda \notin \sigma_{CI}(A)$ in this case. If, instead, A^* does not have SVEP at λ , then either A has SVEP at λ or A does not have SVEP at λ . Evidently, if both A and A^* do not have SVEP at λ , then $\lambda \notin \sigma_{CI}(A)$. If, on the other hand, A has SVEP (but A^* does not have SVEP) at λ , then $A - \lambda$ is upper semi Fredholm with $asc(A - \lambda) < \infty$, i.e., $\lambda \notin \sigma_{ab}(A)$. Thus $\lambda \notin \sigma_{aw}(A) \Longrightarrow \lambda \notin (\sigma_{ab}(A) \cap \sigma_{CI}(A))$. The remaining inclusion being well known [1], the proof is complete. \Box

Theorem 2.7 implies that if $\sigma_{ab}(A) \subseteq \sigma_{CI}(A)$ for an operator $A \in B(X)$, then $\sigma_{ab}(A) = \sigma_{aw}(A)$: operators A satisfying the equality $\sigma_{ab}(A) = \sigma_{aw}(A)$ have been described as satisfying *a*-Browder's theorem in the literature [1].

Left, right multiplication. Let L_A and $R_A \in B(B(X))$ denote the operators $L_A(X) = AX$ and $R_A(X) = XA$, respectively. SVEP transfers both ways from A to L_A and R_{A^*} . Recall that $\sigma(L_A) = \sigma(R_A) = \sigma(A)$.

Lemma 2.8. For an operator $A \in B(X)$, A (resp., A^*) has SVEP at μ if and only if L_A (resp., R_A) has SVEP at μ .

Proof. We start by considering the left multiplication operator L_A . Suppose that A has SVEP at μ . Let \mathcal{U} be an open neighbourhood of μ , and let $F(\lambda) : \mathcal{U} \longrightarrow B(X)$ be an analytic function such that $(L_A - \lambda)F(\lambda) = L_{A-\lambda}F(\lambda) = 0$ for all $\lambda \in \mathcal{U}$. The function $F(\lambda)x : \mathcal{U} \longrightarrow X$ is analytic for every $x \in X$ and satisfies $(A - \lambda)F(\lambda)x = 0$. This, if A has SVEP at μ , implies that $F(\lambda)x = 0$ for all $\lambda \in \mathcal{U}$; since this is true for all x, we must have $F(\lambda) \equiv 0$ in \mathcal{U} . Conversely, assume that L_A has SVEP at μ . For $\varphi \in X^*$ and $y \in X$, define the operator $\varphi \otimes y \in B(X)$ by setting $(\varphi \otimes y)(x) = \varphi(x)y$ for all $x \in X$. Let $f; \mathcal{U} \longrightarrow X$, \mathcal{U} as above, be an analytic function such that $(A - \lambda)f(\lambda) = 0$ for all $\lambda \in \mathcal{U}$. Then

$$(L_A - \lambda)(\varphi \otimes f(\lambda) = \varphi \otimes (A - \lambda)f(\lambda) = 0,$$

which (if L_A has SVEP at μ) implies that $\varphi \otimes f(\lambda) = 0$ on \mathcal{U} for all $\varphi \in X^*$. Hence $f(\lambda) \equiv 0$ on \mathcal{U} , i.e., A has SVEP at μ .

For the right multiplication operator R_A , we argue as follows. Clearly, $R_A - \mu = R_{A-\mu}$. Let $J : B(X) \to B(X^*)$ denote the isometric isomorphism defined by setting $J(T) = T^*$ for all $T \in B(X)$. Then J establishes the similarity $JR_{A-\mu} = L_{A^*-\mu I^*}J$. Since similarities preserve SVEP, $R_{A-\mu}$ has SVEP at 0 if and only if $L_{A^*-\mu I^*}$ has SVEP at 0, if and only if A^* has SVEP at μ . \Box

It is easily seen that L_A is left (resp., right) invertible if and only if A is left (resp., right) invertible, and R_A is left (rep., right) invertible if and only if A^* is left (resp., right) invertible. Evidently, $\sigma_{CI}(A) = \sigma_{CI}(A^*)$. Hence:

Theorem 2.9.
$$\sigma_{CI}(A) = \sigma_{CI}(L_A) = \sigma_{CI}(R_A)$$
 for every $A \in B(X)$.

Proof. In view of Lemma 2.8 and the observations above,

$$\sigma_{CI}(L_A) = S_l(L_A) \cup S_r(A) = S_l(A) \cup S_r(A) = \sigma_{CI}(A),$$

and

$$\sigma_{CI}(R_A) = S_l(R_A) \cup S_r(R_A) = S_l(A^*) \cup S_r(A^*) = \sigma_{CI}(A^*).$$

This completes the proof. \Box

Fredholm consistent operators. We say that an operator $A \in B(X)$ is Fredholm consistent, or ϕ consistent, if for every $B \in B(X)$ either AB and BA are both Fredholm or neither of AB and BA is Fredholm. Fredholm consistent operators have been considered in [5]. Here our objective is to provide a characterization of Fredholm consistent operators which is similar in spirit to our characterization of consistent
in invertibility operators. We start by introducing a construction, known as the Sadovskii/Buoni, Harte,
Wickstead construction [9, Page 159], which leads to a representation of the Calkin algebra $B(X)/\mathcal{K}(X)$ as an
algebra of operators on a suitable Banach space. Let $\ell^{\infty}(X)$ denote the Banach space of all bounded sequences $x = (x_n)_{n=1}^{\infty}$ of elements of X endowed with the norm $||x||_{\infty} := \sup_{n \in \mathbb{N}} ||x_n||$, and write T_{∞} , $T_{\infty}x := (Tx_n)_{n=1}^{\infty}$ for all $x = (x_n)_{n=1}^{\infty}$, for the operator induced by T on $\ell^{\infty}(X)$. The set m(X) of all precompact sequences of
elements of X is a closed subspace of $\ell^{\infty}(X)$ which is invariant for T_{∞} . Let $X_q := \ell^{\infty}X)/m(X)$, and denote
by T_q the operator T_{∞} on X_q . The mapping $T \mapsto T_q$ is then a unital homomorphism from $B(X) \to B(X_q)$ with kernel $\mathcal{K}(X)$ which induces a norm decreasing monomorphism from $B(X)/\mathcal{K}(X)$ to $B(X_q)$ with the
following properties (see [9, Section 17] for details):

(*i*) *T* is upper semi-Fredholm, $T \in \phi_+$, if and only if T_q is injective, if and only if T_q is bounded below;

(*ii*) *T* is lower semi-Fredholm, $T \in \phi_{-}$, if and only if T_q is surjective;

(*iii*) *T* is Fredholm, $T \in \phi$, if and only if T_q is invertible.

The definition of SVEP obviously extends to the algebra $B(X_q)$: we say in the following that $T \in B(X)$ has *essential SVEP* at a point if T_q has SVEP at the point. Observe that SVEP for T at a point neither implies, nor is implied, by essential SVEP for T at the point [2, Page 291].

Call an operator essentially invertible (essentially left, respectively essentially right, invertible) if $A_q \in \text{Inv}(A_q \in \text{Inv}^1, \text{resp.} A_q \in \text{Inv}^r)$.

Theorem 2.10. Let $A \in B(X)$.

(*i*) Sufficient condition for A to be ϕ -consistent is that either both A and A^{*} have essential SVEP, or neither A nor A^{*} has essential SVEP, at 0.

(ii) Necessary and sufficient for A to be ϕ -inconsistent is that either A is right essentially invertible and $\dim(A^{-1}(0)) = \infty$ or A is left essentially invertible and $\dim(A^{*-1}(0)) = \infty$.

Proof. The proof of the theorem is similar to that of Theorem 2.1.

(*i*) If $AB \in \phi(X)$, then $(AB)_q = A_qB_q$ is invertible. This implies that if A_q has SVEP at 0, then A_q and B_q are invertible. In turn this implies that $B_qA_q = (BA)_q$ is invertible; hence $BA \in \phi(X)$. Similarly, if $BA \in \phi(X)$ and A_q^* has SVEP at 0, then $AB \in \phi(X)$. Observe that if neither of A_q and A_q^* has SVEP at 0, then A_q is neither left nor right invertible. Consequently, neither of A_qB_q and B_qA_q is invertible; hence neither of AB and BA is in $\phi(X)$.

(*ii*) Evidently, *A* is not ϕ -consistent if and only if there exists $B \in B(X)$ such that $AB \in \phi(X)$ (resp., $BA \in \phi(X)$) and $BA \notin \phi(X)$ (resp., $AB \notin \phi(X)$), i.e., if and only if there exists $B_q \in B(X_q)$ such that $A_qB_q \in Inv$ (resp., $B_qA_q \in Inv$) and $B_qA_q \notin Inv$ (resp., $A_qB_q \notin Inv$); equivalently, *A* is not ϕ -consistent if and only if $A_q \notin CI$. Hence the following two way implications hold:

$$\begin{array}{lll} A \text{ is not } \phi - \text{consistent} & \longleftrightarrow & A_q \in \operatorname{Inv}^1 \setminus \operatorname{Inv} \text{ or } A_q \in \operatorname{Inv}^r \setminus \operatorname{Inv} \\ & \longleftrightarrow & A \text{ is left essentially invertible and } \dim(A^{*-1}(0)) = \infty, \\ & \text{or } & A \text{ is right essentially invertible and } \dim(A^{-1}(0)) = \infty. \end{array}$$

This completes the proof. \Box

Remark 2.11. (i) Taking the contrapositive of

A is not ϕ – consistent \iff $A_q \in \text{Inv}^1 \setminus \text{Inv}$ or $A_q \in \text{Inv}^r \setminus \text{Inv}$

we have: *A* is ϕ -consistent if and only if either *A* is essentially invertible (equivalently, Fredholm), or, *A* is neither left nor right essentially invertible.

(ii) If we let $\sigma_{\phi}(A) = \{\lambda \in \sigma(A); A - \lambda \text{ is not } \phi\text{-consistent}\}$, then it follows from the argument above that $\sigma_{\phi}(A) = \sigma_{CI}(A_q)$. Hence $\sigma_{\phi}(A) \subseteq \{\lambda \in \sigma(A_q) : (\Xi(A_q) \cup \Xi(A_q^*)) \setminus (\Xi(A_q) \cap \Xi(A_q^*))\} = \{\lambda \in \sigma(A_q) : (\Xi(A_q) \cap \Xi(A_q^*)^C) \cup (\Xi(A_q)^C \cap \Xi(A_q^*))\}$.

 $A \in B(X)$ is Browder if $A \in \Phi$ and $asc(A) = dsc(A) < \infty$; *A* is said to be Browder consistent, denoted $A \in (BC)$, if for every $B \in B(X)$ either both of *AB* and *BA* are Browder or neither of *AB* and *BA* is Browder. Fredholm consistency determines Browder coonsistency.

Theorem 2.12. $A \in (BC) \iff A \text{ is } \phi \text{-consistent.}$

Proof. Start by recalling that an operator $T \in B(X)$ such that $\operatorname{asc}(T) = \operatorname{dsc}(T) < \infty$ is said to be Drazin invertible, and that if *AB* is Drazin invertible then 0 is at worst in the resolvent of *BA* (i.e., either 0 is in the resolvent of *BA* or *BA* is Drazin invertible) [10, Theorem 3]. Thus $\operatorname{asc}(AB) = \operatorname{dsc}(AB) < \infty \iff \operatorname{asc}(BA) = \operatorname{dsc}(BA) < \infty$. The necessity is now obvious. To prove the sufficiency, observe that if neither of *AB* and *BA* is Fredholm for some *B*, then $A \in (BC)$; if both *AB* and *BA* are Fredholm, then (since by the argument above *AB* has finite ascent and descent if and only if *BA* has finite ascent and descent) again $A \in (BC)$.

 $A \in B(X)$ is *Weyl consistent*, $A \in (WC)$, if *AB* and *BA* are either both Weyl or neither is Weyl for every $B \in B(X)$. Observe that if *AB* and *BA* are Fredholm for all *B*, then $A, B \in \phi$ and ind(AB) = ind(BA); hence $A \in (WC) \iff A$ is ϕ -consistent. A more revealing result is the following.

Theorem 2.13. A sufficient condition for an operator $A \in B(X)$ to be (WC) is that $\alpha(A) = \infty \iff \beta(A) = \infty$. Furthermore, if $X = \mathcal{H}$ is a Hilbert space and $A(\mathcal{H})$ is closed, then this condition is necessary too.

Proof. Start by observing that if A(X) is not closed, then neither of A, AB and BA is Weyl (thus $A \in (WC)$); hence we may assume that A(X) is closed. We have two possibilities: either A(X) = X or $A(X) \subset X$. Let A(X) = X. If A has SVEP (at 0), then A is invertible, hence $A \in (WC)$. Assume therefore that A does not have SVEP. Since $\beta(A) = 0$ and A^* has SVEP, $\alpha(A) > \beta(A) = 0$. The hypothesis $\alpha(A) = \infty \iff \beta(A) = \infty$ implies that $\alpha(A) < \infty$; hence A is Fredholm, which then forces AB and BA to be either Weyl or non-Weyl together. Hence $A \in (WC)$ in this case also. Assume now that $A(X) \neq X$. Since $\alpha(A) = \infty \iff \beta(A) = \infty$, $A \in (WC)$ if either of $\alpha(A)$ or $\beta(A)$ is infinite; if neither of $\alpha(A)$ and $\beta(A)$ is infinite, then A is Fredholm, hence once again in (WC). This completes the proof of the sufficiency. To see the necessity, let $X = \mathcal{H}$ be a Hilbert space and let $A(\mathcal{H}) = \overline{A(\mathcal{H})}$. If $\alpha(A) = \infty$ and $\beta(A) < \infty$ (the hypothesis $A(\mathcal{H})$ is closed is redundant in this case), then A is lower semi-Fredholm (but not Fredholm). Evidently, the operator A^*A is Weyl but the operator AA^* is not Weyl (not even Fredholm). Again, if $\alpha(A) < \infty$ and $\beta(A) = \infty$, then AA^* is Weyl but A^*A is not Weyl. Thus in either case $A \notin (WC)$. \Box

The inclusion $\sigma_{CI}(A) \subseteq \sigma_{aw}(A)$ fails. For example, if $A \in B(\mathcal{H})$ is the forward unilateral shift, then $0 \notin \sigma_{aw}(A)$ and $0 \in \sigma_{CI}(A)$. Observe that the forward unilateral shift has SVEP: if A does not have SVEP on $\sigma(A) \setminus \sigma_{aw}(A)$, then the inclusion does hold.

Theorem 2.14. If $\sigma(A) \setminus \sigma_{aw}(A) \subseteq \Xi(A)$ for some $A \in B(X)$, then $\sigma_{CI}(A) \subseteq \sigma_{aw}(A)$.

Proof. Take a point $\lambda \in \sigma(A)$ such that $\lambda \notin \sigma_{aw}(A)$. Then $\lambda \in \phi_+(A)$ and $ind(A - \lambda) \leq 0$. We have two cases: either A^* has SVEP at λ or A^* does not have SVEP at λ . The first of these cases is not possible: if A^* has SVEP at λ , then $\lambda \in \phi(A)$, $ind(A - \lambda) = 0$ and A^* has SVEP at λ , which implies that (0 is an isolated point of the spectrum of A, and so) A has SVEP at λ – a contradiction. If A^* does not have SVEP at λ , then neither of A and A^* has SVEP at λ , which by Theorem 2.1 implies that $\lambda \notin \sigma_{CI}(A)$. Hence $\sigma_{CI}(A) \subseteq \sigma_{aw}(A)$.

Consistent in left (resp., right) invertibility, *CLI* (**resp.,** *CRI*), **operators.** $A \in B(X)$ is a *CLI* (resp., *CRI*) operator if, for every $B \in B(X)$, either both *AB* and *BA* are left (resp., right) invertible or neither of them is left (resp., right) invertible. Choosing B = I, the left invertibility of *A* is a necessary condition for *AB* and *BA* to be left invertible and $B = A^*$, we see that A^* has SVEP is a necessary condition for *AB* and *BA* to be left invertible for all $B \in B(X)$; again, choosing *A* to be left invertible and $B = A^*$, we see that A^* has SVEP is a necessary condition for *AB* and *BA* to be left invertible for all $B \in B(X)$. (Observe that if *A* is left invertible and A^* has SVEP, then *A* is invertible; consequently, $BA = A^*A$ is invertible.) The following theorem, *cf.* [5, Theorem 2.6], proves that these conditions are almost necessary and sufficient.

Theorem 2.15. $A \in B(X)$ is a CLI operator if and only if the following conditions are satisfied:

- (a) $A \notin \text{Inv}^1$ implies $AB \notin \text{Inv}^1$ for every $B \in B(X)$.
- (b) A left invertible implies A^* has SVEP at 0.
- (c) AB left invertible for some $B \in B(X)$ implies B^* has SVEP at 0.

Proof. Sufficiency. Evidently, if (*a*) holds, then *AB* and *BA* are not left invertible for every $B \in B(X)$, and hence *A* is a *CLI* operator. If (*b*) holds, then $A \in Inv$. Hence if $BA \in Inv^1$ for some operator *B*, then $B \in Inv^1$ and this forces *AB* to be left invertible; if, instead, $AB \in Inv^1$, then $B \in Inv^1$, implying thereby that $BA \in Inv^1$. Finally, if (*c*) holds, then $B \in Inv$; hence $A \in Inv^1$, which then forces *BA* to be left invertible.

Necessity. Given an $A \in B(X)$, either $A \notin Inv^1$ or $A \in Inv^1 \cap 0 \in \Xi(A^*)$ or $A \in Inv^1 \cap 0 \notin \Xi(A^*)$. Suppose that $A \notin CLI$. Then $A \in Inv^1 \cap 0 \notin \Xi(A^*)$ is not possible for the reason that then $A \in Inv$ and hence $AB \in Inv^1 \iff BA \in Inv^1$. If $A \notin Inv^1$, then $BA \notin Inv^1$ for all $B \in B(X)$. Hence if $A \notin CLI$, then there exists a $B_0 \in B(X)$ such that $AB_0 \in Inv^1$. Since $0 \notin \Xi(B^*)$ and $AB_0 \in Inv^1$ implies $B_0 \in Inv \implies A \in Inv^1 \cap B_0 \in Inv \implies B_0A \in Inv^1$, if $A \notin CLI$ then $0 \in \Xi(B^*)$ for every B such that $AB \in Inv^1$. If, instead, $A \in Inv^1$, then there exists an operator $B \in B(X)$ such that $B \notin Inv^1$ and $BA \in Inv^1$. Consequently, $A \notin CLI$ only if $AB \notin Inv^1$, and this happens only if $0 \in \Xi(A^*)$.

A duality arguments proves that $A \in CRI$ if and only if the following conditions are satisfied:

- (*a*)' $A \notin \text{Inv}^r$ implies $BA \notin \text{Inv}^r$ for every $B \in B(X)$.
- (b)' A right invertible implies A has SVEP at 0.
- (*c*)' *BA* right invertible for some $B \in B(X)$ implies *B* has SVEP at 0.

For an operator $T \in B(X)$, let $\sigma_{CLI}(T) = \{\lambda \in \sigma(T) : T - \lambda \notin CLI\}$ and $\sigma_{CRI}(T) = \{\lambda \in \sigma(T) : T - \lambda \notin CRI\}$ denote, respectively, the *consistent in left invertibility* and the *consistent in right invertibility* spectrum of T. Evidently, a sufficient condition for $0 \in \sigma_{CLI}(A)$ (resp., $0 \in \sigma_{CRI}(A)$) is that $A \in Inv^{l} \setminus Inv^{r}$ (resp., $A \in Inv^{r} \setminus Inv^{l}$.

Proposition 2.16. $\sigma_{CI}(A) \subseteq \sigma_{CLI}(A) \cup \sigma_{CRI}(A)$ for every $A \in B(X)$. The reverse inclusion fails.

Proof. Start by observing that to prove the inclusion it suffices to prove $0 \in \sigma_{CI}(A) \implies 0 \in \sigma_{CLI}(A) \cup \sigma_{CRI}(A)$. Recall from the proof of Theorem 2.1(ii) that $0 \in \sigma_{CI}(A)$ if and only if $A \in (Inv^1 \cup Inv^r) \setminus Inv = (Inv^1 \setminus Inv) \cup (Inv^r \setminus Inv) \cup (Inv^r \setminus Inv^1)$. Hence $0 \in \sigma_{CLI}(A) \cup \sigma_{CRI}(R)$.

To see that the reverse inclusion fails, let $A = U \oplus U^*$, where $U \in B(\mathcal{H})$ is the forward unilateral shift. Then both *A* and *A*^{*} fail to have SVEP at 0. Hence $0 \notin \sigma_{CI}(A)$ by Theorem 2.1(i). Now let $B_1 = I \oplus U$ and $B_2 = U^* \oplus I$. Then $AB_1 \in \text{Inv}^1$, $B_2A \in \text{Inv}^r$, $B_1A \notin \text{Inv}^1$ and $AB_2 \notin \text{Inv}^r$. Hence $0 \in \sigma_{CLI}(A) \cap \sigma_{CRI}(A)$.

The following corollary is immediate from Theorem 2.15.

Corollary 2.17. $A \in B(X)$ is upper semi–Fredholm consistent, $A \in UFC$, if and only if the following conditions are satisfied:

(a) A not upper semi-Fredholm implies AB not upper semi-Fredhom for every $B \in B(X)$.

- (b) A upper semi-Fredholm implies A_a^* has SVEP at 0.
- (c) AB upper semi-Fredholm for some $B \in B(X)$ implies B_a^* has SVEP at 0.

Similarly, *A* is lower semi-Fredholm consistent, $A \in LFC$, if and only if the following conditions are satisfied:

(a)' *A* not lower semi-Fredholm implies *BA* not lower semi-Fredhom for every $B \in B(X)$.

(b) A lower semi-Fredholm implies A_q has SVEP at 0.

(c) *BA* lower semi-Fredholm for some $B \in B(X)$ implies B_q has SVEP at 0.

3. Application to upper triangular operator matrices.

If $M_C = \begin{pmatrix} A & C \\ 0 & B \end{pmatrix} \in \mathcal{B}(X \oplus X)$ is an upper triangular operator matrix, then the spectra of *A*, *B* and *M*_C satisfy the following well known inclusion

$$\sigma(M_C) \subseteq \sigma(A) \cup \sigma(B).$$

This phenomenon persists for the consistency spectrum. Recall, that the operator $M_0 = A \oplus B \in \mathcal{B}(X \oplus X)$ has SVEP at 0 if and only if A and B have SVEP at 0; M_C (resp., M_C^*) has SVEP at 0 implies A (resp., B^*) has SVEP at 0, and if A, B (resp., A^*, B^*) have SVEP at 0 then M_C (resp., M_C^*) has SVEP at 0. Observe that

$$M_{C} = \begin{pmatrix} I & 0 \\ 0 & B \end{pmatrix} \begin{pmatrix} I & C \\ 0 & I \end{pmatrix} \begin{pmatrix} A & 0 \\ 0 & I \end{pmatrix},$$

where the operator $\begin{pmatrix} I & C \\ 0 & I \end{pmatrix}$ is invertible. Hence, the left (resp., right) invertibility of M_C implies the left (resp., the right) invertibility of *A* (resp., *B*).

The following proposition is immediate from Theorem 2.1(i) and the above.

Proposition 3.1. A sufficient condition for M_C to be a CI-operator is that $0 \in \{\Xi(A) \cap \Xi(B)\} \cap \{\Xi(A^*) \cap \Xi(B^*)\}$, or, $0 \in \{\Xi(A)^C \cap \Xi(B)^C\} \cap \{\Xi(A^*)^C \cap \Xi(B^*)^C\}$.

An equality similar to the well known spectral equality

$$\sigma(M_C) \cup \{\sigma(A) \cap \sigma(B)\} = \sigma(A) \cup \sigma(B)$$

does not hold for the consistent in invertibility spectrum $\sigma_{CI}(M_C)$.

Example 3.2. Let $A \in B(\mathcal{H})$ be the forward unilateral shift, $Q \in B(\mathcal{H})$ be a quasinilpotent operator, and let $M_0 = A \oplus B$. Then M_0 is neither left nor right invertible ($\Longrightarrow 0 \notin \sigma_{CI}(M_0)$), $\sigma_{CI}(B) = \emptyset$ and $0 \in \sigma_{CI}(A)$. Hence $0 \notin \sigma_{CI}(M_0) \cup \{\sigma_{CI}(A) \cap \sigma_{CI}(B)\}$ and $0 \in \sigma_{CI}(A) \cup \sigma_{CI}(B)$.

The following theorem shows that if we augment $\sigma_{CI}(M_0) \cup \{\sigma_{CI}(A) \cap \sigma_{CI}(B)\}$ by $\{\sigma_{CI}(A) \setminus \sigma_{CI}(B) \cup \sigma_{CI}(B) \setminus \sigma_{CI}(A)\}$, then we obtain $\sigma_{CI}(A) \cup \sigma_{CI}(B)$. But before that we prove the inclusion:

Proposition 3.3. $\sigma_{CI}(M_C) \subseteq \sigma_{CI}(A) \cup \sigma_{CI}(B)$.

Proof. It would suffice to prove that $0 \in \sigma_{CI}(M_C) \Longrightarrow 0 \in \sigma_{CI}(A) \cup \sigma_{CI}(B)$. Clearly, Theorem 2.1(ii),

which completes the proof. \Box

Theorem 3.4. $\sigma_{CI}(M_C) \cup \{\sigma_{CI}(A) \cap \sigma_{CI}(B)\} \cup \{\sigma_{CI}(A) \setminus \sigma_{CI}(B) \cup \sigma_{CI}(B) \setminus \sigma_{CI}(A)\} = \sigma_{CI}(A) \cup \sigma_{CI}(B).$

Proof. In view of Proposition 3.3, to prove the equality it would suffice to prove that $0 \in \sigma_{CI}(A) \cup \sigma_{CI}(B)$ implies $0 \in \sigma_{CI}(M_C) \cup \{\sigma_{CI}(A) \cap \sigma_{CI}(B)\} \cup \{\sigma_{CI}(A) \setminus \sigma_{CI}(B) \cup \sigma_{CI}(B)\}$. We start by assuming $0 \in \sigma_{CI}(A)$. Then either (*a*) $A \in \text{Inv}^1 \setminus \text{Inv}$ or (*b*) $A \in \text{Inv}^r \setminus \text{Inv}$. If (*a*) holds, then either (*a*₁) $B \in \text{Inv}^1 \setminus \text{Inv}$, or, (*a*₂) $B \in \text{Inv}$, or, (*a*₃) $B \notin \text{Inv}^1 \cap \text{Inv}^r$, or, (*a*₄) $B \in \text{Inv}^r \setminus \text{Inv}$.

If (*a*) and (*a*₁) hold, then $M_C \in \text{Inv}^1 \setminus \text{Inv} \Longrightarrow 0 \in \sigma_{\text{CI}}(M_C)$. If (*a*) and (*a*₂) hold, then $M_C \in \text{Inv}^1$. We claim that $M_C \notin \text{Inv}^r$: for if $M_C \in \text{Inv}^r$, then $M_C \in \text{Inv} \Longrightarrow A \in \text{Inv}$ (since $B \in \text{Inv}$), which contradicts $A \notin \text{Inv}^r$. Hence $0 \in \sigma_{\text{CI}}(M_C)$ in this case also. Suppose next that (*a*) and (*a*₃) are satisfied. Then *B* is neither left nor right

invertible; hence $0 \notin \sigma_{CI}(B)$ and $0 \in \sigma_{CI}(A)$, equivalently, $0 \in \sigma_{CI}(A) \setminus \sigma_{CI}(B)$. Finally, if (*a*₄) is satisfied, then $B \in \text{Inv}^r \setminus \text{Inv}$ implies $0 \in \sigma_{CI}(B)$. Hence, because of (*a*), $0 \in \sigma_{CI}(A) \cap \sigma_{CI}(B)$ in this case.

Arguing similarly for the case in which (*b*) holds, and either (*b*₁) $B \in \text{Inv}^r \setminus \text{Inv}$ or (*b*₂) $B \in \text{Inv}$ or (*b*₃) $B \notin \text{Inv}$ or (*b*₄) $B \in \text{Inv}^l \setminus \text{Inv}$, it is seen that $0 \in \sigma_{CI}(M_C) \cup \{\sigma_{CI}(A) \cap \sigma_{CI}(B)\} \cup \sigma_{CI}(A) \setminus \sigma_{CI}(B)$.

Finally, to complete the proof, we observe that a similar argument works in the case in which $0 \in \sigma_{CI}(B)$ to prove that $0 \in \sigma_{CI}(M_C) \cup \{\sigma_{CI}(A) \cap \sigma_{CI}(B)\} \cup \sigma_{CI}(B) \setminus \sigma_{CI}(A)$.

Fredholm consistency spectrum $\sigma_{FC}(M_C)$. Let $M_C(q)$ denote the image of M_C in the algebra $\mathcal{B}(X_q \oplus X_q)$,

 $A(q) = (A \oplus I)_q, B(q) = (I \oplus B)_q$ and $C(q) = \begin{pmatrix} I & C \\ 0 & I \end{pmatrix}_q$. Then $M_C(q) = B(q)C(q)A(q)$, the operator C(q) is

invertible, $A(q) = A_q \oplus I_q$, $B(q) = I_q \oplus B_q$, $M_C(q)$ has SVEP at 0 (equivalently, M_C has essential SVEP at 0) implies A_q has SVEP at 0 and $M_C(q)^*$ has SVEP at 0 implies B_q^* has SVEP at 0. Evidently, Theorem 2.10, M_C is ϕ -consistent (i.e., $0 \notin \sigma_{FC}(M_C)$) if both $M_C(q)$ and $M_C(q)^*$ have, or do not have, SVEP at 0; furthermore, a necessary and sufficient condition for M_C to be ϕ -consistent is that either $(M_C)_q \in CI$. The following corollary is the analogue of Theorem 3.4 for $\sigma_{FC}(M_C)$.

Corollary 3.5. $\sigma_{FC}(M_C) \cup \{\sigma_{FC}(A) \cap \sigma_{FC}(B)\} \cup \{\sigma_{FC}(A) \setminus \sigma_{FC}(B) \cup \sigma_{FC}(B) \setminus \sigma_{FC}(A)\} = \sigma_{FC}(A) \cup \sigma_{FC}(B).$

Proof. Proposition 3.3 implies the inclusion $\sigma_{FC}(M_C) \subseteq \sigma_{FC}(A) \cup \sigma_{FC}(B)$ (and hence the forward inclusion " \subseteq " in the equality of the statement), and Theorem 3.4 implies the backward inclusion " \supseteq " in the equality of the statement. \Box

Let $\sigma_{BC}(T) = \{\lambda \in \sigma(T) : T - \lambda \notin (BC)\}$ and $\sigma_{WC}(T) = \{\lambda \in \sigma(T) : T - \lambda \notin (WC)\}$ denote, respectively, the *Browder consistency* and the *Weyl consistency* spectrum of *T*. Then $\sigma_{FC}(T) = \sigma_{BC}(T) = \sigma_{WC}(T)$ for every $T \in B(X)$ (this follows from the results of the earlier section). The following corollary is immediate from this observation and the corollary above.

Corollary 3.6. $\sigma_x(M_C) \cup \{\sigma_x(A) \cap \sigma_x(B)\} \cup \{\sigma_x(A) \setminus \sigma_x(B) \cup \sigma_x(B) \setminus \sigma_x(A)\} = \sigma_x(A) \cup \sigma_x(B)$, where $\sigma_x = \sigma_{BC}$ or σ_{WC} .

References

- [1] Pietro Aiena, Fredholm and Local Spectral Theory with Applications to Multipliers, Kluwer, 2004.
- [2] E. Albrecht and R. D. Mehta, Some remarks on local spectral theory, J. Operator Theory 12 (1984), 285-317.
- [3] Bruce. A. Barnes, Common operator properties of the linear operators RS and SR, Proc. Amer. Math. Soc. 126 (1998), 1055-1061.
- [4] J. J. Buoni and J. D. Faires, Ascent, descent, nullity and defect of products of operators, Indiana Univ. Math. J. 25 (1976), 703-707.
- [5] Dragan S. Djordjević, Operators consistent in regularity, Publ. Math. Debrecen 60 (2002), 1-15.
- [6] Weibang Gong and Deguang Han, Spectrum of the product of operators and compact perturbations, Proc. Amer. Math. Soc. 120 (1994), 755-760.
- [7] Robin Harte, Young Ok Kim and Woo Young Lee, Spectral picture of AB and BA, Proc. Amer. Math. Soc. 134 (2006), 105-110.
- [8] K.B. Laursen and M.M. Neumann, Introduction to Local Spectral Theory, Clarendon Press, Oxford, 2000.
- [9] V. Müller, Spectral Theory of Linear Operators, Operator Theory Advances and Applications, Volume 139, Birkhäuser Verlag, 2003.
- [10] Christoph Schmoeger, Drazin invertibity of products, Seminar LV, No. 26, 5pp. (1.6.2006).