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Abstract. If S(X) ⊂ B(X), where B(X) denotes the algebra of operators on a Banach space X, then A ∈ B(X)
is S(X) consistent if AB ∈ S(X)⇐⇒ BA ∈ S(X) for every B ∈ B(X). SVEP is a powerful tool in determining
the S(X) consistency of operators A for various choices of the subset S(X).

1.. Introduction

Let B(X) denote the algebra of operators (i.e., bounded linear transformations) on a Banach space X,
and let A ∈ B(X). Then the spectra of AB and BA satisfy the equality σ(AB) \ {0} = σ(BA) \ {0} for every
B ∈ B(X). This equality extends to a large number of the “more distinguished parts of the spectrum”, such
as the point spectrum σp, the approximate point spectrum σa, the Fredholm spectrum σe (etc.) [3, 4, 7].
Simple examples, such as U∗U and UU∗ where U is the forward unilateral shift, show that the equality can
not be extended to include the point 0, and this gives rise to the question of finding conditions, necessary
and/or sufficient, under which this equality extends to σx(AB) = σx(BA) where σx is σ or a distinguished part
thereof. Let S(X) denote a subset of B(X). An operator A ∈ B(X) is said to be S(X) consistent, or consistent
in S(X), if AB ∈ S(X)⇐⇒ BA ∈ S(X) for every B ∈ B(X). In general one considers sets S(X) determined by
a regularity: thus S(X) may consist of invertible (left, right or both) or Fredholm (upper, lower or both),
or Browder, or Weyl (etc.) elements in B(X). A study of such a “consistency in regularity”, extending the
work of Gong and Han [6], has been carried out by Djordjević [5].

Recall that A ∈ B(X) has SVEP, the single-valued extension property, at a point λ0 ∈ C if for every open
neighbourhood Uλ0 of λ0 the only analytic function f : Uλ0 −→ X satisfying (A − λ) f (λ) = 0 for every
λ ∈ Uλ0 is the function f ≡ 0. Evidently, A has SVEP at every point of the resolvent set ρ(A) of A.

SVEP provides a simple sufficient condition for determining S(X) consistent operators A ∈ B(X) for a
variety of choices of the subset S(X) of B(X): Sufficient for A to be consistent in invertibility is that either
both A and A∗ have SVEP, or neither of A and A∗ has SVEP, at 0, and sufficient for A to be Fredholm
(or Browder, or Weyl) consistent is that either both A and A∗ have essential SVEP, or neither of A and A∗

has essential SVEP, at 0 (the notion of essential SVEP is defined in the following section). It follows in
particular that if an operator A ∈ B(X) is either decomposable or an invertible isometry or a Riesz or a

2010 Mathematics Subject Classification. Primary 47B20, 47A10, 47A11
Keywords. Banach space, consistent in invertibility, semi-Fredholm consistent, Browder consistent, Weyl consistent, the single

valued extension property.
Received: 20 December 2012; Accepted: 25 February 2013
Communicated by Dragana S. Cvetković-Ilić
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meromorphic operator (more generally, an operator with countable spectrum or such that its spectrum has
empty interior) or a Fredholm operator with index 0 or a Drazin invertible operator, then A is consistent in
invertibility. We prove in the following that: (i) a necessary and sufficient condition for A to be inconsistent
in invertibility is that either A is left invertible and A∗ does not have SVEP at 0 or A is right invertible
and A does not have SVEP at 0 (equivalently, if and only if A is not invertible and A is either left or right
invertible); (ii) A is consistent in left invertibility if and only if the conditions “if A is left invertible then
A∗ has SVEP at 0 and if AB is left invertible for some B ∈ B(X) then B∗ has SVEP at 0” are satisfied; ; (iii)
a necessary and sufficient condition for A to be Fredholm (or Browder, or Weyl) inconsistent is that A is
not essentially invertible and A is either left or right essential invertible. Extending these ideas to upper

triangular operator matrices MC =

(
A C
0 B

)
∈ B(X ⊕ X) it is proved that the consistency spectrum σCI

satisfies σCI(MC) ∪ {σCI(A) ∩ σCI(B)} ∪ {σCI(A) \ σCI(B) ∪ σCI(B) \ σCI(A)} = σCI(A) ∪ σCI(B).

2.. Results

We say that the operator A ∈ B(X) has SVEP if it has SVEP everywhere. Recall, [1, Corollary 2.24], that
a necessary and sufficient condition for a surjective operator A ∈ B(X) to be invertible is that A has SVEP
at 0. Let Ξ(A) = {λ ∈ σ(A) : A does not have SVEP at λ}, and let Ξ(A)C = σ(A) \ Ξ(A). Let Inv, Invl and
Invr denote, respectively, the class of A ∈ B(X) such that A is invertible, A is left invertible and A is right
invertible.

If S(X) ⊂ B(X) consists of the invertibles and A ∈ B(X) is S(X) consistent, then we say that A is a
“consistent in invertibility operator”, or a CI-operator. SVEP provides a simple sufficient condition for an
operator to be a CI-operator.

Theorem 2.1. (i) Sufficient for an operator A ∈ B(X) to be a CI-operator is that either 0 ∈ Ξ(A) ∩ Ξ(A∗) or
0 ∈ Ξ(A)C ∩ Ξ(A∗)C.

(ii) Necessary and sufficient for A ∈ B(X) to be inconsistent in invertibility is that one of the following (exclusive)
conditions holds:

(a) A ∈ Invl ∩ 0 ∈ Ξ(A∗); (b)A ∈ Invr ∩ 0 ∈ Ξ(A).

Proof. (i). Suppose that both A and A∗ have SVEP. Start by assuming that AB is invertible for some
B ∈ B(X).Then there exists an operator S ∈ B(X) such that SAB = I = ABS. The equality ABS = I implies that
A is right invertible, hence surjective. Since A has SVEP at 0, A is invertible, and then ABS = I =⇒ BSA = I
which implies that B is surjective. Already we have from SAB = I that B is left invertible. Hence B is also
invertible. But then BA is invertible, i.e., AB invertible implies BA invertible. Now let BA be invertible. Then
there exists an operator T ∈ B(X) such that TBA = I = BAT. Evidently, TBA = I implies A is left invertible.
Hence A∗ is surjective and has SVEP at 0, and so is invertible. Consequently, TBA = I =⇒ ATB = I =⇒ B
is left invertible and BAT = I =⇒ B is surjective, consequently invertible. Hence BA invertible implies AB
invertible.

Suppose next that neither A nor A∗ has SVEP at 0. Then A is neither left nor right invertible. This implies
that there can not exist operators S and T in B(X) satisfying either of the equalities ABS = I and TBA = I.
Hence neither of AB and BA is invertible in this case.

(ii) Evidently, A < CI if and only if there exists a B ∈ B(X) such that AB ∈ Inv (resp., BA ∈ Inv) and
BA < Inv (resp., AB < Inv), and this happens if and only if there exists a B ∈ B(X) such that A ∈ Invr,
B ∈ Invl, A < Invl and B < Invr (resp., A ∈ Invl, B ∈ Invr, A < Invr and B < Invl). Observe that if A < Inv and
A ∈ Invr (resp., A ∈ Invl), then the right (resp., left) inverse Ar (resp., Al) of A is the required operator B in
the implication above; observe also that if there exists a B satisfying the implication above, then A ∈ Invl or
A ∈ Invr and A < Inv (for the reason that if A ∈ Inv, then B is invertible and AB ∈ Inv⇐⇒ BA ∈ Inv). Hence
A < CI ⇐⇒ A < Inv,A ∈ Invl or A ∈ Invr. (Contra positively, A ∈ CI ⇐⇒ A ∈ Inv or A < Invr ∩ Invl.) Since
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A ∈ Inv if and only if A ∈ Invl and 0 ∈ Ξ(A∗)C, or A ∈ Invr and 0 ∈ Ξ(A)C, we have now that the following
two way implications hold:

A < CI ⇐⇒ A < Inv,A ∈ Invl or A ∈ Invr (but not both)
⇐⇒ A ∈ Invl ∩ 0 ∈ Ξ(A∗) or A ∈ Invr ∩ 0 ∈ Ξ(A).

This completes the proof.

Remark 2.2. (i) The condition of Theorem 2.1(i) is not necessary. To see this, let A ∈ B(X) be a bounded
below operator which is not left invertible. (Thus, A(X) is not complemented in X.) Then A has SVEP at 0
and A∗ does not have SVEP at 0 (for if A∗ were to have SVEP at 0 then the surjective operator A∗ would be
invertible). Evidently, both AB and BA are not invertible for any B ∈ B(X). Hence A ∈ CI. Since a bounded
below Hilbert space operator is left invertible, this argument fails for Hilbert space operators A.
(ii) Note that A ∈ Invl ∩ 0 ∈ Ξ(A∗) ⇐⇒ A ∈ Invl and A∗−1(0) , {0} and A ∈ Invr ∩ 0 ∈ Ξ(A) ⇐⇒ A ∈ Invr

and A−1(0) , {0}. A more user friendly version of the necessary and sufficient condition of Theorem 2.1(ii),
which we shall have occasion to use below, is the following: A < CI⇐⇒ A ∈ Invl \ Inv or A ∈ Invr \ Inv.

It is immediate from the above that the following classes of operators are CI-operators: Operators A ∈ B(X)
such that intσ(A) = ∅, normal operators A ∈ B(X), decomposable operators in B(X), isometries A ∈ B(X)
such that A∗ has SVEP (this forces ||Ax|| = ||x|| = ||A−1x|| for all x ∈ X and ||A|| = ||A−1||), Riesz operators
and meromorphic operators in B(X). Recall that A ∈ B(X) has a generalized Drazin inverse if and only if
0 ∈ isoσ(A). Thus generalized Drazin invertible operators are CI-operators. An operator A ∈ B(X) is semi-
regular if A(X) is closed and A−1(0) ⊆ Am(X) for all positive integers m [1, P7]. For a Banach space operator
A such that 0 is an isolated point of σ(A), both A and A∗ have SVEP at 0; hence such an A is a CI-operator.
Recall, [1, Theorem 2.49], that a semi-regular operator A ∈ B(X) has SVEP at 0 (resp., A∗ has SVEP at 0) if and
only if it is bounded below (resp., surjective), and then 0 ∈ isoσa(A) (resp, 0 ∈ isoσa(A∗)). Thus a semi-regular
operator A such that 0 ∈ isoσa(A) or 0 ∈ isoσa(A∗) implies 0 ∈ isoσ(A) is CI. Hyponormal operators A ∈ B(H)
(more, generally, M-hyponormal operators A ∈ B(H)), AA∗ ≤ A∗A (resp., (A−λ)(A−λ)∗ ≤M(A−λ)∗(A−λ)
for all complex λ and some M ≥ 1), have SVEP [1, p 170]; hence a hyponormal (resp., M-hyponormal)
operator is a CI-operator if and only if either A∗ has SVEP at 0, or, if A∗ does not have SVEP at 0 then A is
not bounded below (cf. [6, 2.1, 2.2 and 2.3]).

Not every Fredholm operator is a CI-operator: consider the unilateral shift above. However, Fredholm
operators A such that ind(A) = 0 are CI-operators. (Such an operator is referred to as being Weyl at 0.)

Proposition 2.3. If an operator A ∈ B(X) is Fredholm and ind(A) = 0, then A is CI.

Proof. We have two possibilities: either A has SVEP at 0 or A does not have SVEP at 0. If A has SVEP at 0,
then A∗ has SVEP at 0 (since A Weyl and A has SVEP implies 0 ∈ isoσ(A)), which implies that A is CI. If,
instead, A does not have SVEP at 0, then BA is not left invertible, hence not invertible, for every B ∈ B(X).
Again, if AB is right invertible for some B ∈ B(X), then A∗ has SVEP at 0 (which implies 0 ∈ isoσ(A), which
in turn) implies A has SVEP at 0. Thus AB is not right invertible, hence not invertible.

Remark 2.4. If A ∈ ϕ and ind(A) = 0, then either dimA−1(0)(= dim(X \ AX) = 0 or dimA−1(0) > 0. If
dimA−1(0) = 0, then A ∈ Inv, and if dimA−1(0) > 0, then A < Invl ∩ Invr. This, by Theorem 2.1(ii) (see
Remark 2.2(ii)), provides an alternative proof of Proposition 2.3.

The following corollary generalizes a result of Gong and Han [6, 2.5] to Banach spaces.

Corollary 2.5. If A ∈ B(X) is invertible, then A + K is CI for every compact operator K ∈ B(X).

Proof. A + K is Weyl.

The following proposition extends our observation on Riesz operators being CI to perturbation of Riesz
operators by commuting algebraic operators. Recall that A ∈ B(X) is algebraic if there exists a non-constant
polynomial p(.) such that p(A) = 0.
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Proposition 2.6. If A ∈ B(X) is an algebraic operator which commutes with a Riesz operator R ∈ B(X), then A + R
is CI.

Proof. We prove that A + R and A∗ + R∗ have SVEP. The operator A being algebraic, σ(A) = {λ1, ..., λn} for
some integer n ≥ 1, and

A = ⊕n
i=1Ai = ⊕n

i=1A|H0(A−λi) = ⊕n
i=1A|(A−λi)−ti (0)

for some integers ti ≥ 1. (Here H0(A) = {x ∈ X : limm−→∞ ||Amx|| 1m = 0} is the quasi-nilpotent part of A.) The
commutativity of A and R implies that

R = ⊕n
i=1Ri = ⊕n

i=1R|H0(A−λi),

where Ai commutes with Ri for all 1 ≤ i ≤ n and each Ri is a Riesz operator (implies both Ri and R∗i have
SVEP for all 1 ≤ i ≤ n). Let dCD ∈ B(B(X)) denote the generalized derivation dCD(X) = CX − XD. Set
Ri + Ai − λi = Ti. Observe that the operator Ai − λi is ti-nilpotent. Hence

dm
TiRi

(I) = dm
RiTi

(I) = 0

for all m ≥ ti, which implies that Ti and Ri are quasinilpotent equivalent operators (see [8, Page 253]).
Hence Ti has SVEP if and only Ri has SVEP [8, Proposition 3.4.11]. Thus Ri + Ai has SVEP. Since the same
argument works with Ti and Ri replaced by T∗i and R∗i , R∗i + A∗i also has SVEP. But then A + R = ⊕n

i=1Ai + Ri
and A∗ + R∗ = ⊕n

i=1A∗i + R∗i have SVEP.

The “consistent in invertibility spectrum of A” is the set

σCI(A) = {λ ∈ σ(A) : A − λ < CI}.

Evidently, both A and A∗ have SVEP at points in the boundary ∂σ(A) of the spectrum of A. Hence
σCI(A) ⊆ intσ(A) is an open subset of σ(A) which satisfies σCI(A) ⊆ σw(A) = {λ ∈ σ(A) : A − λ is not Weyl}
(Proposition 2.3). Furthermore, if we let Sℓ(A) = {λ ∈ σ(A) : A − λ is left invertible but A∗ does not have
SVEP at λ} and Sr(A) = {λ ∈ σ(A) : A − λ is right invertible but A does not have SVEP at λ}, then it follows
from Theorem 2.1 and the implications

λ ∈ σCI(A)⇐⇒ either A − λ is left invertible but not invertible
or A − λ is right invertible but not invertible

⇐⇒ either A − λ is left invertible but A∗ does not have SVEP at λ
or A − λ is right invertible but A does not have SVEP at λ

that

σCI(A) = Sℓ(A) ∪ Sr(A) ⊆ {λ ∈ σ(A) : (Ξ(A) ∪ Ξ(A∗)) \ (Ξ(A) ∩ Ξ(A∗))}
= {λ ∈ σ(A) : (Ξ(A) ∩ Ξ(A∗)C) ∪ (Ξ(A)C ∩ Ξ(A∗))}.

Recall, [1, Theorem 2.39], that if f : U → C is an analytic function from an open neighbourhoodU of σ(A)
such that f is non-constant on connected components of U, f ∈ Hc(σ(A)), then f (A) has SVEP at λ ∈ C if
and only if A has SVEP at every µ ∈ σ(A) for which f (µ) = λ. Furthermore, σCI( f (A)) = Sℓ( f (A)) ∪ Sr( f (A))
(exclusive or) ⊆ f (Sℓ(A)) ∪ f (Sr(A)) = f (Sℓ(A) ∪ Sr(A)) = f (σCI(A)). Thus, σCI( f (A)) ⊆ f (σCI(A)) for every
f ∈ Hc(σ(A)). The reverse inclusion fails, as follows upon considering a polynomial p(.) and an operator A
such that 0 ∈ p(σCI(A)) and 0 < σCI(p(A)) [6]. If A = A1 ⊕ A2 ∈ B(X ⊕ X), then A has SVEP at λ if and only if
A1 and A2 have SVEP at λ, and A is left (resp., right) invertible if and only if A1 and A2 are left (resp., right)
invertible. Hence

σCI(A1 ⊕ A2) = σCI(A) = Sℓ(A) ∪ Sr(A) ⊆ σCI(A1) ∪ σCI(A2).

The inclusion can be proper: consider A = U⊕U∗ ∈ B(ℓ2⊕ ℓ2), where U is the forward unilateral shift, when
it is seen that ∅ = σCI(A) ⊂ σCI(U) ∪ σCI(U∗) = the interior of the unit disc D.
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The Weyl essential approximate point spectrum σaw(A) of A,

σaw(A) = {λ ∈ σ(A) : A − λ is not upper semi Fredholm or ind(A − λ) > 0},
is a subset of (the Weyl spectrum σw(A) and) the Browder essential approximate point spectrum

σab(A) = {λ ∈ σ(A) : A − λ is not upper semi Fredholm or asc(A − λ) = ∞}
of A.

Theorem 2.7. σab(A) ∩ σCI(A) ⊆ σaw(A) ⊆ σab(A) for every A ∈ B(X).

Proof. If λ < σaw(A), then A − λ is upper semi Fredholm and ind(A − λ) ≤ 0. Here either A∗ has SVEP at λ
or A∗ does not have SVEP at λ. If A∗ has SVEP at λ, then ind(A − λ) ≥ 0. This forces A − λ to be Weyl and
such that both A and A∗ have SVEP at λ. Hence λ < σCI(A) in this case. If, instead, A∗ does not have SVEP
at λ, then either A has SVEP at λ or A does not have SVEP at λ. Evidently, if both A and A∗ do not have
SVEP at λ, then λ < σCI(A). If, on the other hand, A has SVEP (but A∗ does not have SVEP) at λ, then A − λ
is upper semi Fredholm with asc(A−λ) < ∞, i.e., λ < σab(A). Thus λ < σaw(A) =⇒ λ < (σab(A)∩ σCI(A)). The
remaining inclusion being well known [1], the proof is complete.

Theorem 2.7 implies that if σab(A) ⊆ σCI(A) for an operator A ∈ B(X), then σab(A) = σaw(A): operators
A satisfying the equality σab(A) = σaw(A) have been described as satisfying a-Browder’s theorem in the
literature [1].

Left, right multiplication. Let LA and RA ∈ B(B(X)) denote the operators LA(X) = AX and RA(X) = XA,
respectively. SVEP transfers both ways from A to LA and RA∗ . Recall that σ(LA) = σ(RA) = σ(A).

Lemma 2.8. For an operator A ∈ B(X), A (resp., A∗) has SVEP at µ if and only if LA (resp., RA) has SVEP at µ.

Proof. We start by considering the left multiplication operator LA. Suppose that A has SVEP at µ. LetU be
an open neighbourhood of µ, and let F(λ) : U −→ B(X) be an analytic function such that (LA − λ)F(λ) =
LA−λF(λ) = 0 for all λ ∈ U. The function F(λ)x : U −→ X is analytic for every x ∈ X and satisfies
(A − λ)F(λ)x = 0. This, if A has SVEP at µ, implies that F(λ)x = 0 for all λ ∈ U; since this is true for all x,
we must have F(λ) ≡ 0 inU. Conversely, assume that LA has SVEP at µ. For φ ∈ X∗ and y ∈ X, define the
operator φ ⊗ y ∈ B(X) by setting (φ ⊗ y)(x) = φ(x)y for all x ∈ X. Let f ;U −→ X,U as above, be an analytic
function such that (A − λ) f (λ) = 0 for all λ ∈ U. Then

(LA − λ)(φ ⊗ f (λ) = φ ⊗ (A − λ) f (λ) = 0,

which (if LA has SVEP at µ) implies that φ ⊗ f (λ) = 0 onU for all φ ∈ X∗. Hence f (λ) ≡ 0 onU, i.e., A has
SVEP at µ.

For the right multiplication operator RA, we argue as follows. Clearly, RA−µ = RA−µ. Let J : B(X)→ B(X∗)
denote the isometric isomorphism defined by setting J(T) = T∗ for all T ∈ B(X). Then J establishes the
similarity JRA−µ = LA∗−µI∗ J. Since similarities preserve SVEP, RA−µ has SVEP at 0 if and only if LA∗−µI∗ has
SVEP at 0, if and only if A∗ has SVEP at µ.

It is easily seen that LA is left (resp., right) invertible if and only if A is left (resp., right) invertible, and RA is
left (rep., right) invertible if and only if A∗ is left (resp., right) invertible. Evidently, σCI(A) = σCI(A∗). Hence:

Theorem 2.9. σCI(A) = σCI(LA) = σCI(RA) for every A ∈ B(X).

Proof. In view of Lemma 2.8 and the observations above,

σCI(LA) = Sl(LA) ∪ Sr(A) = Sl(A) ∪ Sr(A) = σCI(A),

and
σCI(RA) = Sl(RA) ∪ Sr(RA) = Sl(A∗) ∪ Sr(A∗) = σCI(A∗).

This completes the proof.
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Fredholm consistent operators. We say that an operator A ∈ B(X) is Fredholm consistent, or ϕ-
consistent, if for every B ∈ B(X) either AB and BA are both Fredholm or neither of AB and BA is Fredholm.
Fredholm consistent operators have been considered in [5]. Here our objective is to provide a charac-
terization of Fredholm consistent operators which is similar in spirit to our characterization of consistent
in invertibility operators. We start by introducing a construction, known as the Sadovskii/Buoni, Harte,
Wickstead construction [9, Page 159], which leads to a representation of the Calkin algebra B(X)/K (X) as an
algebra of operators on a suitable Banach space. Let ℓ∞(X) denote the Banach space of all bounded sequences
x = (xn)∞n=1 of elements of X endowed with the norm ||x||∞ := supn∈N ||xn||, and write T∞, T∞x := (Txn)∞n=1
for all x = (xn)∞n=1, for the operator induced by T on ℓ∞(X). The set m(X) of all precompact sequences of
elements of X is a closed subspace of ℓ∞(X) which is invariant for T∞. Let Xq := ℓ∞X)/m(X), and denote
by Tq the operator T∞ on Xq. The mapping T 7→ Tq is then a unital homomorphism from B(X) → B(Xq)
with kernel K (X) which induces a norm decreasing monomorphism from B(X)/K (X) to B(Xq) with the
following properties (see [9, Section 17] for details):

(i) T is upper semi-Fredholm, T ∈ ϕ+, if and only if Tq is injective, if and only if Tq is bounded below;
(ii) T is lower semi-Fredholm, T ∈ ϕ−, if and only if Tq is surjective;
(iii) T is Fredholm, T ∈ ϕ, if and only if Tq is invertible.

The definition of SVEP obviously extends to the algebra B(Xq): we say in the following that T ∈ B(X) has
essential SVEP at a point if Tq has SVEP at the point. Observe that SVEP for T at a point neither implies, nor
is implied, by essential SVEP for T at the point [2, Page 291].
Call an operator essentially invertible (essentially left, respectively essentially right, invertible) if Aq ∈ Inv (Aq ∈
Invl, resp. Aq ∈ Invr).

Theorem 2.10. Let A ∈ B(X).
(i) Sufficient condition for A to be ϕ-consistent is that either both A and A∗ have essential SVEP, or neither A nor

A∗ has essential SVEP, at 0.
(ii) Necessary and sufficient for A to be ϕ-inconsistent is that either A is right essentially invertible and

dim(A−1(0)) = ∞ or A is left essentially invertible and dim(A∗−1(0)) = ∞.

Proof. The proof of the theorem is similar to that of Theorem 2.1.
(i) If AB ∈ ϕ(X), then (AB)q = AqBq is invertible. This implies that if Aq has SVEP at 0, then Aq and Bq are

invertible. In turn this implies that BqAq = (BA)q is invertible; hence BA ∈ ϕ(X). Similarly, if BA ∈ ϕ(X) and
A∗q has SVEP at 0, then AB ∈ ϕ(X). Observe that if neither of Aq and A∗q has SVEP at 0, then Aq is neither left
nor right invertible. Consequently, neither of AqBq and BqAq is invertible; hence neither of AB and BA is in
ϕ(X).

(ii) Evidently, A is not ϕ-consistent if and only if there exists B ∈ B(X) such that AB ∈ ϕ(X) (resp.,
BA ∈ ϕ(X)) and BA < ϕ(X) (resp., AB < ϕ(X)), i.e., if and only if there exists Bq ∈ B(Xq) such that AqBq ∈ Inv
(resp., BqAq ∈ Inv) and BqAq < Inv (resp., AqBq < Inv); equivalently, A is not ϕ-consistent if and only if
Aq < CI. Hence the following two way implications hold:

A is not ϕ − consistent ⇐⇒ Aq ∈ Invl \ Inv or Aq ∈ Invr \ Inv

⇐⇒ A is left essentially invertible and dim(A∗−1(0)) = ∞,
or A is right essentially invertible and dim(A−1(0)) = ∞.

This completes the proof.

Remark 2.11. (i) Taking the contrapositive of

A is not ϕ − consistent ⇐⇒ Aq ∈ Invl \ Inv or Aq ∈ Invr \ Inv

we have: A is ϕ-consistent if and only if either A is essentially invertible (equivalently, Fredholm), or, A is
neither left nor right essentially invertible.
(ii) If we let σϕ(A) = {λ ∈ σ(A); A − λ is not ϕ-consistent}, then it follows from the argument above
that σϕ(A) = σCI(Aq). Hence σϕ(A) ⊆ {λ ∈ σ(Aq) : (Ξ(Aq) ∪ Ξ(A∗q)) \ (Ξ(Aq) ∩ Ξ(A∗q))} = {λ ∈ σ(Aq) :
(Ξ(Aq) ∩ Ξ(A∗q)C) ∪ (Ξ(Aq)C ∩ Ξ(A∗q))}.
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A ∈ B(X) is Browder if A ∈ Φ and asc(A) = dsc(A) < ∞; A is said to be Browder consistent, denoted
A ∈ (BC), if for every B ∈ B(X) either both of AB and BA are Browder or neither of AB and BA is Browder.
Fredholm consistency determines Browder coonsistency.

Theorem 2.12. A ∈ (BC)⇐⇒ A is ϕ-consistent.

Proof. Start by recalling that an operator T ∈ B(X) such that asc(T) = dsc(T) < ∞ is said to be Drazin
invertible, and that if AB is Drazin invertible then 0 is at worst in the resolvent of BA (i.e., either 0 is in the
resolvent of BA or BA is Drazin invertible) [10, Theorem 3]. Thus asc(AB) = dsc(AB) < ∞ ⇐⇒ asc(BA) =
dsc(BA) < ∞. The necessity is now obvious. To prove the sufficiency, observe that if neither of AB and BA
is Fredholm for some B, then A ∈ (BC); if both AB and BA are Fredholm, then (since by the argument above
AB has finite ascent and descent if and only if BA has finite ascent and descent) again A ∈ (BC).

A ∈ B(X) is Weyl consistent, A ∈ (WC), if AB and BA are either both Weyl or neither is Weyl for every
B ∈ B(X). Observe that if AB and BA are Fredholm for all B, then A,B ∈ ϕ and ind(AB) = ind(BA); hence
A ∈ (WC)⇐⇒ A is ϕ-consistent. A more revealing result is the following.

Theorem 2.13. A sufficient condition for an operator A ∈ B(X) to be (WC) is that α(A) = ∞ ⇐⇒ β(A) = ∞.
Furthermore, if X = H is a Hilbert space and A(H) is closed, then this condition is necessary too.

Proof. Start by observing that if A(X) is not closed, then neither of A, AB and BA is Weyl (thus A ∈ (WC));
hence we may assume that A(X) is closed. We have two possibilities: either A(X) = X or A(X) ⊂ X. Let
A(X) = X. If A has SVEP (at 0), then A is invertible, hence A ∈ (WC). Assume therefore that A does not have
SVEP. Since β(A) = 0 and A∗ has SVEP, α(A) > β(A) = 0. The hypothesis α(A) = ∞ ⇐⇒ β(A) = ∞ implies
that α(A) < ∞; hence A is Fredholm, which then forces AB and BA to be either Weyl or non-Weyl together.
Hence A ∈ (WC) in this case also. Assume now that A(X) , X. Since α(A) = ∞ ⇐⇒ β(A) = ∞, A ∈ (WC) if
either of α(A) or β(A) is infinite; if neither of α(A) and β(A) is infinite, then A is Fredholm, hence once again
in (WC). This completes the proof of the sufficiency. To see the necessity, let X = H be a Hilbert space and
let A(H) = A(H). If α(A) = ∞ and β(A) < ∞ (the hypothesis A(H) is closed is redundant in this case), then
A is lower semi-Fredholm (but not Fredholm). Evidently, the operator A∗A is Weyl but the operator AA∗ is
not Weyl (not even Fredholm). Again, if α(A) < ∞ and β(A) = ∞, then AA∗ is Weyl but A∗A is not Weyl.
Thus in either case A < (WC).

The inclusion σCI(A) ⊆ σaw(A) fails. For example, if A ∈ B(H) is the forward unilateral shift, then
0 < σaw(A) and 0 ∈ σCI(A). Observe that the forward unilateral shift has SVEP: if A does not have SVEP on
σ(A) \ σaw(A), then the inclusion does hold.

Theorem 2.14. If σ(A) \ σaw(A) ⊆ Ξ(A) for some A ∈ B(X), then σCI(A) ⊆ σaw(A).

Proof. Take a point λ ∈ σ(A) such that λ < σaw(A). Then λ ∈ ϕ+(A) and ind(A − λ) ≤ 0. We have two cases:
either A∗ has SVEP at λ or A∗ does not have SVEP at λ. The first of these cases is not possible: if A∗ has
SVEP at λ, then λ ∈ ϕ(A), ind(A − λ) = 0 and A∗ has SVEP at λ, which implies that (0 is an isolated point of
the spectrum of A, and so) A has SVEP at λ – a contradiction. If A∗ does not have SVEP at λ, then neither
of A and A∗ has SVEP at λ, which by Theorem 2.1 implies that λ < σCI(A). Hence σCI(A) ⊆ σaw(A).

Consistent in left (resp., right) invertibility, CLI (resp., CRI), operators. A ∈ B(X) is a CLI (resp., CRI)
operator if, for every B ∈ B(X), either both AB and BA are left (resp., right) invertible or neither of them is
left (resp., right) invertible. Choosing B = I, the left invertibility of A is a necessary condition for AB and
BA to be left invertible for all B ∈ B(X); again, choosing A to be left invertible and B = A∗, we see that A∗

has SVEP is a necessary condition for AB and BA to be left invertible for all B ∈ B(X). (Observe that if A is
left invertible and A∗ has SVEP, then A is invertible; consequently, BA = A∗A is invertible.) The following
theorem, cf. [5, Theorem 2.6], proves that these conditions are almost necessary and sufficient.
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Theorem 2.15. A ∈ B(X) is a CLI operator if and only if the following conditions are satisfied:
(a) A < Invl implies AB < Invl for every B ∈ B(X).
(b) A left invertible implies A∗ has SVEP at 0.
(c) AB left invertible for some B ∈ B(X) implies B∗ has SVEP at 0.

Proof. Sufficiency. Evidently, if (a) holds, then AB and BA are not left invertible for every B ∈ B(X), and
hence A is a CLI operator. If (b) holds, then A ∈ Inv. Hence if BA ∈ Invl for some operator B, then B ∈ Invl

and this forces AB to be left invertible; if, instead, AB ∈ Invl, then B ∈ Invl, implying thereby that BA ∈ Invl.
Finally, if (c) holds, then B ∈ Inv; hence A ∈ Invl, which then forces BA to be left invertible.

Necessity. Given an A ∈ B(X), either A < Invl or A ∈ Invl∩0 ∈ Ξ(A∗) or A ∈ Invl∩0 < Ξ(A∗). Suppose that
A < CLI. Then A ∈ Invl ∩ 0 < Ξ(A∗) is not possible for the reason that then A ∈ Inv and hence AB ∈ Invl ⇐⇒
BA ∈ Invl. If A < Invl, then BA < Invl for all B ∈ B(X). Hence if A < CLI, then there exists a B0 ∈ B(X) such
that AB0 ∈ Invl. Since 0 < Ξ(B∗) and AB0 ∈ Invl implies B0 ∈ Inv =⇒ A ∈ Invl ∩ B0 ∈ Inv =⇒ B0A ∈ Invl, if
A < CLI then 0 ∈ Ξ(B∗) for every B such that AB ∈ Invl. If, instead, A ∈ Invl, then there exists an operator
B ∈ B(X) such that B < Invl and BA ∈ Invl. Consequently, A < CLI only if AB < Invl, and this happens only
if 0 ∈ Ξ(A∗).

A duality arguments proves that A ∈ CRI if and only if the following conditions are satisfied:
(a)′ A < Invr implies BA < Invr for every B ∈ B(X).
(b)′ A right invertible implies A has SVEP at 0.
(c)′ BA right invertible for some B ∈ B(X) implies B has SVEP at 0.

For an operator T ∈ B(X), let σCLI(T) = {λ ∈ σ(T) : T − λ < CLI} and σCRI(T) = {λ ∈ σ(T) : T − λ < CRI}
denote, respectively, the consistent in left invertibility and the consistent in right invertibility spectrum of T.
Evidently, a sufficient condition for 0 ∈ σCLI(A) (resp., 0 ∈ σCRI(A)) is that A ∈ Invl\Invr (resp., A ∈ Invr\Invl.

Proposition 2.16. σCI(A) ⊆ σCLI(A) ∪ σCRI(A) for every A ∈ B(X). The reverse inclusion fails.

Proof. Start by observing that to prove the inclusion it suffices to prove 0 ∈ σCI(A) =⇒ 0 ∈ σCLI(A)∪ σCRI(A).
Recall from the proof of Theorem 2.1(ii) that 0 ∈ σCI(A) if and only if A ∈ (Invl ∪ Invr) \ Inv = (Invl \ Inv) ∪
(Invr \ Inv) = (Invl \ Invr) ∪ (Invr \ Invl). Hence 0 ∈ σCLI(A) ∪ σCRI(R).

To see that the reverse inclusion fails, let A = U ⊕ U∗, where U ∈ B(H) is the forward unilateral shift.
Then both A and A∗ fail to have SVEP at 0. Hence 0 < σCI(A) by Theorem 2.1(i). Now let B1 = I ⊕ U and
B2 = U∗ ⊕ I. Then AB1 ∈ Invl, B2A ∈ Invr, B1A < Invl and AB2 < Invr. Hence 0 ∈ σCLI(A) ∩ σCRI(A).

The following corollary is immediate from Theorem 2.15.

Corollary 2.17. A ∈ B(X) is upper semi–Fredholm consistent, A ∈ UFC, if and only if the following conditions are
satisfied:

(a) A not upper semi-Fredholm implies AB not upper semi-Fredhom for every B ∈ B(X).
(b) A upper semi-Fredholm implies A∗q has SVEP at 0.
(c) AB upper semi-Fredholm for some B ∈ B(X) implies B∗q has SVEP at 0.

Similarly, A is lower semi-Fredholm consistent, A ∈ LFC, if and only if the following conditions are satisfied:
(a)’ A not lower semi-Fredholm implies BA not lower semi-Fredhom for every B ∈ B(X).
(b) A lower semi-Fredholm implies Aq has SVEP at 0.
(c) BA lower semi-Fredholm for some B ∈ B(X) implies Bq has SVEP at 0.
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3.. Application to upper triangular operator matrices.

If MC =

(
A C
0 B

)
∈ B(X ⊕ X) is an upper triangular operator matrix, then the spectra of A,B and MC

satisfy the following well known inclusion

σ(MC) ⊆ σ(A) ∪ σ(B).

This phenomenon persists for the consistency spectrum. Recall, that the operator M0 = A ⊕ B ∈ B(X ⊕ X)
has SVEP at 0 if and only if A and B have SVEP at 0; MC (resp., M∗

C) has SVEP at 0 implies A (resp., B∗) has
SVEP at 0, and if A,B (resp., A∗,B∗) have SVEP at 0 then MC (resp., M∗

C) has SVEP at 0. Observe that

MC =

(
I 0
0 B

) (
I C
0 I

) (
A 0
0 I

)
,

where the operator
(

I C
0 I

)
is invertible. Hence, the left (resp., right) invertibility of MC implies the left

(resp., the right) invertibility of A (resp., B).
The following proposition is immediate from Theorem 2.1(i) and the above.

Proposition 3.1. A sufficient condition for MC to be a CI-operator is that 0 ∈ {Ξ(A) ∩ Ξ(B)} ∩ {Ξ(A∗) ∩ Ξ(B∗)}, or,
0 ∈ {Ξ(A)C ∩ Ξ(B)C} ∩ {Ξ(A∗)C ∩ Ξ(B∗)C}.

An equality similar to the well known spectral equality

σ(MC) ∪ {σ(A) ∩ σ(B)} = σ(A) ∪ σ(B)

does not hold for the consistent in invertibility spectrum σCI(MC).

Example 3.2. Let A ∈ B(H) be the forward unilateral shift, Q ∈ B(H) be a quasinilpotent operator, and let
M0 = A ⊕ B. Then M0 is neither left nor right invertible (=⇒ 0 < σCI(M0)), σCI(B) = ∅ and 0 ∈ σCI(A). Hence
0 < σCI(M0) ∪ {σCI(A) ∩ σCI(B)} and 0 ∈ σCI(A) ∪ σCI(B).

The following theorem shows that if we augmentσCI(M0)∪{σCI(A)∩σCI(B)}by {σCI(A)\σCI(B)∪σCI(B)\σCI(A)},
then we obtain σCI(A) ∪ σCI(B). But before that we prove the inclusion:

Proposition 3.3. σCI(MC) ⊆ σCI(A) ∪ σCI(B).

Proof. It would suffice to prove that 0 ∈ σCI(MC) =⇒ 0 ∈ σCI(A) ∪ σCI(B). Clearly, Theorem 2.1(ii),

0 ∈ σCI(MC) ⇐⇒ MC ∈ Invl \ Inv ∪ Invr \ Inv
=⇒ A ∈ Invl \ Inv or B ∈ Invr \ Inv
=⇒ 0 ∈ σCI(A) ∪ σCI(B),

which completes the proof.

Theorem 3.4. σCI(MC) ∪ {σCI(A) ∩ σCI(B)} ∪ {σCI(A) \ σCI(B) ∪ σCI(B) \ σCI(A)} = σCI(A) ∪ σCI(B).

Proof. In view of Proposition 3.3, to prove the equality it would suffice to prove that 0 ∈ σCI(A) ∪ σCI(B)
implies 0 ∈ σCI(MC)∪ {σCI(A)∩ σCI(B)} ∪ {σCI(A) \ σCI(B)∪ σCI(B) \ σCI(A)}. We start by assuming 0 ∈ σCI(A).
Then either (a) A ∈ Invl \ Inv or (b) A ∈ Invr \ Inv. If (a) holds, then either (a1) B ∈ Invl \ Inv, or, (a2) B ∈ Inv,
or, (a3) B < Invl ∩ Invr, or, (a4) B ∈ Invr \ Inv.
If (a) and (a1) hold, then MC ∈ Invl \ Inv =⇒ 0 ∈ σCI(MC). If (a) and (a2) hold, then MC ∈ Invl. We claim that
MC < Invr: for if MC ∈ Invr, then MC ∈ Inv =⇒ A ∈ Inv (since B ∈ Inv), which contradicts A < Invr. Hence
0 ∈ σCI(MC) in this case also. Suppose next that (a) and (a3) are satisfied. Then B is neither left nor right
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invertible; hence 0 < σCI(B) and 0 ∈ σCI(A), equivalently, 0 ∈ σCI(A) \ σCI(B). Finally, if (a4) is satisfied, then
B ∈ Invr \ Inv implies 0 ∈ σCI(B). Hence, because of (a), 0 ∈ σCI(A) ∩ σCI(B) in this case.

Arguing similarly for the case in which (b) holds, and either (b1) B ∈ Invr \ Inv or (b2) B ∈ Inv or (b3)
B < Inv or (b4) B ∈ Invl \ Inv, it is seen that 0 ∈ σCI(MC) ∪ {σCI(A) ∩ σCI(B)} ∪ σCI(A) \ σCI(B).

Finally, to complete the proof, we observe that a similar argument works in the case in which 0 ∈ σCI(B)
to prove that 0 ∈ σCI(MC) ∪ {σCI(A) ∩ σCI(B)} ∪ σCI(B) \ σCI(A).

Fredholm consistency spectrum σFC(MC). Let MC(q) denote the image of MC in the algebra B(Xq ⊕ Xq),

A(q) = (A ⊕ I)q, B(q) = (I ⊕ B)q and C(q) =
(

I C
0 I

)
q
. Then MC(q) = B(q)C(q)A(q), the operator C(q) is

invertible, A(q) = Aq ⊕ Iq, B(q) = Iq ⊕ Bq, MC(q) has SVEP at 0 (equivalently, MC has essential SVEP at 0)
implies Aq has SVEP at 0 and MC(q)∗ has SVEP at 0 implies B∗q has SVEP at 0. Evidently, Theorem 2.10, MC
is ϕ-consistent (i.e., 0 < σFC(MC)) if both MC(q) and MC(q)∗ have, or do not have, SVEP at 0; furthermore,
a necessary and sufficient condition for MC to be ϕ-consistent is that either (MC)q ∈ CI. The following
corollary is the analogue of Theorem 3.4 for σFC(MC).

Corollary 3.5. σFC(MC) ∪ {σFC(A) ∩ σFC(B)} ∪ {σFC(A) \ σFC(B) ∪ σFC(B) \ σFC(A)} = σFC(A) ∪ σFC(B).

Proof. Proposition 3.3 implies the inclusion σFC(MC) ⊆ σFC(A) ∪ σFC(B) (and hence the forward inclusion
“⊆” in the equality of the statement), and Theorem 3.4 implies the backward inclusion “⊇” in the equality
of the statement.

Let σBC(T) = {λ ∈ σ(T) : T − λ < (BC)} and σWC(T) = {λ ∈ σ(T) : T − λ < (WC)} denote, respectively,
the Browder consistency and the Weyl consistency spectrum of T. Then σFC(T) = σBC(T) = σWC(T) for every
T ∈ B(X) (this follows from the results of the earlier section). The following corollary is immediate from
this observation and the corollary above.

Corollary 3.6. σx(MC)∪{σx(A)∩σx(B)}∪ {σx(A)\σx(B)∪σx(B)\σx(A)} = σx(A)∪σx(B), where σx = σBC or σWC.

References

[1] Pietro Aiena, Fredholm and Local Spectral Theory with Applications to Multipliers, Kluwer, 2004.
[2] E. Albrecht and R. D. Mehta, Some remarks on local spectral theory, J. Operator Theory 12 (1984), 285-317.
[3] Bruce. A. Barnes, Common operator properties of the linear operators RS and SR, Proc. Amer. Math. Soc. 126 (1998), 1055-1061.
[4] J. J. Buoni and J. D. Faires, Ascent, descent, nullity and defect of products of operators, Indiana Univ. Math. J. 25 (1976), 703-707.
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