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Small covers over a product of simplices
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Abstract. In this paper, we determine the number of equivariant homeomorphism classes of small covers
over a product of m simplices for m ≤ 3 or for the dimension of each simplex being greater than 1 and m > 3.
Moreover, we calculate the number of equivariant homeomorphism classes of all orientable small covers
over a product of at most three simplices.

1. Introduction

The notion of small covers was introduced by Davis and Januszkiewicz [7], where a small cover is a
smooth closed manifold Mn with a locally standard (Z2)n−action such that its orbit space is a simple convex
polytope. For instance, the real projective space RPn with a natural (Z2)n−action is a small cover over the
n-simplex ∆n. This establishes a direct connection between equivariant topology and combinatorics and
makes it possible to study the topology of small covers through the combinatorial structure of quotient
spaces.

In [9], Lü and Masuda showed that the equivariant homeomorphism class of a small cover over a simple
convex polytope Pn agrees with the equivalence class of its corresponding (Z2)n−coloring under the action
of automorphism group of face poset of Pn. This also holds for orientable small covers by the orientability
condition in [11] (see Theorem 5.3). But there aren’t general formulas to calculate the number of equivariant
homeomorphism classes of (orientable) small covers over an arbitrary simple convex polytope.

In recent years, several studies have attempted to enumerate the number of Davis-Januszkiewicz equiv-
alence classes and equivariant homeomorphism classes of small covers over a specific polytope. Cai, Chen
and Lü calculated the number of equivariant homeomorphism classes of small covers over 3-dimensional
prisms [2]. In 2008, Choi determined the number of Davis-Januszkiewicz equivalence classes of small
covers over a product of simplices and the number of equivariant homeomorphism classes of small cov-
ers over cubes [4]. There are few results about orientable small covers. Choi calculated the number of
Davis-Januszkiewicz equivalence classes of orientable small covers over cubes [5]. Products of simplices
are an interesting class of polytopes and more complicated than one might think [13]. And small covers
over products of simplices have become an important search object [3, 4, 5, 6, 8, 10]. Motivated by these,
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we determine the number of equivariant homeomorphism classes of small covers over a product of m
simplices for m ≤ 3 or for the dimension of each simplex being greater than 1 and m > 3 (see Theorem 2.7
and Theorems 4.1-4.2). Furthermore, we calculate the number of equivariant homeomorphism classes of
all orientable small covers over a product of at most three simplices (see Theorems 5.7-5.12).

The paper is organized as follows. In Section 2, we review the basic theory about small covers, calculate
the automorphism group of face poset of a product of m simplices and determine the number of small covers
over a product of m simplices with the dimension of each simplex being greater than 1 up to equivariant
homeomorphism. In Section 3 we determine the number of all colorings on ∆1 × ∆n2 × ∆n3 (n2 ≥ 1 and
n3 ≥ 1) and ∆1 × ∆n2 (n2 ≥ 1), so that in Section 4 we give a formula to calculate the number of equivariant
homeomorphism classes of all small covers over ∆1 × ∆n2 × ∆n3 (n2 ≥ 1 and n3 ≥ 1) and ∆1 × ∆n2 (n2 ≥ 1).
In Section 5, similarly we determine the number of equivariant homeomorphism classes of all orientable
small covers over a product of at most three simplices.

2. Small covers over a product of simplices

A convex polytope Pn of dimension n is said to be simple if every vertex of Pn is the intersection of
exactly n facets (i.e. faces of dimension (n−1)) [13]. An n-dimensional smooth closed manifold Mn is said to
be a small cover if it admits a smooth (Z2)n−action such that the action is locally isomorphic to a standard
action of (Z2)n on Rn and the orbit space Mn/(Z2)n is a simple convex polytope of dimension n.

Let Pn be a simple convex polytope of dimension n and F (Pn) = {F1, · · · ,Fℓ} be the set of facets
of Pn. Suppose that π : Mn → Pn is a small cover over Pn. Then there are ℓ connected submanifolds
π−1(F1), · · · , π−1(Fℓ). Each submanifold π−1(Fi) is fixed pointwise by aZ2−subgroupZ2(Fi) of (Z2)n, so that
each facet Fi corresponds to the Z2−subgroup Z2(Fi). Obviously, the Z2−subgroup Z2(Fi) actually agrees
with an element νi in (Z2)n as a vector space. For each face F of codimension u, since Pn is simple, there are
u facets Fi1 , · · · ,Fiu such that F = Fi1 ∩ · · · ∩ Fiu . Then, the corresponding submanifolds π−1(Fi1 ), · · · , π−1(Fiu )
intersect transversally in the (n − u)-dimensional submanifold π−1(F), and the isotropy subgroup Z2(F) of
π−1(F) is a subtorus of rank u and is generated by Z2(Fi1 ), · · · ,Z2(Fiu ) (or is determined by νi1 , · · · , νiu in
(Z2)n). Thus, this actually gives a characteristic function [7]

λ : F (Pn) −→ (Z2)n

defined by λ(Fi) = νi such that whenever the intersection Fi1 ∩ · · · ∩ Fiu is non-empty, λ(Fi1 ), · · · , λ(Fiu )
are linearly independent in (Z2)n. If we regard each nonzero vector of (Z2)n as being a color, then the
characteristic function λmeans that each facet is colored by a color. Here we also call λ a (Z2)n-coloring on
Pn.

In fact, Davis and Januszkiewicz gave a reconstruction process of a small cover by using a (Z2)n-coloring
λ : F (Pn) −→ (Z2)n. Let Z2(Fi) be the subgroup of (Z2)n generated by λ(Fi). Given a point p ∈ Pn, by
F(p) we denote the minimal face containing p in its relative interior. Assume F(p) = Fi1 ∩ · · · ∩ Fiu and
Z2(F(p)) =

⊕u
j=1Z2(Fi j ). Note thatZ2(F(p)) is a subgroup of rank u in (Z2)n. Let M(λ) denote Pn × (Z2)n/ ∼,

where (p, 1) ∼ (q, h) if p = q and 1−1h ∈ Z2(F(p)). The free action of (Z2)n on Pn × (Z2)n descends to an action
on M(λ) with quotient Pn. Thus M(λ) is a small cover over Pn [7].

Two small covers M1 and M2 over Pn are said to be weakly equivariantly homeomorphic if there is an
automorphism φ : (Z2)n → (Z2)n and a homeomorphism f : M1 → M2 such that f (t · x) = φ(t) · f (x) for
every t ∈ (Z2)n and x ∈M1. If φ is an identity, then M1 and M2 are equivariantly homeomorphic. Following
[7], two small covers M1 and M2 over Pn are said to be Davis-Januszkiewicz equivalent (or simply, D-J
equivalent) if there is a weakly equivariant homeomorphism f : M1 →M2 covering the identity on Pn.

By Λ(Pn) we denote the set of all (Z2)n-colorings on Pn. Then we have

Theorem 2.1. (Davis-Januszkiewicz) All small covers over Pn are given by {M(λ)|λ ∈ Λ(Pn)}, i.e. for each small
cover Mn over Pn, there is a (Z2)n-coloringλwith an equivariant homeomorphism M(λ) −→Mn covering the identity
on Pn.

Remark 1. Generally speaking, we can’t make sure that there always exist small covers over a simple
convex polytope Pn when n ≥ 4. For example, see [7, Nonexample 1.22]. From [7], we know that there
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exists a small cover (i.e. a real projective space) over every simplex. Thus, there exists a small cover over a
product of simplices.

There is a natural action of GL(n,Z2) onΛ(Pn) defined by the correspondence λ 7−→ σ◦λ, and the action
on Λ(Pn) is free. Without loss of generality, we assume that F1, · · · ,Fn of F (Pn) meet at one vertex p of Pn.
Let e1, · · · , en be the standard basis of (Z2)n. Write A(Pn) = {λ ∈ Λ(Pn)|λ(Fi) = ei for i = 1, · · · ,n}. In fact,
A(Pn) is the orbit space of Λ(Pn) under the action of GL(n,Z2). Then we have

Lemma 2.2. |Λ(Pn)| = |A(Pn)| × |GL(n,Z2)|.

Note that |GL(n,Z2)| =
n∏

k=1

(
2n − 2k−1

)
[1]. Two small covers M(λ1) and M(λ2) over Pn are D-J equivalent

if and only if there is σ ∈ GL(n,Z2) such that λ1 = σ ◦ λ2. So the number of D-J equivalence classes of small
covers over Pn is |A(Pn)|.

Let Pn be a simple convex polytope of dimension n. All faces of Pn form a poset (i.e. a partially ordered
set by inclusion). An automorphism of F (Pn) is a bijection from F (Pn) to itself which preserves the poset
structure of all faces of Pn, and by Aut(F (Pn)) we denote the group of automorphisms of F (Pn). One can
define the right action of Aut(F (Pn)) on Λ(Pn) by λ × h 7−→ λ ◦ h,where λ ∈ Λ(Pn) and h ∈ Aut(F (Pn)). The
following theorem is well known [9].

Theorem 2.3. Two small covers over an n-dimensional simple convex polytope Pn are equivariantly homeomorphic
if and only if there is h ∈ Aut(F (Pn)) such that λ1 = λ2 ◦ h, where λ1 and λ2 are their corresponding (Z2)n-colorings
on Pn.

So the number of orbits of Λ(Pn) under the action of Aut(F (Pn)) is just the number of equivariant
homeomorphism classes of small covers over Pn. Thus, we are going to count the orbits. Burnside Lemma
is very useful in the enumeration of the number of orbits.

Burnside Lemma. Let G be a finite group acting on a set X. Then the number of orbits of X under the action of G
equals 1

|G|
∑
1∈G |X1|, where X1 = {x ∈ X|1x = x}.

Burnside Lemma suggests that we need to understand the structure of Aut(F (Pn)) in order to determine
the number of the orbits of Λ(Pn) under the action of Aut(F (Pn)).We shall particularly be concerned with
the case in which Pn is the product of m simplices.

In the following, let P = ∆(1)
k1
×· · ·×∆(i1)

k1
×∆(1)

k2
×· · ·×∆(i2)

k2
×· · ·×∆(1)

k j
×· · ·×∆(i j)

k j
,where∆(u)

ks
is a ks-simplex with

1 ≤ k1 < k2 < · · · < k j, i1 + · · ·+ i j = m and
j∑

s=1
isks = n. Suppose P1 = ∆

(1)
k1
× · · · ×∆(i1)

k1
, P2 = ∆

(1)
k2
× · · · ×∆(i2)

k2
, · · · ,

and P j = ∆
(1)
k j
×· · ·×∆(i j)

k j
. Then we have P = P1×P2×· · ·×P j andF (P) =

j∪
k=1

P1×· · ·×Pk−1×F (Pk)×Pk+1×· · ·×P j.

Let Si be the symmetry group of rank i. Then we arrive at

Theorem 2.4. The automorphism group Aut(F (P)) is isomorphic to (Sk1+1)i1×Si1×(Sk2+1)i2×Si2×· · ·×(Sk j+1)i j×Si j .

Proof. LetF1u1 = ∆
(1)
k1
×· · ·×∆(u1−1)

k1
×F (∆(u1)

k1
)×∆(u1+1)

k1
×· · ·×∆(i1)

k1
for 1 ≤ u1 ≤ i1. ThenF (P1) = F11

∪ · · ·∪F1i1 .

Obviously, the automorphism group Aut(F (∆(u)
k1

)) is isomorphic to Sk1+1 since there is exactly one automor-

phism for each permutation of k + 1 facets of ∆(u)
k1

. Thus, the automorphism group Aut(F (P1)) contains
a group (Sk1+1)i1 , each of which denotes an automorphism under which the facets in F11,F12, · · · ,F1i1 are
mapped into F11,F12, · · · ,F1i1 respectively. Aut(F (P1)) also contains a group Si1 because there is one au-
tomorphism for each permutation of F11,F12, · · · ,F1i1 . Each automorphism of Si1 is different from any
one of (Sk1+1)i1 . So the automorphism group Aut(F (P1)) � (Sk1+1)i1 × Si1 . Similarly we have Aut(F (P2))
� (Sk2+1)i2 × Si2 , · · · , and Aut(F (P j)) � (Sk j+1)i j × Si j .
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Since k1 < k2 < · · · < k j, under the automorphisms of Aut(F (P)) the facets of P1 × · · ·Pk−1 ×F (Pk)×Pk+1 ×
· · · × P j are mapped to P1 × · · ·Pk−1 × F (Pk) × Pk+1 × · · · × P j for 1 ≤ k ≤ j. Thus we have that Aut(F (P)) is
isomorphic to (Sk1+1)i1 × Si1 × (Sk2+1)i2 × Si2 × · · · × (Sk j+1)i j × Si j .

Let ∆n1 ,∆n2 and ∆n3 be n1−simplex, n2−simplex and n3−simplex respectively. From Theorem 2.4, we
have

Corollary 2.5. The automorphism group Aut(F (∆n1 × ∆n2 × ∆n3 )) is isomorphic to

Sn1+1 × Sn2+1 × Sn3+1 for n1 < n2 < n3,

Sn1+1 × Sn2+1 × Sn3+1 × S2 for n1 < n2 = n3,

Sn1+1 × Sn2+1 × S2 × Sn3+1 for n1 = n2 < n3,

Sn1+1 × Sn2+1 × Sn3+1 × S3 for n1 = n2 = n3,

and the automorphism group Aut(F (∆n1 × ∆n2 )) is isomorphic to Sn1+1 × Sn2+1 for n1 < n2,

Sn1+1 × Sn2+1 × S2 for n1 = n2.

Let us recall some basic definitions about acyclic digraphs [12]. A “digraph” means a graph with at
most one edge directed from any vertex vi to another vertex v j. An “acyclic” means there is no cycle of any
length. The outdegree of a vertex v, outde1(v), is the number of edges of the digraph with initial vertex v.

Let P = ∆(1)
k1
× · · · × ∆(i1)

k1
× ∆(1)

k2
× · · · × ∆(i2)

k2
× · · · × ∆(1)

k j
× · · · × ∆(i j)

k j
, where ∆(u)

ks
is a ks-simplex with

1 ≤ k1 < k2 < · · · < k j, i1 + · · · + i j = m and
j∑

s=1
isks = n. From [4, Theorem 2.8], we know that the number of

D-J equivalence classes of small covers over P is |A(P)| = ∑
G∈Gm

j∏
s=1

(2ks − 1)outde1(vi1+···+is−1+1)+···+outde1(vi1+···+is ), where

Gm is the set of acyclic digraphs with labeled m nodes and V(G) = {v1, · · · , vm} is the labeled vertex set of G.
By using Lemma 2.2, we have

Lemma 2.6. Let P = ∆(1)
k1
× · · · × ∆(i1)

k1
× ∆(1)

k2
× · · · × ∆(i2)

k2
× · · · × ∆(1)

k j
× · · · × ∆(i j)

k j
. Then the number of all colorings

on P is

|Λ(P)| =
n∏

t=1
(2n − 2t−1)

∑
G∈Gm

j∏
s=1

(2ks − 1)outde1(vi1+···+is−1+1)+···+outde1(vi1+···+is ),

where Gm and V(G) are as above.

Below we determine the number of equivariant homeomorphism classes of small covers over P if
2 ≤ k1 < k2 < · · · < k j.

Theorem 2.7. Let P = ∆(1)
k1
× · · · ×∆(i1)

k1
×∆(1)

k2
× · · · ×∆(i2)

k2
× · · · ×∆(1)

k j
× · · · ×∆(i j)

k j
. By E(P) we denote the number of

equivariant homeomorphism classes of small covers over P. If 2 ≤ k1 < k2 < · · · < k j, then

E(P) =

n∏
t=1

(2n−2t−1)
∑

G∈Gm

j∏
s=1

(2ks−1)
outde1(vi1+···+is−1+1)+···+outde1(vi1+···+is )

[(k1+1)!]i1×i1!×[(k2+1)!]i2×i2!×···×[(k j+1)!]i j×i j!
,

where Gm and V(G) are as above.

Proof. From Theorem 2.3, Burnside Lemma and Theorem 2.4, we have that

E(P) =
∑
1∈Aut(F (P)) |Λ1 |

[(k1+1)!]i1×i1!×[(k2+1)!]i2×i2!×···×[(k j+1)!]i j×i j!
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where Λ1 = {λ ∈ Λ(P)|λ = λ ◦ 1}.
By the linear independence condition of characteristic functions, we have that Λ1 is empty if 1 isn’t unit

element of the automorphism group Aut(F (P)). Thus,

E(P) = |Λ(P)|
[(k1+1)!]i1×i1!×[(k2+1)!]i2×i2!×···×[(k j+1)!]i j×i j!

The theorem is proved with Lemma 2.6.

Corollary 2.8. Let 2 ≤ n1 ≤ n2 ≤ n3. The number of equivariant homeomorphism classes of small covers over
∆n1 × ∆n2 × ∆n3 is E(∆n1 × ∆n2 × ∆n3 ) =

(1)

n1+n2+n3∏
t=1

(2n1+n2+n3−2t−1)

(n1+1)!(n2+1)!(n3+1)! (22n1+n2 +2n1+2n2 +22n1+n3 +2n1+2n3 +22n2+n3 +2n2+2n3 −22n1 −22n2 −22n3 −2n1+n2 −2n1+n3 −
2n2+n3 + 1) for n1 < n2 < n3,

(2)

n1+2n2∏
t=1

(2n1+2n2−2t−1)

2·(n1+1)![(n2+1)!]2 (22n1+n2+1 + 2n1+2n2+1 + 23n2+1 − 22n1 − 3 · 22n2 + 1 − 2n1+n2+1) for n1 < n2 = n3,

(3)

2n2+n3∏
t=1

(22n2+n3−2t−1)

2·[(n2+1)!]2(n3+1)! (22n2+n3+1 + 2n2+2n3+1 + 23n2+1 − 22n3 − 3 · 22n2 + 1 − 2n2+n3+1) for n1 = n2 < n3,

(4)

3n2∏
t=1

(23n2−2t−1)

6·[(n2+1)!]3 (6 · 23n2 − 6 · 22n2 + 1) for n1 = n2 = n3.

Corollary 2.9. Let 2 ≤ n1 ≤ n2. The number of equivariant homeomorphism classes of small covers over ∆n1 × ∆n2

is E(∆n1 × ∆n2 ) =
(2n1+2n2−1)

n1+n2∏
t=1

(2n1+n2−2t−1)

(n1+1)!(n2+1)! for 2 ≤ n1 < n2,

(2n1+1−1)
2n1∏
t=1

(22n1−2t−1)

2·[(n1+1)!]2 for 2 ≤ n1 = n2.

In the following, we consider the case n1 = 1 and m ≤ 3.

3. Colorings on ∆n1 × ∆n2 × ∆n3 and ∆1 × ∆n2

In order to determine the number of equivariant homeomorphism classes of small covers over∆1×∆n2 ×
∆n3 and ∆1 × ∆n2 , we calculate the number of colorings on ∆1 × ∆n2 × ∆n3 and ∆1 × ∆n2 .

Let F′1,F
′
2 be two vertices of 1-simplex ∆1. By F′3, · · · ,F′n2+3 we denote all facets of ∆n2 , and by

F′n2+4, · · · ,F′n2+n3+4 we denote all facets of∆n3 . SetF ′ = {Fi = F′i×∆n2×∆n3 |1 ≤ i ≤ 2},F ′′ = {Fi = ∆1×F′i×∆n3 |3 ≤
i ≤ n2 + 3} and F ′′′ = {Fi = ∆1 ×∆n2 × F′i |n2 + 4 ≤ i ≤ n2 + n3 + 4}. Then F (∆1 ×∆n2 ×∆n3 ) = F ′∪F ′′∪F ′′′.
We have

Theorem 3.1. The number of (Z2)n2+n3+1-colorings on ∆1 × ∆n2 × ∆n3 is

|Λ(∆1 × ∆n2 × ∆n3 )| = (22n2+n3 + 2n2+2n3 + 22n2 + 22n3 + 2n2+1 + 2n3+1 − 2n2+n3 − 3)
n2+n3+1∏

t=1
(2n2+n3+1 − 2t−1).

Proof. Let e1, e2, · · · , en2+n3+1 be the standard basis of (Z2)n2+n3+1. We choose F1 from F ′, choose F3, · · · ,Fn2+2
from F ′′ and choose Fn2+4, · · · , Fn2+n3+3 from F ′′′ such that they meet at one vertex of ∆1 × ∆n2 × ∆n3 . Then
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A(∆1 × ∆n2 × ∆n3 ) = {λ ∈ Λ(∆1 × ∆n2 × ∆n3 )|λ(F1) = e1, λ(Fi) = ei−1 for 3 ≤ i ≤ n2 + 2;λ(Fi) = ei−2 for
n2 + 4 ≤ i ≤ n2 + n3 + 3}.

By Lemma 2.2, we have that
|Λ(∆1 × ∆n2 × ∆n3 )| = |A(∆1 × ∆n2 × ∆n3 )| × |GL(n2 + n3 + 1,Z2)|

=
n2+n3+1∏

t=1
(2n2+n3+1 − 2t−1)|A(∆1 × ∆n2 × ∆n3 )|.

Write

A0(∆1 × ∆n2 × ∆n3 ) = {λ ∈ A(∆1 × ∆n2 × ∆n3 )|λ(F2) = e1},
A1(∆1 × ∆n2 × ∆n3 ) = {λ ∈ A(∆1 × ∆n2 × ∆n3 )| ∃ k1, · · · , ki such that λ(F2) = e1 + ek1 + · · · + eki , where

2 ≤ k1 < · · · < ki ≤ n2 + 1 and 1 ≤ i ≤ n2},
A2(∆1 × ∆n2 × ∆n3 ) = {λ ∈ A(∆1 × ∆n2 × ∆n3 )| ∃ t1, · · · , t j such that λ(F2) = e1 + et1 + · · · + et j , where

n2 + 2 ≤ t1 < · · · < t j ≤ n2 + n3 + 1 and 1 ≤ j ≤ n3},
A3(∆1 × ∆n2 × ∆n3 ) = {λ ∈ A(∆1 × ∆n2 × ∆n3 )| ∃ k1, · · · , ki, t1, · · · , t j such that λ(F2) = e1 + ek1 + · · · + eki + et1

+ · · · + et j ,where 2 ≤ k1 < · · · < ki ≤ n2 + 1,n2 + 2 ≤ t1 < · · · < t j ≤ n2 + n3 + 1, 1 ≤ i ≤ n2 and 1 ≤ j ≤ n3}.

By the definition of (Z2)n2+n3+1-colorings, we have |A(∆1 ×∆n2 ×∆n3 )| =
3∑

i=0
|Ai(∆1 ×∆n2 ×∆n3 )|. Then, our

argument is divided into the following cases.

Case 1. Calculation of |A0(∆1 × ∆n2 × ∆n3 )|.
By the linear independence condition of characteristic functions, we have λ(Fn2+3) = e2 + · · · + en2+1, e2 +

· · ·+en2+1+e1, e2+· · ·+en2+1+e11+· · ·+e1h or e2+· · ·+en2+1+e1+e11+· · ·+e1h ,where n2+2 ≤ 11 < · · · < 1h ≤ n2+n3+1
and 1 ≤ h ≤ n3. When λ(Fn2+3) = e2+ · · ·+ en2+1 or e2+ · · ·+ en2+1+ e1, by the linear independence condition of
characteristic functions, λ(Fn2+n3+4) = en2+2 + · · ·+ en2+n3+1 + ea1 + · · ·+ eas ,where 1 ≤ a1 < · · · < as ≤ n2 + 1 and
0 ≤ s ≤ n2+1. Whenλ(Fn2+3) = e2+· · ·+en2+1+e11+· · ·+e1h or e2+· · ·+en2+1+e1+e11+· · ·+e1h ,where n2+2 ≤ 11 <
· · · < 1h ≤ n2+n3+1 and 1 ≤ h ≤ n3, similarly we haveλ(Fn2+n3+4) = en2+2+· · ·+en2+n3+1 or en2+2+· · ·+en2+n3+1+e1.

Thus, we have |A0(∆1 × ∆n2 × ∆n3 )| = 2n2+2 + 2n3+2 − 4.

Case 2. Calculation of |A1(∆1 × ∆n2 × ∆n3 )|.
By the linear independence condition of characteristic functions, no matter which value ofλ(F2) is chosen,

we have λ(Fn2+3) = e2 + · · · + en2+1 or e2 + · · · + en2+1 + e11 + · · · + e1h ,where n2 + 2 ≤ 11 < · · · < 1h ≤ n2 + n3 + 1
and 1 ≤ h ≤ n3. When λ(Fn2+3) = e2 + · · · + en2+1, by the linear independence condition of characteristic
functions, λ(Fn2+n3+4) = en2+2 + · · ·+ en2+n3+1 + ea1 + · · ·+ eas ,where 1 ≤ a1 < · · · < as ≤ n2 + 1 and 0 ≤ s ≤ n2 + 1.
When λ(Fn2+3) = e2 + · · · + en2+1 + e11 + · · · + e1h , where n2 + 2 ≤ 11 < · · · < 1h ≤ n2 + n3 + 1 and 1 ≤ h ≤ n3,
similarly we have λ(Fn2+n3+4) = en2+2 + · · · + en2+n3+1.

Thus, we have |A1(∆1 × ∆n2 × ∆n3 )| = (2n2 − 1)(2n2+1 + 2n3 − 1).

Case 3. Calculation of |A2(∆1 × ∆n2 × ∆n3 )|.
By the linear independence condition of characteristic functions, no matter which value ofλ(F2) is chosen,

we haveλ(Fn2+3) = e2+· · ·+en2+1, e2+· · ·+en2+1+e1, e2+· · ·+en2+1+e11+· · ·+e1h or e2+· · ·+en2+1+e1+e11+· · ·+e1h ,
where n2 + 2 ≤ 11 < · · · < 1h ≤ n2 + n3 + 1 and 1 ≤ h ≤ n3. When λ(Fn2+3) = e2 + · · · + en2+1, we have
λ(Fn2+n3+4) = en2+2 + · · · + en2+n3+1 + ea1 + · · · + eas , where 2 ≤ a1 < · · · < as ≤ n2 + 1 and 0 ≤ s ≤ n2. When
λ(Fn2+3) = e2 + · · · + en2+1 + e1, e2 + · · · + en2+1 + e11 + · · · + e1h or e2 + · · · + en2+1 + e1 + e11 + · · · + e1h , where
n2 + 2 ≤ 11 < · · · < 1h ≤ n2 + n3 + 1 and 1 ≤ h ≤ n3, we have λ(Fn2+n3+4) = en2+2 + · · · + en2+n3+1.

Thus, we have |A2(∆1 × ∆n2 × ∆n3 )| = (2n3 − 1)(2n2 + 2n3+1 − 1).

Case 4. Calculation of |A3(∆1 × ∆n2 × ∆n3 )|.
By the linear independence condition of characteristic functions, no matter which value ofλ(F2) is chosen,
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we have λ(Fn2+3) = e2 + · · · + en2+1 or e2 + · · · + en2+1 + e11 + · · · + e1h ,where n2 + 2 ≤ 11 < · · · < 1h ≤ n2 + n3 + 1
and 1 ≤ h ≤ n3. When λ(Fn2+3) = e2 + · · · + en2+1, we have λ(Fn2+n3+4) = en2+2 + · · · + en2+n3+1 + ea1 + · · · + eas ,
where 2 ≤ a1 < · · · < as ≤ n2 + 1 and 0 ≤ s ≤ n2. When λ(Fn2+3) = e2 + · · · + en2+1 + e11 + · · · + e1h , where
n2 + 2 ≤ 11 < · · · < 1h ≤ n2 + n3 + 1 and 1 ≤ h ≤ n3, we have λ(Fn2+n3+4) = en2+2 + · · · + en2+n3+1.

Thus, we have |A3(∆1 × ∆n2 × ∆n3 )| = (2n2 − 1)(2n3 − 1)(2n2 + 2n3 − 1).
The proof is completed.

In the similar way, we can prove the following

Theorem 3.2. The number of (Z2)n2+1-colorings over ∆1 × ∆n2 is

|Λ(∆1 × ∆n2 )| = (2n2 + 1)
n2+1∏
t=1

(2n2+1 − 2t−1).

In fact, Choi obtained the above two theorems in [4, Example 2.9].

4. The number of small covers up to equivariant homeomorphism

In this section, we determine the number of equivariant homeomorphism classes of small covers over
∆1 × ∆n2 × ∆n3 and ∆1 × ∆n2 .

Theorem 4.1. The number of equivariant homeomorphism classes of small covers over ∆1 × ∆n2 × ∆n3 is E(∆1 ×
∆n2 × ∆n3 ) =

(1)

n2+n3+1∏
t=1

(2n2+n3+1−2t−1)

2·(n2+1)!(n3+1)! (22n2+n3 + 2n2+2n3 + 22n2 + 22n3 + 3 · 2n2+1 + 3 · 2n3+1 − 2n2+n3 − 7) for 1 < n2 < n3,

(2)

n2+n3+1∏
t=1

(2n2+n3+1−2t−1)

4·(n2+1)!(n3+1)! (22n2+n3 + 2n2+2n3 + 22n2 + 22n3 + 3 · 2n2+1 + 3 · 2n3+1 − 2n2+n3 − 7) for 1 < n2 = n3,

(3)

n3+2∏
t=1

(2n3+2−2t−1)

8·(n3+1)! (3 · 22n3 + 3 · 2n3+2 + 17) for 1 = n2 < n3,

(4) 259 for 1 = n2 = n3.

Proof. First we consider the case 1 < n2 < n3. From Theorem 2.3, Burnside Lemma and Corollary 2.5, we
have that when 1 < n2 < n3,

E(∆1 × ∆n2 × ∆n3 ) = 1
2·(n2+1)!(n3+1)!

∑
1∈Aut(F (∆1×∆n2×∆n3 )) |Λ1|,

where Λ1 = {λ ∈ Λ(∆1 × ∆n2 × ∆n3 )|λ = λ ◦ 1}.
From Corollary 2.5, when 1 < n2 < n3, the automorphism group Aut(F (∆1×∆n2×∆n3 )) � S2×Sn2+1×Sn3+1.

If 1 is the generator of S2-subgroup of Aut(F (∆1×∆n2×∆n3 )) andλ ∈ Λ1, thenλ(F1) = λ(F2). By the argument

of Case 1 in Theorem 3.1, we have |Λ1| = (2n2+2 + 2n3+2 − 4)
n2+n3+1∏

t=1
(2n2+n3+1 − 2t−1). If 1 isn’t the generator of

the S2-subgroup and isn’t unit element of Aut(F (∆1×∆n2 ×∆n3 )), then by the linear independence condition
of characteristic functions we know that Λ1 is empty. From Theorem 3.1 we have that when 1 < n2 < n3,

E(∆1 × ∆n2 × ∆n3 ) =

n2+n3+1∏
t=1

(2n2+n3+1−2t−1)

2·(n2+1)!(n3+1)! (22n2+n3 + 2n2+2n3 + 22n2 + 22n3 + 3 · 2n2+1 + 3 · 2n3+1 − 2n2+n3 − 7).

When 1 < n2 = n3, similarly we determine the number E(∆1 × ∆n2 × ∆n3 ).
Next we consider the case 1 = n2 < n3. From Theorem 2.3, Burnside Lemma and Corollary 2.5, we have

that when 1 = n2 < n3,
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E(∆1 × ∆1 × ∆n3 ) = 1
8·(n3+1)!

∑
1∈Aut(F (∆1×∆1×∆n3 )) |Λ1|,

where Λ1 = {λ ∈ Λ(∆1 × ∆1 × ∆n3 )|λ = λ ◦ 1}.
From Corollary 2.5, when 1 = n2 < n3, the automorphism group Aut(F (∆1×∆1×∆n3 )) � S2×S2×S2×Sn3+1.

If 1 is the generator a of the first S2-subgroup of Aut(F (∆1 × ∆1 × ∆n3 )) and λ ∈ Λ1, then λ(F1) = λ(F2). By

the argument of Case 1 in Theorem 3.1, we have |Λ1| = (2n3+2 + 4)
n3+2∏
t=1

(2n3+2 − 2t−1). If 1 is the generator b

of the second S2-subgroup of Aut(F (∆1 × ∆1 × ∆n3 )) and λ ∈ Λ1, then λ(F3) = λ(F4). By the argument of

Theorem 3.1, we also have |Λ1| = (2n3+2 + 4)
n3+2∏
t=1

(2n3+2 − 2t−1). If 1 is the automorphism ab and λ ∈ Λ1, then

λ(F1) = λ(F2) and λ(F3) = λ(F4). Similarly we have |Λ1| = 4
n3+2∏
t=1

(2n3+2 − 2t−1). If 1 is other automorphism and

isn’t unit element of Aut(F (∆1×∆1×∆n3 )), by the linear independence condition of characteristic functions,
we have that Λ1 is empty. From Theorem 3.1, we have that when 1 = n2 < n3,

E(∆1 × ∆1 × ∆n3 ) =

n3+2∏
t=1

(2n3+2−2t−1)

8·(n3+1)! (3 · 22n3 + 3 · 2n3+2 + 17).

When 1 = n2 = n3, ∆1 ×∆n2 ×∆n3 is a 3-cube I3 and the automorphism group Aut(F (I3)) � S3
2 × S3. From

[4], we know that there are 259 equivariant homeomorphism classes of small covers over I3.
The proof is completed.

Remark 2. When 2 ≤ n1 ≤ n2 ≤ n3, by calculating the number of colorings we can also determine the
number of equivariant homeomorphism classes of small covers over ∆n1 × ∆n2 × ∆n3 and the result is the
same as Corollary 2.8.

Similarly, we have

Theorem 4.2. The number of equivariant homeomorphism classes of small covers over ∆1 × ∆n2 is

E(∆1 × ∆n2 ) =


(2n2+3)

n2+1∏
t=1

(2n2+1−2t−1)

2·(n2+1)! for n2 > 1,

6 for n2 = 1.

5. Orientable small covers on the product of simplices

Nakayama and Nishimura found an orientability condition for a small cover [11].

Theorem 5.1. For a basis {e1, · · · , en} of (Z2)n, a homomorphism ε : (Z2)n −→ Z2 = {0, 1} is defined by ε(ei) =
1(i = 1, · · · ,n). A small cover M(λ) over a simple convex polytope Pn is orientable if and only if there exists a basis
{e1, · · · , en} of (Z2)n such that the image of ελ is {1}.

We call a (Z2)n-coloring which satisfies the orientability condition in Theorem 5.1 an orientable coloring
of Pn. We know that there exists an orientable small cover over every simple convex 3-polytope [11].
Similarly we can know the existence of orientable small covers over the product of at most three simplices
by existence of orientable colorings and determine the number of equivariant homeomorphism classes.

By O(Pn) we denote the set of all orientable colorings on Pn. There is a natural action of GL(n,Z2) on O(Pn)
defined by the correspondence λ 7−→ σ ◦ λ, and the action on O(Pn) is free. Assume that F1, · · · ,Fn of F (Pn)
meet at one vertex p of Pn. Let e1, · · · , en be the standard basis of (Z2)n. Write B(Pn) = {λ ∈ O(Pn)|λ(Fi) = ei
for i = 1, · · · ,n}. It is easy to check that B(Pn) is the orbit space of O(Pn) under the action of GL(n,Z2).

Remark 3. In fact, we have B(Pn) = {λ ∈ O(Pn)|λ(Fi) = ei for i = 1, · · · ,n, and for n+1 ≤ j ≤ ℓ, λ(F j) = e j1+e j2+
· · ·+e j2hj+1 ,where 1 ≤ j1 < j2 < · · · < j2h j+1 ≤ n}. Below we show thatλ(F j) = e j1+e j2+· · ·+e j2hj+1 for n+1 ≤ j ≤ ℓ.
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If λ ∈ O(Pn), there exists a basis {e′1, · · · , e′n} of (Z2)n such that for 1 ≤ i ≤ ℓ, λ(Fi) = e′i1 + · · · + e′i2 fi+1
, where

1 ≤ i1 < · · · < i2 fi+1 ≤ n. Since λ(Fi) = ei for i = 1, · · · ,n, we have ei = e′i1 + · · · + e′i2 fi+1
. So we obtain that for

n + 1 ≤ j ≤ ℓ, there aren’t j1, · · · , j2k such that λ(F j) = e j1 + · · · + e j2k ,where 1 ≤ j1 < · · · < j2k ≤ n.
Since B(Pn) is the orbit space of O(Pn), we have

Lemma 5.2. |O(Pn)| = |B(Pn)| × |GL(n,Z2)|.

Two orientable small covers M(λ1) and M(λ2) over Pn are D-J equivalent if and only if there is σ ∈
GL(n,Z2) such that λ1 = σ ◦λ2. Thus, the number of D-J equivalence classes of orientable small covers over
Pn is |B(Pn)|.

One can define the right action of Aut(F (Pn)) on O(Pn) by λ × h 7−→ λ ◦ h, where λ ∈ O(Pn) and
h ∈ Aut(F (Pn)). By improving the classifying result on small covers in [9], we have

Theorem 5.3. Two orientable small covers over an n-dimensional simple convex polytope Pn are equivariantly
homeomorphic if and only if there is h ∈ Aut(F (Pn)) such that λ1 = λ2 ◦ h, where λ1 and λ2 are their corresponding
orientable colorings on Pn.

Proof. We know Theorem 5.3 is true by combining Lemma 5.4 in [9] with Theorem 5.1.

By Theorem 5.3, the number of orbits of O(Pn) under the action of Aut(F (Pn)) is just the number of
equivariant homeomorphism classes of orientable small covers over Pn. So we also are going to count the
orbits.

In the similar way, we calculate the number of all orientable colorings on the product of m simplices for
m ≤ 3 by Theorem 5.1, Remark 3 and Lemma 5.2.

Theorem 5.4. By |O(∆n1 × ∆n2 × ∆n3 )| we denote the number of all orientable colorings on ∆n1 × ∆n2 × ∆n3 . Then
we have

(1) |O(∆n1×∆n2×∆n3 )| = (24u1+2u2−5+22u1+4u2−5+24u1+2u3−5+22u1+4u3−5+24u2+2u3−5+22u2+4u3−5−24u1−4−24u2−4−
24u3−4 − 22u1+2u2−3 − 22u1+2u3−3 − 22u2+2u3−3 + 1)

∏2u1+2u2+2u3−3
t=1 (22u1+2u2+2u3−3 − 2t−1) for n1 = 2u1 − 1,n2 = 2u2 − 1

and n3 = 2u3 − 1,

(2) |O(∆n1 × ∆n2 × ∆n3 )| = (24u1+2u2−5 + 22u1+4u2−5 + 24u1+2u3−4 + 24u2+2u3−4 − 24u1−4 − 24u2−4 − 22u1+2u2−3)∏2u1+2u2+2u3−2
t=1 (22u1+2u2+2u3−2 − 2t−1) for n1 = 2u1 − 1, n2 = 2u2 − 1 and n3 = 2u3,

(3) |O(∆n1 × ∆n2 × ∆n3 )| = (24u1+2u2−4 + 24u1+2u3−4 − 24u1−4)
∏2u1+2u2+2u3−1

t=1 (22u1+2u2+2u3−1 − 2t−1) for n1 =
2u1 − 1,n2 = 2u2 and n3 = 2u3,

(4) There exist no orientable colorings over ∆n1 × ∆n2 × ∆n3 for n1 = 2u1,n2 = 2u2 and n3 = 2u3.

Theorem 5.5. The number of all orientable colorings on ∆n1 × ∆n2 is |O(∆n1 × ∆n2 )| =

(22u1−2 + 22u2−2 − 1)
2u1+2u2−2∏

t=1
(22u1+2u2−2 − 2t−1) for n1 = 2u1 − 1 and n2 = 2u2 − 1,

22u1−2
2u1+2u2−1∏

t=1
(22u1+2u2−1 − 2t−1) for n1 = 2u1 − 1 and n2 = 2u2,

0 for n1 = 2u1 and n2 = 2u2.

Theorem 5.6. The number of all orientable colorings on ∆n1 is

|O(∆n1 )| =


2u1−1∏

t=1
(22u1−1 − 2t−1) for n1 = 2u1 − 1,

0 for n1 = 2u1.
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Similarly, we determine the number of equivariant homeomorphism classes of all orientable small
covers over the product of at most three simplices by Corollary 2.5, Burnside Lemma and Theorems 5.3-5.6.

Theorem 5.7. By Eo(∆n1 × ∆n2 × ∆n3 ) we denote the number of equivariant homeomorphism classes of orientable
small covers over ∆n1 × ∆n2 × ∆n3 . If n1 = 2u1 − 1,n2 = 2u2 − 1 and n3 = 2u3 − 1, then Eo(∆n1 × ∆n2 × ∆n3 ) =

(1)
|O(∆2u1−1×∆2u2−1×∆2u3−1)|

(2u1)!(2u2)!(2u3)! for u1 , u2,u1 , u3,u2 , u3 and u1, u2,u3 > 1,

(2)
|O(∆2u1−1×∆2u2−1×∆2u3−1)|

2·(2u1)!(2u2)!(2u3)! for u1 = u2,u1 , u3 and u1,u3 > 1,

(3)
|O(∆2u1−1×∆2u2−1×∆2u3−1)|

6·(2u1)!(2u2)!(2u3)! for u1 = u2 = u3 > 1,

(4) (24u2+2u3−5+22u2+4u3−5+24u2−4+24u3−4+22u2−1+22u3−1−22u2+2u3−3−1)

2u2+2u3−1∏
t=1

(22u2+2u3−1−2t−1)

2·(2u2)!(2u3)! for u1 = 1, u2 , u3

and u2,u3 > 1,

(5) (24u2+2u3−5 + 22u2+4u3−5 + 24u2−4 + 24u3−4 + 22u2−1 + 22u3−1 − 22u2+2u3−3 − 1)

2u2+2u3−1∏
t=1

(22u2+2u3−1−2t−1)

4·(2u2)!(2u3)! for u1 = 1
and u2 = u3 > 1,

(6) (3 · 24u3−4 + 22u3 + 5)

2u3+1∏
t=1

(22u3+1−2t−1)

8·(2u3)! for u1 = u2 = 1 and u3 > 1,

(7) 70 for u1 = u2 = u3 = 1.

Theorem 5.8. If n1 = 2u1 − 1,n2 = 2u2 − 1 and n3 = 2u3, then Eo(∆n1 × ∆n2 × ∆n3 ) =

(1)
|O(∆2u1−1×∆2u2−1×∆2u3 )|

(2u1)!(2u2)!(2u3+1)! for u1 , u2 and u1,u2 > 1,

(2)
|O(∆2u1−1×∆2u2−1×∆2u3 )|

2·(2u1)!(2u2)!(2u3+1)! for u1 = u2 > 1,

(3) (24u2+2u3−4 + 24u2−4 + 22u2−1 + 22u3+1 − 2)

2u2+2u3∏
t=1

(22u2+2u3−2t−1)

2·(2u2)!(2u3+1)! for u1 = 1 and u2 > 1,

(4) (22u3+2 + 4)

2u3+2∏
t=1

(22u3+2−2t−1)

8·(2u3+1)! for u1 = u2 = 1.

Theorem 5.9. If n1 = 2u1 − 1,n2 = 2u2 and n3 = 2u3, then Eo(∆n1 × ∆n2 × ∆n3 ) =

(1)
|O(∆2u1−1×∆2u2×∆2u3 )|
(2u1)!(2u2+1)!(2u3+1)! for u1 > 1 and u2 , u3,

(2)
|O(∆2u1−1×∆2u2×∆2u3 )|

2·(2u1)!(2u2+1)!(2u3+1)! for u1 > 1 and u2 = u3,

(3) (22u2+1 + 22u3+1 − 2)

2u2+2u3+1∏
t=1

(22u2+2u3+1−2t−1)

2·(2u2+1)!(2u3+1)! for u1 = 1 and u2 , u3,

(4) (22u2+1 + 22u3+1 − 2)

2u2+2u3+1∏
t=1

(22u2+2u3+1−2t−1)

4·(2u2+1)!(2u3+1)! for u1 = 1 and u2 = u3.

Theorem 5.10. If n1 = 2u1,n2 = 2u2 and n3 = 2u3, there exist no orientable small covers over ∆n1 × ∆n2 × ∆n3 .

Theorem 5.11. By Eo(∆n1 × ∆n2 ) we denote the number of equivariant homeomorphism classes of orientable small
covers over ∆n1 × ∆n2 . Then Eo(∆n1 × ∆n2 ) =
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|O(∆2u1−1×∆2u2−1)|
(2u1)!(2u2)! for n1 = 2u1 − 1 > 1,n2 = 2u2 − 1 > 1 and n1 , n2,

|O(∆2u1−1×∆2u2−1)|
2·(2u1)!(2u2)! for n1 = 2u1 − 1 > 1,n2 = 2u2 − 1 > 1 and n1 = n2,

(22u2−2 + 1)

2u2∏
t=1

(22u2−2t−1)

2·(2u2)! for n1 = 1 and n2 = 2u2 − 1 > 1,

3 for n1 = n2 = 1,
|O(∆2u1−1×∆2u2 )|

(2u1)!(2u2+1)! for n1 = 2u1 − 1 > 1 and n2 = 2u2,
2u2+1∏

t=1
(22u2+1−2t−1)

(2u2+1)! for n1 = 1 and n2 = 2u2,

0 for n1 = 2u1 and n2 = 2u2.

Theorem 5.12. By Eo(∆n1 ) we denote the number of equivariant homeomorphism classes of orientable small covers
over ∆n1 . Then Eo(∆n1 ) =

2u1−1∏
t=1

(22u1−1−2t−1)

(2u1)! for n1 = 2u1 − 1 > 1,

1 for n1 = 1,
0 for n1 = 2u1.

Remark 4. Actually all small covers over ∆2u1−1 are orientable, and the number of equivariant homeo-
morphism classes of orientable small covers over ∆2u1−1 is just the number of equivariant homeomorphism
classes of small covers over ∆2u1−1.
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