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Abstract. The research in this article continues the investigation of the cardinal functions Fθ and tθ for
absolutes of Hausdorff spaces. The relationship among the cardinal functions t, tθ, F and Fθ are obtained
for both of the Iliadis and Banaschewski absolutes for some well-known spaces.

1. Introduction

Absolutes play a major role in the study of Hausdorff spaces. The connection between an Hausdorff
space and its absolute is enhanced when the relationship between the cardinal functions of the Hausdorff
space and its absolute are known. The study of the connections for the two cardinal functions tθ and Fθ
(introduced and first studied in [8, 9]; see also [16]) and the established cardinal functions t and F was
started in [6] and continued in [7]. In this paper, the relationships are further developed for the Iliadis and
Banaschewski absolutes for some well-known subspaces of Rκ where κ is a cardinal.

2. Notations, terminologies and basic properties

Throughout this paper X will denote a Hausdorff space and τ(X) the topology on X. Our notation
and terminology are mainly as in [12] (for general topological notions), [2, 14, 15] (for cardinal functions),
[19, 21] (for H-closed spaces, H-closed extensions and absolutes of Hausdorff spaces) and in [6].

The Greek letters α, β, γ, ... are used to denote the infinite ordinal numbers and κ, λ, µ, ... are used to
denote the infinite cardinal numbers. With N, Q, J, R we respectively denote the sets of positive integer,
rational, irrational and real numbers with the usual topology. Also, by Iκ and Dκ we respectively denote
the Tychonoff cube and the Cantor cube of weight κ.

For a space X, recall that τ(X)(s) is the topology generated by the base RO(X) = {U ∈ τ(X) : U =
intX(clX(U))} (semiregularization of X). A space X is semiregular if its topology τ(X) coincides with the
topology τ(X)(s) and we denote it by X(s) (or Xs). Clearly, every T3-space X is semiregular (the converse is not
true).
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A function f : X → Y is θ-continuous if for each x ∈ X and open neighborhood V of f (x), there is an
open neighborhood U of x such that f (clX(U)) ⊆ clY(V). It easy to see that every continuous function is
θ-continuous (the converse is not true). A surjection f : X → Y is irreducible if for each closed set A ⊆ X,
if A , X, then f (A) , Y. Equivalently, f is irreducible if and only if for each nonempty open set U ∈ τ(X),
there is y ∈ Y such that f←(y) ⊆ U.

A space X is H-closed if X is closed in every Hausdorff space containing X as a subspace. Equivalently,
X is H-closed if every open cover U of X has a finite subfamily V whose union is dense in X (i.e.
X ⊆ clX(

∪
V∈V V)).

We need this well-known result (see [19]):

X is H-closed Urysohn if and only if Xs is compact Hausdorff.

A space X is extremally disconnected (or ED for short) if the closure of every open set is open or,
equivalently, if the closure of every open subset is clopen in X, i.e., in symbols CLOP(X) = RO(X).

It is easy to verify that

X is ED if and only if Xs is ED and Tychonoff.

([19]) For a space X, let X∗ = X ∪ {U : U is a free open ultrafilter on X}. Let κX be the set X∗ with the
topology generated by the base τ(X) ∪ {U ∪ {U} : U ∈ U ∈ X∗ \ X}, and σX be the set X∗ with the topology
generated by the base {o(U) : U ∈ τ(X)}where o(U) = U ∪ {U ∈ X∗ \X : U ∈ U}. Both spaces κX and σX are
H-closed extensions of X. κX is called the Katětov H-closed extension of X and σX is said the Fomin H-closed
extension of X. The identity function id : κX→ σX is continuous. The remainder of κX (= κX \ X) is discrete
and closed in κX, and the remainder of σX (= σX \X) is a zero-dimensional subspace of σX. If X is a Tychonoff
space, then κX ≥X σX ≥X βX where βX denote the Stone-Čech compactification of X. When X is Tychonoff,
κX = βX if and only if X is compact and σX = βX if and only if every closed nowhere dense subset of X is
compact. Also, we have that (κX)s = (σX)s.

([19]) Let X be a space and θX (called the Stone space generated by RO(X) or the Gleason cover of X) denote
the set of all open ultrafilters on X. For U ∈ τ(X) let oU = {U ∈ θX : U ∈ U} and the topology on θX
generated by {oU : U ∈ τ(X)} is ED and compact Hausdorff. The subspace EX = {U ∈ θX : a(U) , ∅} (called
the the Iliadis absolute of X) is dense, ED and T3 (hence 0-dimensional). We define kX : EX→ X by kX(U) = p
where a(U) = {p}. The function kX is onto, perfect, irreducible and θ-continuous. Also, the function kX is
continuous if and only if X is T3. Note that EX =

∪
p∈X k←X (p). In general, {oU∩ k←X (V) : U,V ∈ τ(X)} is a base

for a topology on EX (finer than τ(EX)). The set EX with this finer topology is denoted by PX (called the
Banaschewski absolute of X). The map ΠX : PX → X defined by ΠX(U) = kX(U) is onto, perfect, irreducible
and continuous. The space PX is ED but may not be T3 (hence not 0-dimensional). Also, τ(PX)(s) = τ(EX)
and when X is T3, PX = EX.

The following fact is well-known:

X is H-closed if and only if EX is compact if and only if PX is H-closed Urysohn.

For the Katětov H-closed extension κω of ω, note that P(κω) = κω and E(κω) = (P(κω))s = (κω)s = βω.
For the Fomin H-closed extension σω of ω, note that P(σω) = σω = P(βω) = βω and E(σω) = (P(σω))s =

(βω)s = βω.
For x ∈ X, t(x,X) = min{κ : ∀ A ⊂ X with x ∈ A ∃ B ⊂ A s.t. |B| ≤ κ and x ∈ B} is called the tightness of X

at x and tθ(x,X) = min{κ : ∀ A ⊂ X with x ∈ clθ(A) ∃ B ⊂ A s.t. |B| ≤ κ and x ∈ clθ(B)} is called the θ-tightness
of X at x ([8]). t(X) = supx∈X{t(x,X)} + ω is called the tightness of X and tθ(X) = supx∈X{tθ(x,X)} + ω is called
the θ-tightness of X ([8]).

A sequence (xα : α ∈ µ) in a space X is called a free sequence of length µ if for every α ∈ µ we have
clX{xβ : β < α} ∩ clX{xβ : β ≥ α} = ∅ and is called a θ-free sequence of length µ if for every α ∈ µwe have clθ{xβ :
β < α} ∩ clθ{xβ : β ≥ α} = ∅ ([8]). We define: F(X) = sup{µ : there is a free sequence of length µ in X} + ω
and Fθ(X) = sup{µ : there is a θ-free sequence of length µ in X} + ω ([8]).

We will need these properties.
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Proposition 1. Let X,Y be spaces.

(a) ([7]) Let {Xi}i∈I and {Yi}i∈I be two collections of spaces, X =
∏

i∈I Xi, Y =
∏

i∈I Yi. Suppose f =
∏

i∈I fi : X→ Y
where fi : Xi → Yi (for each i ∈ I) are surjections. Then, f is irreducible if and only if fi is irreducible for each i ∈ I.

(b) ([7]) Let p ∈ X and f : X → Y be a perfect, irreducible, θ-continuous surjection. Then, p is isolated in X if
and only if f (p) is isolated in Y.

(c) ([19]) Let X and Y be spaces and f : X → Y be perfect, irreducible, θ-continuous surjection. Then, EX and
EY are homeomorphic.

Here are some preliminary results that will be needed in this paper. Statements (a)-(b) are straightfor-
ward to verify.

Proposition 2. Let X be a space.

(a) Ifσ is a topology in X such thatσ ⊇ τ(X), then F(X) ≤ F(X, σ) (in particular F(Xs) ≤ F(X) and F(EX) ≤ F(PX));

(b) If X is T3, then tθ(X) = t(X) and Fθ(X) = F(X);

(c) ([1]) If X is compact Hausdorff, then F(X) = t(X);

(d) ([6]) If X is H-closed Urysohn, then

Fθ(X) = Fθ(Xs) = F(Xs) = tθ(X) = tθ(Xs) = t(Xs);

(e) ([14]) If X is T3, t(X) ≤ w(X) ≤ 2d(X).

Note. In [6], we constructed an H-closed space H for which Fθ(H) < tθ(H).

Proposition 3. ([7]) For a Hausdorff space X we have:

(a) F(PX) ≥ Fθ(PX) = F(EX) = Fθ(EX) ≥ Fθ(X),

(b) t(PX) = tθ(PX) = t(EX) = tθ(EX) ≥ tθ(X),

(c) EX is ED Tychonoff (and therefore semiregular) and PX is ED,

(d) if p ∈ X, then τ(EX)|k←X (p) = τ(PX)|Π←X (p).

Note 1.
(a) ([6, Example 12]) ω = t(κω) < c = tθ(κω) = Fθ(κω) < 2c = F(κω).
(b) ([14, Example 7.22]) As σω = βω, c = t(σω) = F(σω) = Fθ(σω) = tθ(σω).

Proposition 4. ([7]) Let X be a Hausdorff space and Y be ED.

(a) EY is homeomorphic to Ys and PY is homeomorphic to Y;

(b) If D is a discrete space such that |D| = d(Ys), then Ys can be embedded in βD and t(E) ≤ t(βE) ≤ t(βD) ≤
w(βD) ≤ 2|D| = 2d(E);

(c) A countable subset A of Ys is C∗-embedded in Ys. In particular, if B is an infinite compact subspace of Ys, then
B contains a copy of βω (i.e. Ys contains a subset C ≃ βω);

(d) if βω ↪→ Y, then |Y| ≥ 2c, t(Y) ≥ c and F(Y) ≥ c.

Proposition 5. ([7]) Let X be a space.

(a) If X is T3, then d(EX) = d(X),

(b) If X is separable, then EX is separable, |EX| ≤ 2c and t(EX) ≤ c,
(c) w(EX) ≤ 2w(X) and w(PX) ≤ 2w(X).



F. Cammaroto et al. / Filomat 27:5 (2013), 917–924 920

Here are additional preliminary results.

Proposition 6. (a) ([4]) If X is compact ED, then |X| = 2w(X), w(X) = t(X) and there is a continuous surjection
f : X→ Dw(X);

(b) ([6]) t(Dκ) = s(Dκ) = F(Dκ) = κ and t(Iκ) = s(Iκ) = F(Iκ) = κ.

3. Some results and examples

We start with the following lemma:

Lemma 1. Let X be a Hausdorff space and (pn)n∈ω a sequence converging to p ∈ X where pn , p for n ∈ ω. Then,
|k←X (p)| ≥ 2c.

Proof. As X is Hausdorff, there is an open set U1 ∈ τ(X) such that pn1 ∈ U1 and p < clXU1. So, let
n2 = inf{m : pm ∈ X \ clXU1}. Then, there is an open set U2 ∈ τ(X) such that pn2 ∈ U2, p < clXU2 and
U2 ⊆ X \ clXU1. So, let n3 = inf{m : pm ∈ X \ (clXU1 ∪ clXU2)}. Then, there is an open set U3 ∈ τ(X) such that
pn3 ∈ U3, p < clXU3 and U3 ⊆ X \ (clXU1 ∪ clXU2). Continuing by induction we obtain a subsequence (qn)n∈ω
of (pn)n∈ω and a family of pairwise disjoint sets {Un : n ∈ ω} such that qn ∈ Un and p < clXUn for n ∈ ω. Now,
letU ∈ βω \ ω and for A ∈ U, let UA =

∪
n∈A Un and FU = {UA : A ∈ U}. Note that

(i) FU is an open filterbase. If A,B ∈ U, UA ∩UB = UA∩B and A ∩ B ∈ U.

(ii) aX(FU) = {p}. Let T ∈ τ(X) and p ∈ T; there exists m ∈ ω such that {qn : n ≥ m} ⊆ T. In particular
T ∩Un , ∅ for all n ≥ m. If A ∈ U, A is infinite subset of ω and {qn : n ∈ A} ∩ T , ∅. Therefore T ∩UA , ∅.

(iii) Let GU be an open ultrafilter on X such that GU ⊇ FU ∪N o
p . So, aX(GU) = cX(GU) = {p} (GU ∈ EX).

(iv) Let V ∈ βω \ ω and V , U. Since V , U, there are A ∈ U and B ∈ V such that A ∩ B = ∅. Now,
UA ∩UB = ∅ and UA ∈ FU ⊆ GU and UB ∈ FV ⊆ GV. Thus, FU , FV.

(v) Now, consider the following map βω \ ω → k←X (p) defined byU 7→ FU . This function in 1-to-1 and
thus |k←X (p)| ≥ |βω \ ω| = 2c.

Proposition 7. Let X be a Hausdorff space containing a convergent sequence (pn)n∈ω → p where pn , p ∈ X for
n ∈ ω. Then:

(a) βω ↪→ k←X (p) ⊆ EX, |EX| ≥ 2c, t(EX) ≥ c, and F(EX) ≥ c;

(b) For κ ≥ ω, βω ↪→ EXκ;

(c) |PX| ≥ 2c, t(PX) ≥ c, and F(PX) ≥ c.

Proof. (a) By previous lemma, k←X (p) is infinite. By Proposition 4(c,d) βω ↪→ k←X (p), |EX| ≥ 2c, t(EX) ≥ c, and
F(EX) ≥ c.

(b) Let f ∈ Xκ be defined by f (α) = p for α < κ. Also, for n ∈ ω, let fn ∈ Xκ be defined by

fn(α) =

p if α , 0,
pn if α = 0.

Then fn → f in Xκ. By (a), βω ↪→ k←X ( f ) ⊆ EXκ.

(c) By (a) and Proposition 3(d), βω ↪→ Π←X (p). By Proposition 4(d), |PX| ≥ 2c, t(PX) ≥ c, and F(PX) ≥ c.

Corollary 1. For a second countable space X, we have two cases:

(a) If X is discrete, EX = PX = X and Fθ(EX) = F(EX) = tθ(EX) = t(EX) = Fθ(PX) = F(PX) = tθ(PX) =
t(PX) = ω;

(b) If X is not discrete, Fθ(EX) = F(EX) = tθ(EX) = t(EX) = Fθ(PX) = F(PX) = tθ(PX) = t(PX) = c.
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Proof. (a) As X is second countable and discrete, X = N is both ED and semiregular. By Proposition 4(a),
we have that PX = EX = X.

(b) Follows from Propositions 5(b) and 7(a,c)

An immediate application of Corollary 1 is the computation of Fθ(EX), Fθ(PX), tθ(EX) and tθ(PX) when
X is one of the well-known spaces ofN, Q, J and R.

Corollary 2.
(a) Fθ(EN) = F(EN) = tθ(EN) = t(EN) = Fθ(PN) = F(PN) = tθ(PN) = t(PN) = ω,

(b) Fθ(EQ) = F(EQ) = tθ(EQ) = t(EQ) = Fθ(PQ) = F(PQ) = tθ(PQ) = t(PQ) = c,

(c) Fθ(EJ) = F(EJ) = tθ(EJ) = t(EJ) = Fθ(PJ) = F(PJ) = tθ(PJ) = t(PJ) = c,

(d) Fθ(ER) = F(ER) = tθ(ER) = t(ER) = Fθ(PR) = F(PR) = tθ(PR) = t(PR) = c.

Now, the next goal is to compute the cardinal functions Fθ and tθ for EIκ (Iκ is the Tychonoff cube of
weight κ) and EDκ (Dκ is the Cantor cube of weight κ) where κ ≥ ω.

The function f : Dω → I defined by x 7→ ∑i∈ω
x(i)
2i+2 is a continuous closed and open surjection (see 4.3

in [10]). By 6.5(c) in [19], there is a closed subset A ⊆ Dω such that f |A : A → I is an irreducible perfect
surjection. Now, by Proposition 1(b) A has no isolated points. So, A is second countable and compact
Hausdorff. By 3.3(e) in [19], A is homeomorphic to Dω. Thus, we have a continuous, perfect irreducible
surjection 1 : Dω → I.

Theorem 1. For κ ≥ ω, EDκ and EIκ are homeomorphic.

Proof. By Proposition 1(a), there is a continuous, perfect irreducible surjection φ : Dκ → Iκ. Then, by
Proposition 1(c), EDκ ≃ EIκ.

Proposition 8. For κ ≥ ω, we have:

(a) βω ↪→ EDκ,

(b) d(EDκ) = d(Dκ) = logκ = inf{λ : 2λ ≥ κ},
(c) κ = F(Dκ) ≤ F(EDκ) = t(EDκ) ≤ 2d(EDκ) = 2logκ.

Proof. (a) By Proposition 7(b).

(b) As Dκ is T3, by Proposition 5(b), we have that d(EDκ) = d(Dκ). By 11.8(d) in [14], d(Dκ) = logκ =
inf{λ : 2λ ≥ κ}.

(c) By Proposition 13(a) in [6], t(Dκ) = κ. By Proposition 2(c), t(Dκ) = F(Dκ). By Propositions 2(b) and
3(a), F(Dκ) ≤ F(EDκ). By Proposition 2(c), F(EDκ) = t(EDκ), and by Proposition 2(e) t(EDκ) ≤ 2d(EDκ) = 2logκ

(the last inequality by (b)).

Corollary 3. [GCH] If κ is a successor cardinal, then t(EDκ) = F(EDκ) = κ.

Proof. If κ = µ+, logκ ≤ µ and 2logκ ≤ 2µ. By [GCH], 2µ = µ+ = κ. So, κ ≤ t(EDκ) ≤ 2logκ ≤ 2µ = κ.

Compare the next result with Proposition 6(b).

Proposition 9. If ω ≤ κ ≤ c, then t(EDκ) = F(EDκ) = c.

Proof. Let ω ≤ κ ≤ c. By the Hewitt-Marczewski-Pondiczery theorem, Dκ is separable as κ ≤ c. By
Proposition 5(b), EDκ is separable too and t(EDκ) ≤ c. Now, by Proposition 8(a), βω ↪→ EDκ. So,
c = t(βω) ≤ t(EDκ) = (by Theorem 1) = t(EDκ).
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Corollary 4. t(EDω) = t(EDω1 ) = t(EDc) = F(EDω) = F(EDω1 ) = F(EDc) = c.

The following result indicates that t(EDω2 ) = F(EDω2 ) depends on the set theory model.

Note 2.
(a) [¬CH] t(EDω2 ) = F(EDω2 ) = c ≥ ω2.

(b) [GCH] t(EDω2 ) = F(EDω2 ) = ω2 > c = ω1.

The next result is the ω-version of the combinatorial principle due to Tarski (for details see 2.1 in [14]).

Lemma 2. ([14]) There is a family A = {Aα : α < c} ⊆ P(ω) such that |A| = c, |Aα| = ω for each Aα ∈ A (with
α ∈ c), and the intersection of any two distinct elements ofA is finite (i.e. |Aα ∩ Aβ| < ω for α < β < c).

Is there a relationship between Fθ(EX) and tθ(EX)? By Proposition 2(b), as Fθ(EX) = F(EX) and tθ(EX) =
t(EX), this question is equivalent to asking if there is a relationship between F(EX) and t(EX)? By Proposition
4(a), if X is ED and Tychonoff, EX is homeomorphic to X. Thus, the latter question is equivalent to asking if
there is a relationship between F(E) and t(E) for an arbitrary ED, semiregular space E? In the first example,
we construct an ED, semiregular space X such that t(X) < F(X).

Example 1. The space X will be a dense subspace of βω. Apply Lemma 2 (with ω1 instead of c) to obtain
a family A = {Aα : α < ω1} ⊆ [ω]ω such that Aα ∩ Aβ is finite whenever α < β < ω1. Now, we have that
clβωAα∩clβωAβ ⊆ ω is finite. So, for each α < ω1 we select a point pα ∈ clβωAα \ω and let X = ω∪{pα : α < ω1}
(it is easy to see that |X| = ω1 and X is ED and semiregular). Also, ω ⊆ X ⊆ βω and X\ω = {pα : α < ω1} is
closed. Moreover, as clβωAα is clopen in βω, clβωAα ∩ X = {pα} ∪ Aα. Then, X\ω is closed and discrete and
therefore F(X) = |X\ω| = ω1. To compute t(X), let B ⊆ X and p ∈ clXB\B and, as every point of ω is isolated,
p < ω and therefore p ∈ X\ω. So, p = pα for some α < ω1 and we note pα ∈ clβωAα. So, clβωAα ∩ B ⊆ ω and
finally t(X) = ω. That is, X is ED and semiregular and t(X) < F(X).

We do not know whether there is an ED, semiregular space X such that F(X) < t(X). We can find a ED
space Y that is not semiregular such that F(Y) < t(Y) and will present this result in the next example.

Example 2. The definition of Y starts with I = [0, 1] where τ(I) is the usual topology. Then Y = E[0, 1] with
this finer topology:

τ(E[0, 1]) is generated by B = {oU \ F : U ∈ τ(I),F ∈ [EI]≤c}.

First we need this fact:

Claim 1. clY(oU \ F) = oU.

Proof. As oU (basic open set in EI) is closed in EI (with |oU| = 2c), oU is closed in Y. Let U ∈ oU,
then U ∈ U. Now, let U ∈ oV \ G where G ∈ [EI]≤c. Then, V ∈ U, U ∩ V ∈ U and (oU \ F) ∩ (oV \ G) =
(oU ∩ oV) \ (F ∪ G) = o(U ∩ V) \ (F ∪ G). Now, F ∪ G ∈ [EI]≤c and then o(U ∩ V) \ (F ∪ G) , ∅. Thus,
U ∈ clY(oU \ F) and clY(oU \ F) = oU. △

By Claim 1, we have that Ys = EI and note that Y is ED, H-closed and Urysohn (but not semiregular).
Also, by By Proposition 2(d) and Corollary 1, Fθ(Y) = Fθ(Ys) = F(Ys) = F(EI) = c = tθ(Y) = tθ(Ys) = t(Ys) =
t(EI) = c. So, it remains only to calculate F(Y) and t(Y). At first, we have that c = Fθ(Y) ≤ F(Y) by Proposition
2(a). By Proposition 4(b) EI ⊆ βω. As hL(βω) ≤ w(βω) = c, it follows that hL(EI) = c and for each B ⊆ EI,
L(B) ≤ c. Now let {xα}α∈c+ be a free sequence in Y. Call B = {xα}α∈c+ , then L(B) ≤ c. We are ready for the
second step.

Claim 2. There is a point b ∈ B such that if b ∈ oU ∈ τ(EI) then |oU ∩ B| = c+ (b is a complete accumulation
point).
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Proof. Assume the contrary: for each p ∈ B, there exists oUp ∈ τ(EI) such that p ∈ oUp and |oUp ∩ B| ≤ c.
The open cover {oUp}p∈B of B has a subcover of size c and there is a subset A ⊂ B with |A| = c such that
B ⊆ ∪p∈A oUp. Then B =

∪
p∈A(oUp ∩ B) and, as A and oUp ∩ B have size c, B have cardinality c. But this is

not possible as |B| = c+. △

By Claim 2, there is a β < c+ such that xβ is a complete accumulation of B in EI. For B′ = {xα : α > β},
xβ < clYB′. There exists U ∈ τ(I) and F ∈ [EI]≤c such that (oU \ F) ∩ B′ = ∅ and xβ ∈ oU \ F. Also,
(oU \ F)∩ B ⊆ B \ B′ = {xα : α ≤ β}. Now, oU ∩ B ⊆ ((oU \ F)∩ B)∪ F = {xα : α ≤ β} ∪ F where |{xα : α ≤ β}| = c
and |F| = c. This contradicts that |oU ∩ B| = c+ and completes the proof that F(Y) ≤ c. Now, let B ⊆ Y where
B = oU \ {p} with p ∈ oU. It easy to see that p ∈ clYB and let G ∈ [B]≤c, (oU \ G) ∩ G , ∅ and p < clYG. Then,
t(Y) ≥ c+. On the other hand, let A ⊆ Y with p ∈ clYA \ A. Suppose |A| > c+ and, for each U ∈ τ(I) and
p ∈ oU, |oU ∩ A| ≥ c+. Now, let BU ⊆ oU ∩ A such that |BU | = c+ and consider B =

∪
U∈τ(I),p∈oU BU. We have

that B ⊆ A, |B| = c+ and p ∈ clYB. Thus, t(Y) = c+.

Is there a relationship between Fθ(PX) and tθ(PX)? Is there a relationship between F(PX) and t(PX)?
These two questions are related by Proposition 3(a,b) as F(PX) ≥ Fθ(PX) = F(EX) and t(PX) ≥ tθ(PX) = t(EX).
Again, using Proposition 4(a), the first question can be reformulated as whether there is a relationship
between Fθ(E) and tθ(E) for an arbitrary ED space E and the second question is whether there is a relationship
between F(E) and t(E) for an arbitrary ED space E. The ED space X in Example 1 shows that t(X) = tθ(X) <
F(X) = Fθ(X) and there is no relationship in one direction in response to both questions. The ED space Y in
Example 2 shows that F(Y) < t(Y) and completes the proof that there is no relationship between F(PX) and
t(PX). The relationship question of whether tθ(PX) ≤ Fθ(PX) is true for all spaces X is unanswered.

The relationship stated in Proposition 3(a,b) that F(PX) ≥ Fθ(PX) and t(PX) ≥ tθ(PX) maybe strict. For
X = κω, X is ED, PX = X, EX = Xs = βω, and c = Fθ(X) < F(X) = 2c. For Y = (E[0, 1], τ(B)) constructed in
Example 2, Y is ED, PY = Y, EY = Ys = EI, and c = tθ(Y) < t(Y) = c+.

By Corollary 1, we know that for second countable space X, Fθ(EX) = F(EX) = tθ(EX) = t(EX) =
Fθ(PX) = F(PX) = tθ(PX) = t(PX) = κwhere κ is ω (if X is discrete) or c (if X is not discrete). So, the natural
question is whether in ZFC, there is a non second countable space X for which Fθ(EX) = F(EX) = tθ(EX) =
t(EX) = Fθ(PX) = F(PX) = tθ(PX) = t(PX) = ω1?

Example 3. We start with the space X = ω ∪ {pα : α < ω1} from Example 1 and note that ω ⊆ E ⊆ βω
and t(X) = ω < ω1 = F(X). The subset B = X\ω has a complete accumulation point q ∈ βω. Also, if
q ∈ U ∈ CLOP(βω) then, |U ∩ B| = ω1 and U = clβω(U ∩ ω). In particular U ∩ X = clβω(U ∩ ω) ∩ X. Now, let
X′ = X ∪ {q} ⊆ βω (it is easy to see that |X′| = ω1 and X′ is ED, semiregular). Also, F(X′) = t(X′) = ω1. That
is, by adding only one point, namely q, to X, we increase the tightness from ω to ω1.

We conclude this paper with this interesting H-closed result and a comment about the absolute of
H-closed spaces in general.

Example 4. In this example our goal is to determine the behavior of the cardinal functions F, Fθ, t and tθ
for the well-known Urysohn’s H-closed example (see [20] or 4.8(d) in [19] for details) and for its Iliadis
and Banaschewski absolutes. Let Y = N × Z ⊆ R2 with the subspace topology inherited from the usual
topology on the plane R2. Now, let X = Y ∪ {p, q}where p = (0, 1) and q = (0,−1) are points in the plane.

A subset U ⊆ X is defined to be open if:

(i) p ∈ U implies there is m ∈N such that {n} ×N ⊆ U for all n ≥ m,

(ii) q ∈ U implies there is m ∈N such that {n} ×N− ⊆ U for all n ≥ m, and

(iii) (n, 0) ∈ U implies there is m ∈N such that (n, k) ∈ U for all |k| ≥ m.

Thus, all the points of D = X \ ((N× {0})∪ {p, q}) are isolated. The space X is H-closed and semiregular (i.e.,
minimal Hausdorff) but neither compact nor Urysohn. Also, as all open sets in X are countable, we have
that F(X) = Fθ(X) = t(X) = tθ(X) = ω. As the space X is second countable but not discrete, by Corollary
1(b), we have that F(EX) = Fθ(EX) = F(PX) = Fθ(PX) = t(EX) = tθ(EX) = t(PX) = tθ(PX) = c.
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We are able to obtain some cardinality results about the Iliadis absolute of H-closed spaces in general.
Let X be an H-closed space. Then EX is a compact ED space. By Proposition 6, Fθ(EX) = F(EX) = tθ(EX) =
t(EX) = w(EX), |EX| = |PX| = 2w(EX) and there is a continuous surjection f : EX→ Dw(EX).
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