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Available at: http://www.pmf.ni.ac.rs/filomat

Unicity theorem for entire functions sharing one value
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Abstract. In the paper, we study the uniqueness of entire functions concerning certain nonlinear differential
polynomials sharing one value and obtain two theorems which improve and supplement the related results
due to X.Y. Zhang, J.F. Chen and W.C. Lin [Comput. Math. Appl., 56(2008), 1876-1883] and J.F. Chen, X.Y.
Zhang, W.C. Lin and S.J. Chen [Comput. Math. Appl., 56(2008), 3000-3014].

1. Introduction, Definitions and Results

Let f and 1 be two nonconstant meromorphic functions defined in the open complex plane C. It is
assumed that the reader is familiar with the standard notations of value distribution theory which can be
found, for instance, in [6, 12]. We denote by S(r, f ) any quantity satisfying S(r, f ) = o{T(r, f )} as r → ∞
possibly outside a set of finite linear measure.

Let f (z) be a nonconstant meromorphic functions defined in the open complex plane C and a ∈ {∞} ∪C.
We set E(a; f ) = {z : f (z) − a = 0}, where a zero point of multiplicity m is counted m times in the set. If
the zeros are counted only once, then we denote the set by E(a; f ). For a positive integer k we denote by
Ek)(a; f ) the set of those a-points of f with their multiplicities ≤ k, and each a-point of f with multiplicity m
is counted m times, denote by Ek)(a; f ) the reduced form of Ek)(a; f ).

Let f and 1 be two nonconstant meromorphic functions. We say that f and 1 share the value a CM
(counting multiplicities) if f−a and 1−a have the same zeros with the same multiplicities, i.e., E(a; f ) = E(a; 1).
If we do not consider the multiplicities, then we say that f and 1 share the value a IM (ignoring multiplicities),
i.e., E(a; f ) = E(a; 1).

Corresponding to one famous question of W.K. Hayman [5], M.L. Fang and X.H. Hua [3], C.C. Yang and
X.H. Hua [11] showed that similar conclusions hold for certain types of differential polynomials when they
share one value. They proved the following result.

Theorem A. Let f and 1 be two nonconstant entire functions, n ≥ 6 be a positive integer. If f n f ′ and 1n1′ share
1 CM, then either f (z) = c1ecz, 1(z) = c2e−cz, where c1, c2 and c are three constants satisfying (c1c2)n+1c2 = −1 or
f ≡ t1 for a constant t such that tn+1 = 1.

In 2000, Xu and Qiu [9] improved the above result by deriving the following result.

Theorem B. Let f and 1 be two nonconstant entire functions, n ≥ 12 be a positive integer. If f n f ′ and 1n1′ share 1
IM, then either f (z) = c1ecz, 1(z) = c2e−cz, where c1, c2 and c are three constants satisfying (c1c2)n+1c2 = −1 or f ≡ t1
for a constant t such that tn+1 = 1.
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In 2002, considering kth derivative instead of 1st derivative, M.L. Fang [4] proved the following theo-
rems.

Theorem C. [4] Let f and 1 be two nonconstant entire functions, and let n, k be two positive integers with n > 2k+4.
If [ f n](k) and [1n](k) share 1 CM, then either f (z) = c1ecz, 1(z) = c2e−cz, where c1, c2 and c are three constants satisfying
(−1)k(c1c2)n(nc)2k = 1 or f ≡ t1 for a constant t such that tn = 1.

Theorem D. [4] Let f and 1 be two nonconstant entire functions, and let n, k be two positive integers with n ≥ 2k+8.
If [ f n( f − 1)](k) and [1n(1 − 1)](k) share 1 CM, then f ≡ 1.

In 2008, X.Y. Zhang, J.F. Chen and W.C. Lin [13] proved the following uniqueness theorem for entire
functions concerning certain general nonlinear differential polynomials.

Theorem E. [13] Let f and 1 be two nonconstant entire functions and let n, m and k be three positive integers with
n ≥ 2k + 3m + 5. Let P(z) = amzm + am−1zm−1 + ... + a1z + a0 or P(z) = c0, where a0 , 0, a1, ... ,am−1, am , 0, c0 , 0
are complex constants. If [ f nP( f )](k) and [1nP(1)](k) share 1 CM, then
(i) when P(z) = amzm + am−1zm−1 + ... + a1z + a0, either f (z) ≡ t1(z) for a constant t such that td = 1, where
d = (n+m, ..., n+m− i, ..., n), am−i , 0 for some i = 0, 1, 2, ...,m or f and 1 satisfy the algebraic equation R( f , 1) ≡ 0,
where

R(x, y) = xn(amxm + am−1xm−1 + ... + a0) − yn(amym + am−1ym−1 + ... + a0);

(ii) when P(z) = c0, either f (z) = c1/c
1
n
0 ecz, 1(z) = c2/c

1
n
0 e−cz, where c1, c2 and c are three constants satisfying

(−1)k(c1c2)n(nc)2k = 1 or f ≡ t1 for a constant t such that tn = 1.

Now following question arises.

Question 1.1. Whether CM sharing value can be replaced by IM sharing value in Theorems C, D and E ?

In 2008, J.F. Chen, X.Y. Zhang, W.C. Lin and S.J. Chen [2] answered the above question for Theorems C
and D. They proved the following four theorems.

Theorem F. Let f and 1 be two nonconstant entire functions, and let n, k be two positive integers with n > 5k+ 7. If
[ f n](k) and [1n](k) share 1 IM, then either f (z) = c1ecz, 1(z) = c2e−cz, where c1, c2 and c are three constants satisfying
(−1)k(c1c2)n(nc)2k = 1 or f ≡ t1 for a constant t such that tn = 1.

Theorem G. Let f and 1 be two nonconstant entire functions, and let n, k be two positive integers with n > 5k+ 13.
If [ f n( f − 1)](k) and [1n(1 − 1)](k) share 1 IM, then f ≡ 1.

Theorem H. Let f and 1 be two nonconstant entire functions and let n, m and k be three positive integers. If
Em)

(
1; ( f n)(k)

)
= Em)

(
1; (1n)(k)

)
, and

(i) if m = 1 and n > 4k + 6, then either f (z) = c1ecz, 1(z) = c2e−cz, where c1, c2 and c are three constants satisfying
(−1)k(c1c2)n(nc)2k = 1 or f ≡ t1 for a constant t such that tn = 1; or
(ii) if m = 2 and n > 5k+9

2 , then either f (z) = c1ecz, 1(z) = c2e−cz, where c1, c2 and c are three constants satisfying
(−1)k(c1c2)n(nc)2k = 1 or f ≡ t1 for a constant t such that tn = 1; or
(iii) if m ≥ 3 and n > 2k + 4, then either f (z) = c1ecz, 1(z) = c2e−cz, where c1, c2 and c are three constants satisfying
(−1)k(c1c2)n(nc)2k = 1 or f ≡ t1 for a constant t such that tn = 1.

Theorem I. Let f and 1 be two nonconstant entire functions, and let n, k and m be three positive integers. If
Em)

(
1; ( f n( f − 1))(k)

)
= Em)

(
1; (1n(1 − 1))(k)

)
, and

(i)if m = 1 and n > 4k + 11, then f ≡ 1; or
(ii)if m = 2 and n > 5k+16

2 , then f ≡ 1; or
(iii)if m ≥ 3 and n > 2k + 7, then f ≡ 1.

Now it is natural to ask the following questions which are the motivation of the author.
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Question 1.2. Is it possible to replace CM sharing value by IM sharing value in Theorem E ?

Question 1.3. Whether one can deduce a generalised result in which all the results of J.F. Chen, X.Y. Zhang, W.C.
Lin and S.J. Chen stated above will be included ?

In the paper we will concentrate our attention on the above questions and provide an affirmative solution
in this direction. We will prove two theorems second one of which will not only improve Theorem E but
also improve and supplement Theorems H and I. Our first theorem will improve and supplement Theorems
F and G. We now state the main results of the paper.

Theorem 1.4. Let f and 1 be two nonconstant entire functions and let n, m and k be three positive integers. Let
P(z) = amzm + am−1zm−1 + ... + a1z + a0 or P(z) = c0, where a0(, 0), a1, ... ,am−1, am(, 0), c0(, 0) are complex
constants. If [ f nP( f )](k) and [1nP(1)](k) share 1 IM and n > 5k + 6m+ 7, then the conclusions (i) and (ii) of Theorem
E hold.

Theorem 1.5. Let f and 1 be two nonconstant entire functions, and let n, m, k and p be four positive integers. Let
P(z) = amzm + am−1zm−1 + ... + a1z + a0 or P(z) = c0, where a0(, 0), a1, ... ,am−1, am(, 0), and c0(, 0) are complex
constants. Let Ep)

(
1; ( f nP( f ))(k)

)
= Ep)

(
1; (1nP(1))(k)

)
. Then the conclusions (i) and (ii) of Theorem E hold in each of

the following cases:
(i) p = 1, and n > 4k + 5m + 6; or
(ii) p = 2 and n > 5k+7m+9

2 ; or
(iii) p ≥ 3 and n > 2k + 3m + 4.

Remark 1.6. Theorem 1.5 is an improvement of Theorem E.

Remark 1.7. If we put P(z)= Constant = 1, then we see that Theorems F and H are the special cases of Theorem 1.4
and 1.5 respectively. Hence Theorems 1.4 and 1.5 improves Theorems F and H respectively.

Remark 1.8. If we put P(z) = z − 1, then we see that Theorems G and I are the special cases of Theorems 1.4 and 1.5
respectively. Thus Theorems 1.4 and 1.5 improves Theorems G and I respectively.
In this case R( f , 1) = 0 implies

f n( f − 1) = 1n(1 − 1).

Suppose f . 1. Let h = f
1
. Then

1 =
hn − 1

hn+1 − 1
.

Thus we deduce by Picard’s theorem that h is a constant since 1 is an entire function. Hence, 1 is a constant, which
is a contradiction. Therefore, f ≡ 1.

Though the standard definitions and notations of the value distribution theory are available in [6], we
explain some definitions and notations which are used in the paper.

Definition 1.9. [7] For a ∈ {∞} ∪ C we denote by N(r, a; f |= 1) the counting functions of simple a-points of f . For
a positive integer p we denote by N(r, a; f |≤ p)

(
N(r, a; f |≥ p)

)
the counting function of those a-points of f (counted

with multiplicities) whose multiplicities are not greater (less) than p, where each a-point is counted according to its
multiplicity. N(r, a; f |≤ p) and N(r, a; f |≥ p) are defined similarly, where in counting the a-points of f we ignore the
multiplicities. Also N(r, a; f |< p) and N(r, a; f |> p) are defined analogously.

Definition 1.10. [8] Let p be a positive integer or infinity. We denote by Np(r, a; f ) the counting function of a-points
of f , where an a-point of multiplicity m is counted m times if m ≤ p and p times if m > p. Then

Np(r, a; f ) = N(r, a; f ) +N(r, a; f |≥ 2) + ... +N(r, a; f |≥ p).

Definition 1.11. Let f and 1 be two nonconstant meromorphic functions such that f and 1 share the value 1 IM. We
define by N11(r, a; f ) the counting function for common simple 1-points of f and 1 where multiplicity is not counted.

Definition 1.12. Let f and 1 be two nonconstant meromorphic functions such that f and 1 share the value 1 IM. Let z0

be a 1-point of f with multiplicity p, a 1-point of 1with multiplicity q. We denote by NL(r, 1; f ) the counting function
of those 1-points of f and 1 where p > q, with multiplicity being not counted. NL(r, 1; 1) is defined analogously.
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2. Lemmas and Propositions

In this section we present some lemmas and propositions which will be needed in the sequel.

Proposition 2.1. [2] Let f (z) and 1(z) be two nonconstant entire functions and let n, k be two positive integers
with n > k. If [ f n](k)[1n](k) ≡ 1, then f (z) = c1ecz, 1(z) = c2e−cz, where c1, c2 and c are three constants satisfying
(−1)k(c1c2)n(nc)2k = 1.

Proposition 2.2. [13] Let f (z) and 1(z) be two nonconstant entire functions and let n, k be two positive integers
with n > k, and let P(z) = amzm + am−1zm−1 + ... + a2z2 + a1z + a0 be a nonzero polynomial, where a0, a1, a2, . . .
, am−1, am are complex constants. If [ f nP( f )](k)[1nP(1)](k) ≡ 1, then P(z) is reduced to a nonzero monomial, that is,

P(z) = aizi . 0 for some i = 0, 1, 2, ...,m; further, f (z) = c1/a
1

n+i
i ecz, 1(z) = c2/a

1
n+i
i e−cz, where c1, c2 and c are three

constants satisfying

(−1)k(c1c2)n+i[(n + i)c]2k = 1.

Proposition 2.3. [13] Let f be a transcendental entire function, and n, m, k be three positive integers such that
n ≥ k + 2, and P(z) = amzm + am−1zm−1 + ...+ a2z2 + a1z + a0, where a0, a1, a2, . . . , am−1, am are complex constants.
Then [ f nP( f )](k) = 1 has infinitely many solutions.

Lemma 2.4. [10] Let f be a nonconstant meromorphic function and let an(z)(. 0), an−1(z), ... , a0(z) be meromorphic
functions such that T(r, ai(z)) = S(r, f ) for i = 0, 1, 2, ..., n. Then

T(r, an f n + an−1 f n−1 + ... + a1 f + a0) = nT(r, f ) + S(r, f ).

Lemma 2.5. [6, 12] Let f be a transcendental entire function, and let k be a positive integer. Then for any non-zero
finite complex number c

T(r, f ) ≤ N(r, 0; f ) +N(r, c; f (k)) −N(r, 0; f (k+1)) + S(r, f )

≤ Nk+1(r, 0; f ) +N(r, c; f (k)) −N0(r, 0; f (k+1)) + S(r, f ),

where N0(r, 0; f (k+1)) denotes the counting function which only counts those points such that f (k+1) = 0 but f ( f (k)−c) ,
0.

Lemma 2.6. [1] For two positive integers p and k

Np(r, 0; f (k)) ≤ Np+k(r, 0; f ) + kN(r,∞; f ) −
∞∑

m=p+1

N
(
r, 0;

f (k)

f
|≥ m

)
+ S(r, f ).

Lemma 2.7. [6, 12] Let f be a transcendental meromorphic function, and let a1(z), a2(z) be two distinct meromorphic
functions such that T(r, ai(z)) = S(r, f ), i=1,2. Then

T(r, f ) ≤ N(r,∞; f ) +N(r, a1; f ) +N(r, a2; f ) + S(r, f ).

Lemma 2.8. [2] Let f and 1 be two nonconstant entire functions, and let p and k be two positive integers. If f (k) and
1(k) share 1 IM, then one of the following two cases holds:
(i)

T(r, f ) + T(r, 1) ≤ 2
[
Nk+1(r, 0; f ) +Nk+1(r, 0; 1) +N(r, 0; f ) +N(r, 0; 1)

]
+3

[
NL

(
r, 1; f (k)

)
+NL

(
r, 1; 1(k)

)]
+ S(r, f ) + S(r, 1);

(ii) 1
f (k)−1 =

b1(k)+a−b
1(k)−1 ,

where a , 0, b are two constants.
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Lemma 2.9. Let f and 1 be two nonconstant entire functions, and let p and k be two positive integers. If Ep)

(
1, f (k)

)
=

Ep)

(
1, 1(k)

)
, then one of the following two cases holds:

(i)

T(r, f ) + T(r, 1) ≤ Nk+1(r, 0; f ) +Nk+1(r, 0; 1) +N(r, 0; f )

+N(r, 0; 1) +N
(
r, 1; f (k)

)
+N

(
r, 1; 1(k)

)
−N11

(
r, 1; f (k)

)
+N

(
r, 1; f (k) |≥ p + 1

)
+N

(
r, 1; 1(k) |≥ p + 1

)
+ S(r, f ) + S(r, 1);

(ii) 1
f (k)−1 =

b1(k)+a−b
1(k)−1 ,

where a , 0, b are two constants.

Proof. Let

H(z) =
F′′

F′
− 2F′

F − 1
− G′′

G′
+

2G′

G − 1
. (1)

where F ≡ f (k) and G ≡ 1(k). Since Ep)

(
1, f (k)

)
= Ep)

(
1, 1(k)

)
, from (1) we see that if z0 is a common simple

1-point of F and G, then it is a zero of H. Now we consider two cases: H(z) . 0 and H(z) ≡ 0. Let H(z) . 0.
Then we have

N11(r, 1; F) = N11(r, 1; G) ≤ N(r, 0; H) ≤ T(r,H) +O(1)
≤ N(r,∞; H) + S(r, f ) + S(r, 1). (2)

It is easy to see that H(z) have poles only at zeros of F′ and G′ and 1-points of F whose multiplicities are not
equal to the multiplicities of the corresponding 1-points of G. So from (1) we have

N(r,∞; H) ≤ N(r, 0; f ) +N(r, 0; 1) +N(r, 1; F |≥ p + 1)

+N(r, 1; G |≥ p + 1) +N0(r, 0; F′) +N0(r, 0; G′), (3)

where N0(r, 0; F′) and N0(r, 0; G′) has the same meaning as in Lemma 2.5. By Lemma 2.5 we have

T(r, f ) ≤ Nk+1(r, 0; f ) +N(r, 1; F) −N0(r, 0; F′) + S(r, f ), (4)

and

T(r, 1) ≤ Nk+1(r, 0; 1) +N(r, 1; G) −N0(r, 0; G′) + S(r, 1). (5)

Using (2), (3), (4) and (5) we obtain

T(r, f ) + T(r, 1) ≤ Nk+1(r, 0; f ) +Nk+1(r, 0; 1) +N(r, 1; F)

+N(r, 1; G) −N0(r, 0; F′) −N0(r, 0; G′)
+S(r, f ) + S(r, 1)

≤ Nk+1(r, 0; f ) +Nk+1(r, 0; 1) +N(r, 1; F)

+N(r, 1; G) +N(r, 0; f ) +N(r, 0; 1)

−N11(r, 1; F) +N(r, 1; F |≥ p + 1)

+N(r, 1; G |≥ p + 1) + S(r, f ) + S(r, 1),

which is (i).
If H(z) ≡ 0, then from (1) we obtain

F′′

F′
− 2F′

F − 1
≡ G′′

G′
− 2G′

G − 1
.
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Integrating both sides twice we get

1
F − 1

≡ bG + a − b
G − 1

,

where a(, 0) and b are constants, which is (ii).

Lemma 2.10. Let f be a nonconstant meromorphic function, and let n, m and k be positive integers with n > k. If
P(z) = amzm + am−1zm−1 + ... + a2z2 + a1z + a0, where a0, a1, a2, . . . , am−1, am are complex constants, then

N
(
r, 1; [ f nP( f )](k)

)
−N

(
r, 1; [ f nP( f )](k)

)
≤ (k + 1)[N(r, 0; f ) +N(r,∞; f )]

+mT(r, f ) + S(r, f ).

Proof. We put F = [ f nP( f )](k). Then using Lemma 2.6 we have

N(r, 1; F) −N(r, 1; F) ≤ N
(
r,∞;

F
F′

)
≤ N

(
r,∞;

F′

F

)
+ S(r, f )

≤ N(r, 0; F) +N(r,∞; f ) + S(r, f )

≤ Nk+1
(
r, 0; [ f nP( f )]

)
+ (k + 1)N(r,∞; f ) + S(r, f )

≤ Nk+1(r, 0; f n) +Nk+1
(
r, 0; P( f )

)
+ (k + 1)N(r,∞; f ) + S(r, f )

≤ (k + 1)
[
N(r, 0; f ) +N(r,∞; f )

]
+mT(r, f ) + S(r, f ).

3. Proofs of the Theorems

Proof. [Proof of Theorem 1.5] Let P(z) = amzm + am−1zm−1 + ... + a1z + a0, where a0 , 0, a1, ... ,am−1, am , 0 are
complex constants. We consider F(z) = f nP( f ) and G(z) = 1nP(1).
(i) Let p = 1. Then by Lemma 2.10 we have

N
(
r, 1; F(k) |≥ 2

)
≤ N

(
r, 1; F(k)

)
−N

(
r, 1; F(k)

)
≤ (k + 1)N(r, 0; f ) +mT(r, f ) + S(r, f ).

Similarly, we have

N
(
r, 1; G(k) |≥ 2

)
≤ (k + 1)N(r, 0; 1) +mT(r, 1) + S(r, 1).

Suppose (i) of Lemma 2.9 holds for F and G. Then

T(r,F) + T(r,G) ≤ Nk+1(r, 0; F) +Nk+1(r, 0; G) +N(r, 0; F)

+N(r, 0; G) +N
(
r, 1; F(k)

)
+N

(
r, 1; G(k)

)
−N11

(
r, 1; F(k)

)
+N

(
r, 1; F(k) |≥ 2

)
+N

(
r, 1; G(k) |≥ 2

)
+ S(r,F) + S(r,G). (6)

Now it is clear that

Nk+1(r, 0; F) ≤ Nk+1(r, 0; f n) +Nk+1(r, 0; P( f ))

≤ (k + 1)N(r, 0; f ) +mT(r, f ),

Nk+1(r, 0; G) ≤ (k + 1)N(r, 0; 1) +mT(r, 1),
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N(r, 0; F) ≤ N(r, 0; f ) +mT(r, f ),

N(r, 0; G) ≤ N(r, 0; 1) +mT(r, 1),

N
(
r, 1; F(k)

)
≤ 1

2
N

(
r, 1; F(k) |≤ 1

)
+

1
2

N
(
r, 1; F(k)

)
,

N
(
r, 1; G(k)

)
≤ 1

2
N

(
r, 1; G(k) |≤ 1

)
+

1
2

N
(
r, 1; G(k)

)
,

N11

(
r, 1; F(k)

)
= N

(
r, 1; F(k) |≤ 1

)
= N

(
r, 1; G(k) |≤ 1

)
,

N
(
r, 1; F(k)

)
≤ T

(
r, F(k)

)
+O(1)

≤ T(r,F) + S(r, f )
≤ (n +m)T(r, f ) + S(r, f ),

N
(
r, 1; G(k)

)
≤ T

(
r,G(k)

)
+O(1)

≤ (n +m)T(r, 1) + S(r, 1).

So from (6) we obtain

(n +m)[T(r, f ) + T(r, 1)] ≤ 2(k + 1)N(r, 0; f ) + 2mT(r, f ) + 2(k + 1)N(r, 0; 1)

+2mT(r, 1) +N(r, 0; f ) +mT(r, f ) +N(r, 0; 1)

+mT(r, 1) +
n +m

2
T(r, f ) +

n +m
2

T(r, 1)

+S(r, f ) + S(r, 1),

i.e., [n
2
− (2k +

5
2

m + 3)
]
{T(r, f ) + T(r, 1)} ≤ S(r, f ) + S(r, 1),

which is a contradiction because n > 4k + 5m + 6. Hence by Lemma 2.9 we have

1
F(k) − 1

=
bG(k) + a − b

G(k) − 1
, (7)

where a , 0, b are two constants. We now discuss the following three cases seperately.

Case 3.1. Let b , 0 and a = b. Then from (7) we get

1
F(k) − 1

=
bG(k)

G(k) − 1
. (8)

If b = −1, then from (8) we obtain

F(k)G(k) = 1,

i.e., [
f n(am f m + ... + a0)

](k) [
1n(am1

m + ... + a0
](k) = 1,

which by the assumptions and Proposition 2.2 is a contradiction.
If b , −1, then it follows from (8) and the fact that f and 1 are entire that

F(k) −
(
1 +

1
b

)
= − 1

bG(k)
, 0.
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So using Lemma 2.5 we get

(n +m)T(r, f ) = T(r,F) +O(1)
≤ Nk+1(r, 0; F) + S(r, f )

≤ (k + 1)N(r, 0; f ) +mT(r, f ) + S(r, f )
≤ (k + 1 +m)T(r, f ) + S(r, f ),

i.e.,

[n − (k + 1)]T(r, f ) ≤ S(r, f ),

which is a contradiction as n > 4k + 5m + 6.

Case 3.2. Let b , 0 and a , b. Then from (7) we get

G(k) +
a − b

b
= − a

b2(F(k) − (1 + 1
b ))
, 0.

So by Lemma 2.5 we have

(n +m)T(r, 1) = T(r,G) +O(1)
≤ Nk+1(r, 0; G) + S(r,G).

Proceeding as Case 3.1 we obtain

[n − (k + 1)]T(r, 1) ≤ S(r, 1),

which is again a contradiction as n > 4k + 5m + 6.

Case 3.3. Let b = 0 and a , 0. Then from (7) we obtain

F(k) =
1
a

G(k) + 1 − 1
a
, (9)

i.e.,

F =
1
a

G + ϕ(z), (10)

where ϕ(z) is a polynomial of degree at most k. By (10) and Lemma 2.4 we can say that

T(r, f ) = T(r, 1) + S(r, f ). (11)

By the assumptions and Proposition 2.3, it is clear that both f and 1 are transcendental entire functions or both are
polynomials. First we suppose that both f and 1 are transcendental entire functions. If ϕ(z) . 0, then by Lemma 2.7,
(10) and (11) we obtain

(n +m)T(r, f ) = T(r,F) +O(1)

≤ N(r, 0; F) +N(r, 0; G) + S(r, f )
≤ 2(m + 1)T(r, f ) + S(r, f ),

which is a contradiction because n > 4k + 5m + 6. Hence in this case ϕ(z) ≡ 0.
Now we assume that both f and 1 are polynomials. We suppose that f and 1 have γ and δ pairwise distinct zeros
respectively. Then f and 1 are of the form

f (z) = c(z − a1)l1 (z − a2)l2 ...(z − aγ)lγ ,

1(z) = d(z − b1)m1 (z − b2)m2 ...(z − bδ)mδ ,

so that

f n(z) = cn(z − a1)nl1 (z − a2)nl2 ...(z − aγ)nlγ , (12)
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1n(z) = dn(z − b1)nm1 (z − b2)nm2 ...(z − bδ)nmδ , (13)

where c and d are nonzero constants, nli > 4k + 5m + 6, nm j > 4k + 5m + 6, i = 1, 2, ..., γ, and j = 1, 2, ..., δ.
Differentiating (9) we obtain

F(k+1) =
1
a

G(k+1),

i.e.,

(am f n+m)(k+1) + ... + (a0 f n)(k+1) =
1
a

[
(am1

n+m)(k+1) + ... + (a01
n)(k+1)

]
. (14)

Using (12) and (13), (14) can be written as

(z − a1)nl1−(k+1)(z − a2)nl2−(k+1)...(z − aγ)nlγ−(k+1)p1(z) = (z − b1)nm1−(k+1)

(z − b2)nm2−(k+1)...(z − bδ)nmδ−(k+1)p2(z), (15)

where p1(z) and p2(z) are polynomials such that de1p1 = m
γ∑

i=1

li + (γ − 1)(k + 1)

and de1p2 = m
δ∑

j=1

m j + (δ − 1)(k + 1), respectively. Now

γ∑
i=1

[nli − (k + 1)] −m
γ∑

i=1

li =
γ∑

i=1

[(n −m)li − (k + 1)]

> γ(3k + 4m + 5)
> (γ − 1)(k + 1),

i.e.,
γ∑

i=1

[nli − (k + 1)] > m
γ∑

i=1

li + (γ − 1)(k + 1).

Similarly,

δ∑
j=1

[nm j − (k + 1)] > m
δ∑

j=1

m j + (δ − 1)(k + 1).

Thus from (15) we deduce that there is α such that

f n(α)
[
am f m(α) + ... + a1 f (α) + a0

]
= 1n(α)

[
am1

m(α) + ... + a11(α) + a0
]
= 0,

where α has multiplicity greater than 4k + 5m + 6. This together with (10) implies ϕ(z) = 0. Thus from (9) and (10)
we obtain a = 1 and so

f n [
am f m + ... + a1 f + a0

] ≡ 1n [
am1

m + ... + a11 + a0
]
. (16)

Let h = f
1
. If h is a constant, by putting f = 1h in (16) we get

am1
n+m(hn+m − 1) + am−11

n+m−1(hn+m−1 − 1) + ... + a01
n(hn − 1) = 0,

which implies hd = 1, where d = (n +m, ..., n +m − i, ..., n), am−i , 0 for some i = 0, 1, ...,m. Thus f (z) ≡ t1(z) for a
constant t such that td = 1, d = (n +m, ..., n +m − i, ..., n), am−i , 0 for some i = 0, 1, ...,m.

If h is not a constant, then from (16) we can say that f and 1 satisfy the algebraic equation R( f , 1) = 0, where

R(x, y) = xn(amxm + am−1xm−1 + ... + a0) − yn(amym + am−1ym−1 + ... + a0).

This completes the proof for p = 1.
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(ii) Let p = 2. By Lemma 2.10 we have

N
(
r, 1; F(k) |≥ 3

)
≤ 1

2

[
N

(
r, 1; F(k)

)
−N

(
r, 1; F(k)

)]
≤ (k + 1)

2
N(r, 0; f ) +

m
2

T(r, f ) + S(r, f ).

Similarly, we have

N
(
r, 1; G(k) |≥ 3

)
≤ (k + 1)

2
N(r, 0; 1) +

m
2

T(r, 1) + S(r, 1).

Suppose (i) of Lemma 2.9 holds for F and G. Then

T(r,F) + T(r,G) ≤ Nk+1(r, 0; F) +Nk+1(r, 0; G) +N(r, 0; F)

+N(r, 0; G) +N
(
r, 1; F(k)

)
+N

(
r, 1; G(k)

)
−N11

(
r, 1; F(k)

)
+N

(
r, 1; F(k) |≥ 3

)
+N

(
r, 1; G(k) |≥ 3

)
+ S(r,F) + S(r,G). (17)

Now it is clear that

Nk+1(r, 0; F) ≤ (k + 1)N(r, 0; f ) +mT(r, f ),

Nk+1(r, 0; G) ≤ (k + 1)N(r, 0; 1) +mT(r, 1),

N(r, 0; F) ≤ N(r, 0; f ) +mT(r, f ),

N(r, 0; G) ≤ N(r, 0; 1) +mT(r, 1),

N
(
r, 1; F(k)

)
+

1
2

N
(
r, 1; F(k) |≥ 3

)
≤ 1

2
N

(
r, 1; F(k) |≤ 1

)
+

1
2

N
(
r, 1; F(k)

)
,

N
(
r, 1; G(k)

)
+

1
2

N
(
r, 1; G(k) |≥ 3

)
≤ 1

2
N

(
r, 1; G(k) |≤ 1

)
+

1
2

N
(
r, 1; G(k)

)
,

N11

(
r, 1; F(k)

)
= N

(
r, 1; F(k) |≤ 1

)
= N

(
r, 1; G(k) |≤ 1

)
,

N
(
r, 1; F(k)

)
≤ T

(
r, F(k)

)
+O(1)

≤ (n +m)T(r, f ) + S(r, f ),

N
(
r, 1; G(k)

)
≤ T

(
r,G(k)

)
+O(1)

≤ (n +m)T(r, 1) + S(r, 1).

So from (17) we obtain

(n +m)[T(r, f ) + T(r, 1)] ≤ (k + 1)N(r, 0; f ) +mT(r, f ) + (k + 1)N(r, 0; 1)

+mT(r, 1) +N(r, 0; f ) +mT(r, f ) +N(r, 0; 1)

+mT(r, 1) +
n +m

2
T(r, f ) +

n +m
2

T(r, 1)

+
k + 1

4
N(r, 0; f ) +

m
4

T(r, f ) +
k + 1

4
N(r, 0; 1) +

m
4

T(r, 1)

+S(r, f ) + S(r, 1),
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i.e., (
n
2
− 5k + 7m + 9

4

)
{T(r, f ) + T(r, 1)} ≤ S(r, f ) + S(r, 1),

contradicts with the fact that n > 5k+7m+9
2 . Hence by Lemma 2.9 we have

1
F(k) − 1

=
bG(k) + a − b

G(k) − 1
,

where a , 0, b are two constants. Now, by using the argument as in (i) before, we can prove the case when
p = 2.
(iii) Let p ≥ 3. Suppose (i) of Lemma 2.9 holds for F and G. Then

T(r,F) + T(r,G) ≤ Nk+1(r, 0; F) +Nk+1(r, 0; G) +N(r, 0; F)

+N(r, 0; G) +N
(
r, 1; F(k)

)
+N

(
r, 1; G(k)

)
−N11

(
r, 1; F(k)

)
+N

(
r, 1; F(k) |≥ p + 1

)
+N

(
r, 1; G(k) |≥ p + 1

)
+ S(r,F) + S(r,G). (18)

Now it is clear that

Nk+1(r, 0; F) ≤ (k + 1)N(r, 0; f ) +mT(r, f ),

Nk+1(r, 0; G) ≤ (k + 1)N(r, 0; 1) +mT(r, 1),

N(r, 0; F) ≤ N(r, 0; f ) +mT(r, f ),

N(r, 0; G) ≤ N(r, 0; 1) +mT(r, 1),

N
(
r, 1; F(k)

)
+N

(
r, 1; F(k) |≥ p + 1

)
≤ 1

2
N

(
r, 1; F(k) |≤ 1

)
+

1
2

N
(
r, 1; F(k)

)
,

N
(
r, 1; G(k)

)
+N

(
r, 1; G(k) |≥ p + 1

)
≤ 1

2
N

(
r, 1; G(k) |≤ 1

)
+

1
2

N
(
r, 1; G(k)

)
,

N11

(
r, 1; F(k)

)
= N

(
r, 1; F(k) |≤ 1

)
= N

(
r, 1; G(k) |≤ 1

)
,

N
(
r, 1; F(k)

)
≤ (n +m)T(r, f ) + S(r, f ),

N
(
r, 1; G(k)

)
≤ (n +m)T(r, 1) + S(r, 1).

So by (18) we obtain

(n +m)[T(r, f ) + T(r, 1)] ≤ (k + 1)N(r, 0; f ) +mT(r, f ) + (k + 1)N(r, 0; 1)

+mT(r, 1) +N(r, 0; f ) +mT(r, f ) +N(r, 0; 1)

+mT(r, 1) +
n +m

2
T(r, f ) +

n +m
2

T(r, 1)

+S(r, f ) + S(r, 1),

i.e., (
n
2
− 2k + 3m + 4

2

)
{T(r, f ) + T(r, 1)} ≤ S(r, f ) + S(r, 1),
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a contradiction with n > 2k + 3m + 4. Hence by Lemma 2.9 and by using the argument as in (i) before, we
can prove the case for p ≥ 3.

We omit the proof the case when P(z) = c0, where c0(, 0) is a complex constant, since using Proposition
2.1 and proceeding in the same way the proof can be carried out in the line of proof as before in each cases
(p = 1, p = 2, p ≥ 3). This completes the proof of Theorem 1.5.

Proof. [Proof of Theorem 1.4] Let P(z) = amzm + am−1zm−1 + ...+ a1z+ a0, where a0(, 0), a1, ... ,am−1, am(, 0) are
complex constants; F(z) = f nP( f ) and G(z) = 1nP(1). Clearly F(k) and G(k) share the value 1 IM. We suppose
that F and G satisfy (i) of Lemma 2.8. Then

T(r,F) + T(r,G) ≤ 2
[
Nk+1(r, 0; F) +Nk+1(r, 0; G) +N(r, 0; F) +N(r, 0; G)

]
+3

[
NL

(
r, 1; F(k)

)
+NL

(
r, 1; G(k)

)]
+S(r,F) + S(r,G). (19)

By Lemma 2.10, we have

NL

(
r, 1; F(k)

)
≤ N

(
r, 1; F(k)

)
−N

(
r, 1; F(k)

)
≤ (k + 1)N(r, 0; f ) +mT(r, f ) + S(r, f ).

Similarly, we obtain

NL

(
r, 1; G(k)

)
≤ (k + 1)N(r, 0; 1) +mT(r, 1) + S(r, 1).

Nk+1(r, 0; F) ≤ (k + 1)N(r, 0; f ) +mT(r, f ),

Nk+1(r, 0; G) ≤ (k + 1)N(r, 0; 1) +mT(r, 1),

N(r, 0; F) ≤ N(r, 0; f ) +mT(r, f ),

N(r, 0; G) ≤ N(r, 0; 1) +mT(r, 1).

Hence from (19) we get

[n − (5k + 6m + 7)]{T(r, f ) + T(r, 1)} ≤ S(r, f ) + S(r, 1),

a contradiction with n > 5k + 6m + 7. Thus by Lemma 2.8 and by using the argument as in (i) of Theorem
1.5, we can easily obtain the result of Theorem 1.4.
We omit the proof when P(z) = c0, where c0 , 0 is a complex constant, since the proof is similar one as the
case in Theorem 1.5. This completes the proof of Theorem 1.4.
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