New Extended Weyl Type Theorems and Polaroid Operators

Il Ju An ${ }^{\text {a }}$, Young Min Han ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, College of Sciences, Kyung Hee University, Seoul 130-701, Republic of Korea
${ }^{b}$ Department of Mathematics, College of Sciences, Kyung Hee University, Seoul 130-701, Republic of Korea

Abstract

In this paper we introduce the notion of s-polaroid and compare it with the related notions of right polaroid and a-polaroid. We establish for a bounded linear operator defined on a Banach space several sufficient and necessary conditions for which properties (b), (ab), (gb), and (gab) hold.

1. Introduction

Throughout this note we assume that \mathcal{X} is an infinite dimensional complex Banach space. Let $B(\mathcal{X})$, $B_{0}(\mathcal{X})$ denote, respectively, the algebra of bounded linear operators, the ideal of compact operators acting on \mathcal{X}. If $T \in B(\mathcal{X})$ we shall write $N(T)$ and $R(T)$ for the null space and range of T. Also, let $\alpha(T):=\operatorname{dim} N(T)$, $\beta(T):=\operatorname{dim} \mathcal{X} / R(T)$, and let $\sigma(T), \sigma_{a}(T), \sigma_{s}(T), \sigma_{p}(T), p_{0}(T), \pi_{0}(T)$ denote the spectrum, approximate point spectrum, surjective spectrum, point spectrum of T, the set of poles of the resolvent of T, the set of all eigenvalues of T which are isolated in $\sigma(T)$, respectively. For $T \in B(\mathcal{X})$, the smallest nonnegative integer p such that $N\left(T^{p}\right)=N\left(T^{p+1}\right)$ is called the ascent of T and denoted by $p(T)$. If no such integer exists, we set $p(T)=\infty$. The smallest nonnegative integer q such that $R\left(T^{q}\right)=R\left(T^{q+1}\right)$ is called the descent of T and denoted by $q(T)$. If no such integer exists, we set $q(T)=\infty$. An operator $T \in B(\mathcal{X})$ is called upper semi-Fredholm if it has closed range and finite dimensional null space and is called lower semi-Fredholm if it has closed range and its range has finite co-dimension. If $T \in B(\mathcal{X})$ is either upper or lower semi-Fredholm, then T is called semi-Fredholm, and index of a semi-Fredholm operator $T \in B(\mathcal{X})$ is defined by

$$
i(T):=\alpha(T)-\beta(T)
$$

If both $\alpha(T)$ and $\beta(T)$ are finite, then T is called Fredholm. $T \in B(\mathcal{X})$ is called Weyl if it is Fredholm of index zero, and Browder if it is Fredholm of finite ascent and descent. The essential spectrum $\sigma_{e}(T)$, the Weyl spectrum $\sigma_{w}(T)$ and the Browder spectrum $\sigma_{b}(T)$ of $T \in B(X)$ are defined by ([16])

$$
\begin{aligned}
& \sigma_{e}(T):=\{\lambda \in \mathbb{C}: T-\lambda \text { is not Fredholm }\}, \\
& \sigma_{w}(T):=\{\lambda \in \mathbb{C}: T-\lambda \text { is not Weyl }\}, \\
& \sigma_{b}(T):=\{\lambda \in \mathbb{C}: T-\lambda \text { is not Browder }\},
\end{aligned}
$$

[^0]respectively. For $T \in B(\mathcal{X})$ and a nonnegative integer n define T_{n} to be the restriction of T to $R\left(T^{n}\right)$ viewed as a map from $R\left(T^{n}\right)$ into $R\left(T^{n}\right)$ (in particular $T_{0}=T$). If for some integer n the range $R\left(T^{n}\right)$ is closed and T_{n} is upper (resp. lower) semi-Fredholm, then T is called upper (resp. lower) semi-B-Fredholm. Moreover, if T_{n} is Fredholm, then T is called B-Fredholm. T is called semi-B-Fredholm if it is upper or lower semi-B-Fredholm.
Definition 1.1. Let $T \in B(\mathcal{X})$ and let
$$
\Delta(T):=\left\{n \in \mathbb{N}: m \in \mathbb{N} \text { and } m \geq n \Rightarrow\left(R\left(T^{n}\right) \cap N(T)\right) \subseteq\left(R\left(T^{m}\right) \cap N(T)\right)\right\}
$$

Then the degree of stable iteration $\operatorname{dis}(T)$ of T is defined as $\operatorname{dis}(T):=\inf \Delta(T)$.
Let T be semi- B-Fredholm and let d be the degree of stable iteration of T. It follows from [11, Proposition 2.1] that T_{m} is semi-Fredholm and $i\left(T_{m}\right)=i\left(T_{d}\right)$ for each $m \geq d$. This enables us to define the index of semi-B-Fredholm T as the index of semi-Fredholm T_{d}. In [7] he studied this class of operators and he proved [7, Theorem 2.7] that an operator $T \in B(\mathcal{X})$ is B-Fredholm if and only if $T=T_{1} \oplus T_{2}$, where T_{1} is Fredholm and T_{2} is nilpotent. It appears that the concept of Drazin invertibility plays an important role for the class of B-Fredholm operators. It is well known that T is Drazin invertible if and only if it has finite ascent and descent, which is also equivalent to the fact that

$$
T=T_{1} \oplus T_{2}, \text { where } T_{1} \text { is invertible and } T_{2} \text { is nilpotent. }
$$

An operator $T \in B(\mathcal{X})$ is called B-Weyl if it is B-Fredholm of index 0 . The B-Fredholm spectrum $\sigma_{B F}(T)$, the B-Weyl spectrum $\sigma_{B W}(T)$, and the Drazin spectrum of T are defined by

$$
\begin{gathered}
\sigma_{B F}(T):=\{\lambda \in \mathbb{C}: T-\lambda \text { is not } B \text {-Fredholm }\}, \\
\sigma_{B W}(T):=\{\lambda \in \mathbb{C}: T-\lambda \text { is not } B \text {-Weyl }\}, \\
\sigma_{D}(T):=\{\lambda \in \mathbb{C}: T-\lambda \text { is not Drazin invertible }\} .
\end{gathered}
$$

Now we consider the following sets:

$$
\begin{aligned}
& B F_{+}(\mathcal{X}):=\{T \in B(\mathcal{X}): T \text { is upper semi- } B \text {-Fredholm }\} \\
& B F_{+}^{-}(\mathcal{X}):=\left\{T \in B(\mathcal{X}): T \in B F_{+}(\mathcal{X}) \text { and } i(T) \leq 0\right\} \\
& L D(\mathcal{X}):=\left\{T \in B(\mathcal{X}): p(T)<\infty \text { and } R\left(T^{p(T)+1}\right) \text { is closed }\right\}, \\
& R D(\mathcal{X}):=\left\{T \in B(\mathcal{X}): q(T)<\infty \text { and } R\left(T^{q(T)}\right) \text { is closed }\right\} .
\end{aligned}
$$

By definition,

$$
\sigma_{\text {Bea }}(T):=\left\{\lambda \in \mathbb{C}: T-\lambda \notin B F_{+}^{-}(X)\right\}
$$

is the upper semi- B-essential approximate point spectrum and

$$
\sigma_{L D}(T):=\{\lambda \in \mathbb{C}: T-\lambda \notin L D(\mathcal{X})\}
$$

is the left Drazin spectrum, and

$$
\sigma_{R D}(T):=\{\lambda \in \mathbb{C}: T-\lambda \notin R D(\mathcal{X})\}
$$

is the right Drazin spectrum. It is well known that

$$
\sigma_{\text {Bea }}(T) \subseteq \sigma_{L D}(T)=\left[\sigma_{\text {Bea }}(T) \cup \operatorname{acc} \sigma_{a}(T)\right] \subseteq \sigma_{D}(T)
$$

where we write acc K for the accumulation points of $K \subseteq \mathbb{C}$.
Definition 1.2. An operator $T \in B(\mathcal{X})$ has the single valued extension property at $\lambda_{0} \in \mathbb{C}$ (abbreviated SVEP at λ_{0}) if for every open neighborhood U of λ_{0} the only analytic function $f: U \longrightarrow \mathcal{X}$ which satisfies the equation

$$
(T-\lambda) f(\lambda)=0
$$

is the constant function $f \equiv 0$ on U. The operator T is said to have SVEP if T has SVEP at every $\lambda \in \mathbb{C}$.
Evidently, every operator T, as well as its dual T^{*}, has SVEP at every point of the boundary $\partial \sigma(T)$ of the spectrum $\sigma(T)$, in particular, at every isolated point of $\sigma(T)$. We also have (see [1, Theorem 3.8])

$$
\begin{equation*}
p(T-\lambda)<\infty \Longrightarrow T \text { has SVEP at } \lambda \tag{1.1}
\end{equation*}
$$

and dually

$$
\begin{equation*}
q(T-\lambda)<\infty \Longrightarrow T^{*} \text { has SVEP at } \lambda \tag{1.2}
\end{equation*}
$$

Remark 1.3. If $T-\lambda$ is semi-Fredholm then the implications (1.1) and (1.2) are equivalences, see [1, Chapter 3].

By definition,

$$
\sigma_{e a}(T):=\cap\left\{\sigma_{a}(T+K): K \in B_{0}(\mathcal{X})\right\}
$$

is the essential approximate point spectrum, and

$$
\sigma_{a b}(T):=\cap\left\{\sigma_{a}(T+K): T K=K T \text { and } K \in B_{0}(\mathcal{X})\right\}
$$

is the Browder essential approximate point spectrum. If we write iso $K:=K \backslash$ acc K then we let

$$
\begin{aligned}
\pi_{00}(T):= & \{\lambda \in \text { iso } \sigma(T): 0<\alpha(T-\lambda)<\infty\}, \\
\pi_{00}^{a}(T):= & \left\{\lambda \in \text { iso } \sigma_{a}(T): 0<\alpha(T-\lambda)<\infty\right\}, \\
& p_{00}(T):=\sigma(T) \backslash \sigma_{b}(T), \\
& p_{00}^{a}(T):=\sigma_{a}(T) \backslash \sigma_{a b}(T), \\
p_{0}^{a}(T):= & \left\{\lambda \in \sigma_{a}(T): T-\lambda \in L D(X)\right\}, \\
p_{0}^{s}(T):= & \left\{\lambda \in \sigma_{s}(T): T-\lambda \in R D(X)\right\}, \\
\pi_{0}^{a}(T):= & \left\{\lambda \in \text { iso } \sigma_{a}(T): \lambda \in \sigma_{p}(T)\right\} .
\end{aligned}
$$

We say that Weyl's theorem holds for $T \in B(\mathcal{X})$, in symbol (W), if

$$
\sigma(T) \backslash \sigma_{w}(T)=\pi_{00}(T),
$$

Browder's theorem holds for $T \in B(\mathcal{X})$, in symbol (B), if

$$
\sigma(T) \backslash \sigma_{w}(T)=p_{00}(T)
$$

The following variants of Weyl's theorem has been introduced by Rakočević, Berkani, and Zariouh in ([10],[11],[12],[13],[17]).
Definition 1.4. Let $T \in B(\mathcal{X})$.
(1) a-Weyl's theorem holds for T, in symbol ($a W$), if $\sigma_{a}(T) \backslash \sigma_{e a}(T)=\pi_{00}^{a}(T)$ and a-Browder's theorem holds for T, in symbol $(a B)$, if $\sigma_{a}(T) \backslash \sigma_{e a}(T)=p_{00}^{a}(T)$.
(2) Generalized Weyl's theorem holds for T, in symbol $(g W)$, if $\sigma(T) \backslash \sigma_{B W}(T)=\pi_{0}(T)$ and generalized Browder's theorem holds for T, in symbol $(g B)$, if $\sigma(T) \backslash \sigma_{B W}(T)=p_{0}(T)$.
(3) Generalized a-Weyl's theorem holds for T, in symbol $(g a W)$, if $\sigma_{a}(T) \backslash \sigma_{B e a}(T)=\pi_{0}^{a}(T)$ and generalized a Browder's theorem holds for T, in symbol (gaB), if $\sigma_{a}(T) \backslash \sigma_{\text {Bea }}(T)=p_{0}^{a}(T)$.
(4) T satisfies property (w) if $\sigma_{a}(T) \backslash \sigma_{e a}(T)=\pi_{00}(T)$ and satisfies property (b) if $\sigma_{a}(T) \backslash \sigma_{e a}(T)=p_{00}(T)$.
(5) T satisfies property $(g w)$ if $\sigma_{a}(T) \backslash \sigma_{\text {Bea }}(T)=\pi_{0}(T)$ and satisfies property $(g b)$ if $\sigma_{a}(T) \backslash \sigma_{\text {Bea }}(T)=p_{0}(T)$.
(6) T satisfies property (aw) if $\sigma(T) \backslash \sigma_{w}(T)=\pi_{00}^{a}(T)$ and satisfies property (ab) if $\sigma(T) \backslash \sigma_{w}(T)=p_{00}^{a}(T)$.
(7) T satisfies property $(g a z)$ if $\sigma(T) \backslash \sigma_{B W}(T)=\pi_{0}^{a}(T)$ and satisfies property $(g a b)$ if $\sigma(T) \backslash \sigma_{B W}(T)=p_{0}^{a}(T)$.

It is well known ([5],[6],[10],[11],[12],[13],[15],[17]) that if $T \in B(\mathcal{X})$ then we have:

In the next section we give the structural properties for operators satisfying properties $(b),(a b),(g b)$, and $(g a b)$, respectively. Also, we show that properties $(b),(a b),(g b)$, and ($g a b$) can be characterized by means of localized SVEP.

2. New extended Weyl type theorems

Theorem 2.1. Let $T \in B(\mathcal{X})$. Then the following statements are equivalent:
(1) T satisfies property $(a b)$;
(2) $\sigma_{a b}(T)=\sigma_{a}(T) \cap \sigma_{w}(T)$.

Proof. (1) $\Rightarrow(2)$: Suppose that property ($a b$) holds for T. Then Browder's theorem holds for T by [13, Theorem 2.4], and so $\sigma_{w}(T)=\sigma_{b}(T)$. Therefore $\sigma_{a b}(T) \subseteq \sigma_{a}(T) \cap \sigma_{w}(T)$. Conversely, let $\lambda \notin \sigma_{a b}(T)$. Then either $\lambda \in \sigma_{a}(T) \backslash \sigma_{a b}(T)$ or $\lambda \notin \sigma_{a}(T)$. Since T satisfies property (ab), we know that if $\lambda \in \sigma_{a}(T) \backslash \sigma_{a b}(T)$, then $\lambda \in \sigma(T) \backslash \sigma_{w}(T)$, which means that $\lambda \notin \sigma_{a}(T) \cap \sigma_{w}(T)$. Therefore $\sigma_{a}(T) \cap \sigma_{w}(T) \subseteq \sigma_{a b}(T)$, and hence $\sigma_{a b}(T)=\sigma_{a}(T) \cap \sigma_{w}(T)$.
$(2) \Rightarrow(1)$: Suppose that $\sigma_{a b}(T)=\sigma_{a}(T) \cap \sigma_{w}(T)$. Let $\lambda \in \sigma(T) \backslash \sigma_{w}(T)$. Then $\lambda \in \sigma(T) \backslash \sigma_{a b}(T)$. Since $T-\lambda$ is Weyl but not invertible, it is not bounded below. Therefore $\lambda \in p_{00}^{a}(T)$. Conversely, let $\lambda \in p_{00}^{a}(T)$. Then $\lambda \in \sigma_{a}(T) \backslash \sigma_{a b}(T)$. Since $\sigma_{a b}(T)=\sigma_{a}(T) \cap \sigma_{w}(T), \lambda \notin \sigma_{w}(T)$. Therefore $\lambda \in \sigma(T) \backslash \sigma_{w}(T)$, and hence T satisfies property $(a b)$.

We give necessary and sufficient conditions for a Banach space operator T to satisfy property (b).
Theorem 2.2. Let $T \in B(\mathcal{X})$. Then the following statements are equivalent:
(1) T satisfies property (b);
(2) $\sigma_{e a}(T)=\sigma_{b}(T) \cap \sigma_{a}(T)$;
(3) $\sigma_{a}(T) \backslash \sigma_{e a}(T) \subseteq p_{00}(T)$;
(4) $\sigma_{a}(T)=\sigma_{e a}(T) \cup \partial \sigma(T)$;
(5) $\sigma_{a}(T) \backslash \sigma_{e a}(T) \subseteq$ iso $\sigma(T)$;
(6) $\sigma_{a}(T) \cap \operatorname{acc} \sigma(T) \subseteq \sigma_{e a}(T)$.

Proof. The statements (1), (2), and (3) are equivalent from [18, Theorem 2.2]. Now we show that (1) \Rightarrow (4) $\Rightarrow(5) \Rightarrow(1)$ and (5) $\Leftrightarrow(6)$.
$(1) \Rightarrow(4)$: Suppose that T satisfies property (b). Then $\sigma_{a}(T) \backslash \sigma_{e a}(T)=p_{00}(T)$. Let $\lambda \in \sigma_{a}(T) \backslash \sigma_{e a}(T)$. Then $\lambda \in p_{00}(T)$, and so $\lambda \in$ iso $\sigma(T) \subseteq \partial \sigma(T)$. Therefore $\sigma_{a}(T) \subseteq \sigma_{e a}(T) \cup \partial \sigma(T)$. But $\sigma_{e a}(T) \cup \partial \sigma(T) \subseteq \sigma_{a}(T)$, hence $\sigma_{a}(T)=\sigma_{e a}(T) \cup \partial \sigma(T)$.
(4) $\Rightarrow(5)$: Suppose that $\sigma_{a}(T)=\sigma_{e a}(T) \cup \partial \sigma(T)$. Let $\lambda \in \sigma_{a}(T) \backslash \sigma_{e a}(T)$. Then $\lambda \in \partial \sigma(T)$, and so T and T^{*} have SVEP at λ. Since $T-\lambda$ is upper semi-Fredholm, $T-\lambda$ is Browder by Remark 1.3. Therefore $\lambda \in$ iso $\sigma(T)$, and hence $\sigma_{a}(T) \backslash \sigma_{e a}(T) \subseteq$ iso $\sigma(T)$.
(5) $\Rightarrow(1)$: Suppose that $\sigma_{a}(T) \backslash \sigma_{e a}(T) \subseteq$ iso $\sigma(T)$. Let $\lambda \in \sigma_{a}(T) \backslash \sigma_{e a}(T)$. Then λ is an isolated point of $\sigma(T)$, and so T and T^{*} have SVEP at λ. Therefore $\lambda \in \sigma(T) \backslash \sigma_{b}(T)=p_{00}(T)$ by Remark 1.3. Conversely, let $\lambda \in p_{00}(T)$. Then λ is an isolated point of $\sigma(T)$ and $T-\lambda$ is Browder. So $\lambda \in \sigma_{a}(T) \backslash \sigma_{e a}(T)$, and hence $\sigma_{a}(T) \backslash \sigma_{e a}(T)=p_{00}(T)$. Therefore T satisfies property (b).
(5) \Leftrightarrow (6): Suppose that $\sigma_{a}(T) \backslash \sigma_{e a}(T) \subseteq$ iso $\sigma(T)$. Let $\lambda \notin \sigma_{e a}(T)$. If $\lambda \notin \sigma_{a}(T)$, then clearly, $\lambda \notin$ $\sigma_{a}(T) \cap \operatorname{acc} \sigma(T)$. If $\lambda \in \sigma_{a}(T)$, then $\lambda \in \sigma_{a}(T) \backslash \sigma_{e a}(T)$, which means that λ is an isolated point of $\sigma(T)$. Therefore $\lambda \notin \sigma_{a}(T) \cap \operatorname{acc} \sigma(T)$.

Conversely, suppose that $\sigma_{a}(T) \cap \operatorname{acc} \sigma(T) \subseteq \sigma_{e a}(T)$. Let $\lambda \in \sigma_{a}(T) \backslash \sigma_{e a}(T)$. Then $\lambda \notin \operatorname{acc} \sigma(T)$, and hence $\lambda \in$ iso $\sigma(T)$. Therefore $\sigma_{a}(T) \backslash \sigma_{e a}(T) \subseteq$ iso $\sigma(T)$.

Corollary 2.3. Let T be quasinilpotent. Then T satisfies property (b).
Proof. Straightforward from Theorem 2.2 and the fact that acc $\sigma(T)=\emptyset$ whenever T is quasinilpotent.

Theorem 2.4. Let $T \in B(\mathcal{X})$. Then the following statements are equivalent:
(1) T satisfies property ($g a b$);
(2) $\sigma_{L D}(T)=\sigma_{a}(T) \cap \sigma_{B W}(T)$.

Proof. (1) $\Rightarrow(2)$: Suppose that property ($g a b$) holds for T. Then T satisfies generalized Browder's theorem by [13, Corollary 2.6], and so $\sigma_{B W}(T)=\sigma_{D}(T)$. Therefore $\sigma_{L D}(T) \subseteq \sigma_{a}(T) \cap \sigma_{B W}(T)$. Conversely, let $\lambda \notin \sigma_{L D}(T)$. Then either $\lambda \in \sigma_{a}(T) \backslash \sigma_{L D}(T)$ or $\lambda \notin \sigma_{a}(T)$. If $\lambda \notin \sigma_{a}(T)$, then clearly $\lambda \notin \sigma_{a}(T) \cap \sigma_{B W}(T)$. Since T satisfies property (gab), we know that if $\lambda \in \sigma_{a}(T) \backslash \sigma_{L D}(T)$, then $\lambda \in \sigma(T) \backslash \sigma_{B W}(T)$, which means that $\lambda \notin \sigma_{a}(T) \cap \sigma_{B W}(T)$. Therefore $\sigma_{a}(T) \cap \sigma_{B W}(T) \subseteq \sigma_{L D}(T)$, and hence $\sigma_{L D}(T)=\sigma_{a}(T) \cap \sigma_{B W}(T)$.
$(2) \Rightarrow(1)$: Suppose that $\sigma_{L D}(T)=\sigma_{a}(T) \cap \sigma_{B W}(T)$. Let $\lambda \in \sigma(T) \backslash \sigma_{B W}(T)$. Then $\lambda \in \sigma(T) \backslash \sigma_{L D}(T)$. Since $T-\lambda$ is B-Weyl but not invertible, it is not bounded below. Therefore $\lambda \in p_{0}^{a}(T)$. Conversely, let $\lambda \in p_{0}^{a}(T)$. Then $\lambda \in \sigma_{a}(T) \backslash \sigma_{L D}(T)$. Since $\sigma_{L D}(T)=\sigma_{a}(T) \cap \sigma_{B W}(T), \lambda \notin \sigma_{B W}(T)$. Therefore $\lambda \in \sigma(T) \backslash \sigma_{B W}(T)$, and hence T satisfies property (gab).

In analogy with Theorem 2.2, we obtain the following.
Theorem 2.5. Let $T \in B(\mathcal{X})$. Then the following statements are equivalent:
(1) T satisfies property $(g b)$;
(2) $\sigma_{B e a}(T)=\sigma_{D}(T) \cap \sigma_{a}(T)$;
(3) $\sigma_{a}(T)=\sigma_{B e a}(T) \cup p_{0}(T)$;
(4) $\sigma_{a}(T) \backslash \sigma_{\text {Bea }}(T) \subseteq \pi_{0}(T)$;
(5) $\sigma_{a}(T) \backslash \sigma_{\text {Bea }}(T) \subseteq$ iso $\sigma(T)$;
(6) $\sigma_{a}(T)=\sigma_{B e a}(T) \cup \partial \sigma(T)$.

Proof. (1) $\Rightarrow(2)$: Suppose that T satisfies property $(g b)$. Since $\sigma_{\text {Bea }}(T) \subseteq \sigma_{L D}(T) \subseteq \sigma_{D}(T)$ and $\sigma_{\text {Bea }}(T) \subseteq \sigma_{a}(T)$, $\sigma_{\text {Bea }}(T) \subseteq \sigma_{D}(T) \cap \sigma_{a}(T)$. Conversely, let $\lambda \notin \sigma_{\text {Bea }}(T)$. If $\lambda \notin \sigma_{a}(T)$, then clearly, $\lambda \notin \sigma_{D}(T) \cap \sigma_{a}(T)$. If $\lambda \in \sigma_{a}(T)$, then $\lambda \in \sigma_{a}(T) \backslash \sigma_{\text {Bea }}(T)$. Since T satisfies property $(g b), \lambda \in \sigma(T) \backslash \sigma_{D}(T)$. Therefore $\lambda \notin \sigma_{D}(T) \cap \sigma_{a}(T)$, and hence $\sigma_{D}(T) \cap \sigma_{a}(T) \subseteq \sigma_{\text {Bea }}(T)$.
$(2) \Rightarrow(3)$: Suppose that $\sigma_{\text {Bea }}(T)=\sigma_{D}(T) \cap \sigma_{a}(T)$. Let $\lambda \in \sigma_{a}(T) \backslash \sigma_{\text {Bea }}(T)$. Then $\lambda \notin \sigma_{D}(T)$, and so $\lambda \in p_{0}(T)$. But $\sigma_{\text {Bea }}(T) \cup p_{0}(T) \subseteq \sigma_{a}(T)$, hence $\sigma_{a}(T)=\sigma_{\text {Bea }}(T) \cup p_{0}(T)$.
$(3) \Rightarrow(4)$: Since $p_{0}(T) \subseteq \pi_{0}(T)$, it is clear.
$(4) \Rightarrow(5)$: Since $\pi_{0}(T) \subseteq$ iso $\sigma(T)$, it is clear.
(5) \Rightarrow (6): Let $\lambda \in \sigma_{a}(T) \backslash \sigma_{\text {Bea }}(T)$. Then λ is an isolated point of $\sigma(T)$, and so $\lambda \in \partial \sigma(T)$. Conversely, since $\sigma_{\text {Bea }}(T) \subseteq \sigma_{a}(T)$ and $\partial \sigma(T) \subseteq \sigma_{a}(T), \sigma_{\text {Bea }}(T) \cup \partial \sigma(T) \subseteq \sigma_{a}(T)$. Therefore $\sigma_{a}(T)=\sigma_{\text {Bea }}(T) \cup \partial \sigma(T)$.
$(6) \Rightarrow(1)$: Suppose that $\sigma_{a}(T)=\sigma_{B e a}(T) \cup \partial \sigma(T)$. Let $\lambda \in \sigma_{a}(T) \backslash \sigma_{B e a}(T)$. Then λ is a boundary point of $\sigma(T)$, and so T and T^{*} have SVEP at λ. Therefore $T-\lambda$ is B-Weyl. But $\lambda \in \partial \sigma(T)$, hence $T-\lambda$ is Drazin invertible by [8, Theorem 2.3], which implies that $\lambda \in p_{0}(T)$. Conversely, let $\lambda \in p_{0}(T)$. Then $\lambda \in$ iso $\sigma(T) \backslash \sigma_{D}(T)$, and hence $\lambda \in \sigma_{a}(T) \backslash \sigma_{\text {Bea }}(T)$. Therefore T satisfies property $(g b)$.

Let $H(\sigma(T))$ denote the set of all analytic functions defined on an open neighborhood of $\sigma(T)$. From Theorem 2.5, we obtain the following corollary.
Corollary 2.6. Suppose T^{*} has SVEP. Then $f(T)$ satisfies property $(g b)$ for each $f \in H(\sigma(T))$.
Proof. Since T^{*} has SVEP, $\sigma_{\text {Bea }}(T)=\sigma_{D}(T)$ and $\sigma_{a}(T)=\sigma(T)$. So $\sigma_{\text {Bea }}(T)=\sigma_{D}(T) \cap \sigma_{a}(T)$, and hence T satisfies property $(g b)$ by Theorem 2.5. Since $f\left(T^{*}\right)=f(T)^{*}, f(T)^{*}$ has SVEP for each $f \in H(\sigma(T))$. Therefore $f(T)$ satisfies property $(g b)$ for each $f \in H(\sigma(T))$.

The following example shows that the converse of Corollary 2.6 does not hold in general.
Example 2.7. Let $U \in B\left(\ell_{2}\right)$ be the unilateral shift. Then $\sigma_{\text {Bea }}(U)=\sigma_{a}(U)=\Gamma$ and $\sigma_{D}(U)=\overline{\mathbb{D}}$, where Γ is the unit circle and \mathbb{D} is the open unit disk. Therefore $\sigma_{B e a}(U)=\sigma_{D}(U) \cap \sigma_{a}(U)$, and hence U satisfies property $(g b)$ by Theorem 2.5. However, U^{*} does not have SVEP.

Now we characterize the bounded linear operators T satisfying properties $(b),(g b),(a b)$, and $(g a b)$ by means of localized SVEP.

Theorem 2.8. Let $T \in B(\mathcal{X})$. Then the following equivalences hold:
(1) T satisfies property $(b) \Leftrightarrow T^{*}$ has SVEP at every $\lambda \in \sigma_{a}(T) \backslash \sigma_{e a}(T)$.
(2) T satisfies property $(g b) \Leftrightarrow T^{*}$ has SVEP at every $\lambda \in \sigma_{a}(T) \backslash \sigma_{\text {Bea }}(T)$.
(3) T satisfies property $(a b) \Leftrightarrow T^{*}$ has SVEP at every $\lambda \in\left[\sigma(T) \backslash \sigma_{w}(T)\right] \cup p_{00}^{a}(T)$.
(4) T satisfies property $(g a b) \Leftrightarrow T^{*}$ has SVEP at every $\lambda \in\left[\sigma(T) \backslash \sigma_{B W}(T)\right] \cup p_{0}^{a}(T)$.

Proof. (1): Suppose that T satisfies property (b). Then $\sigma_{a}(T) \backslash \sigma_{e a}(T)=p_{00}(T)$. Let $\lambda \in \sigma_{a}(T) \backslash \sigma_{e a}(T)$. Then $\lambda \in p_{00}(T)$, and so λ is an isolated point of $\sigma\left(T^{*}\right)$. Therefore T^{*} has SVEP at λ. Conversely, suppose that T^{*} has SVEP at every $\lambda \in \sigma_{a}(T) \backslash \sigma_{e a}(T)$. Let $\lambda \in \sigma_{a}(T) \backslash \sigma_{e a}(T)$. Since $\lambda \notin \sigma_{e a}(T), T-\lambda$ is upper semi-Fredholm and $i(T-\lambda) \leq 0$. But T^{*} has SVEP at λ, hence $i(T-\lambda) \geq 0$. So $T-\lambda$ is Weyl. Since $q(T-\lambda)<\infty$ by Remark 1.3, $T-\lambda$ is Browder. Therefore $\lambda \in p_{00}(T)$, and hence $\sigma_{a}(T) \backslash \sigma_{e a}(T) \subseteq p_{00}(T)$. But $p_{00}(T) \subseteq \sigma_{a}(T) \backslash \sigma_{e a}(T)$ for any T, hence $\sigma_{a}(T) \backslash \sigma_{e a}(T)=p_{00}(T)$. Therefore T satisfies property (b).
(2): Suppose that T satisfies property $(g b)$. Then $\sigma_{a}(T) \backslash \sigma_{\text {Bea }}(T)=p_{0}(T)$. Let $\lambda \in \sigma_{a}(T) \backslash \sigma_{B e a}(T)$. Then $\lambda \in p_{0}(T)$, and so λ is an isolated point of $\sigma\left(T^{*}\right)$. Therefore T^{*} has SVEP at λ. Conversely, suppose that T^{*} has SVEP at every $\lambda \in \sigma_{a}(T) \backslash \sigma_{\text {Bea }}(T)$. Let $\lambda \in \sigma_{a}(T) \backslash \sigma_{\text {Bea }}(T)$. Since $\lambda \notin \sigma_{\text {Bea }}(T), T-\lambda$ is upper semi-B-Fredholm and $i(T-\lambda) \leq 0$. But T^{*} has SVEP at λ, hence $i(T-\lambda) \geq 0$. So $T-\lambda$ is B-Weyl, and hence $T-\lambda$ is quasi-Fredholm. It follows form [2, Theorem 2.11] that $q(T-\lambda)<\infty$. Since $T-\lambda=\left(\begin{array}{cc}T_{1} & 0 \\ 0 & T_{2}\end{array}\right)$, where T_{1} is Weyl and T_{2} is nilpotent by [9, Lemma 4.1], T_{1} is Browder and T_{2} is nilpotent. Therefore $T-\lambda$ is Drazin invertible, and hence $\lambda \in p_{0}(T)$. So we have $\sigma_{a}(T) \backslash \sigma_{\text {Bea }}(T) \subseteq p_{0}(T)$. Conversely, let $\lambda \in p_{0}(T)$. Then $\lambda \in \sigma(T) \backslash \sigma_{D}(T)$, and so $\lambda \in$ iso $\sigma(T)$ and $T-\lambda$ is Drazin invertible. Therefore $\lambda \in \sigma_{a}(T) \backslash \sigma_{\text {Bea }}(T)$, and hence $p_{0}(T) \subseteq \sigma_{a}(T) \backslash \sigma_{\text {Bea }}(T)$. So T satisfies property $(g b)$.
(3): Suppose that T satisfies property (ab). Then $\sigma(T) \backslash \sigma_{w}(T)=p_{00}^{a}(T)$. Let $\lambda \in \sigma(T) \backslash \sigma_{w}(T)$. Then $\lambda \in p_{00}^{a}(T)$, and so λ is an isolated point of $\sigma_{a}(T)$, which implies that T has SVEP at λ. Since $T-\lambda$ is Weyl, it follows from Remark 1.3 that $p(T-\lambda)<\infty$. Therefore $T-\lambda$ is Browder, and so λ is an isolated point of $\sigma\left(T^{*}\right)$. Hence T^{*} has SVEP at λ. Conversely, suppose that T^{*} has SVEP at every $\lambda \in\left[\sigma(T) \backslash \sigma_{w}(T)\right] \cup p_{00}^{a}(T)$. Let $\lambda \in \sigma(T) \backslash \sigma_{w}(T)$. Since $\lambda \notin \sigma_{w}(T), T-\lambda$ is Weyl. Since T^{*} has SVEP at λ, it follows from Remark 1.3 that $q(T-\lambda)<\infty$. Therefore $T-\lambda$ is Browder, and hence $\lambda \in p_{00}^{a}(T)$. So $\sigma(T) \backslash \sigma_{w}(T) \subseteq p_{00}^{a}(T)$. Conversely, let $\lambda \in p_{00}^{a}(T)$. Then T and T^{*} have SVEP at λ. Since $T-\lambda$ is upper semi-Fredholm, it follows from Remark 1.3 that $T-\lambda$ is Weyl. So $\lambda \in \sigma(T) \backslash \sigma_{w}(T)$, and hence $p_{00}^{a}(T) \subseteq \sigma(T) \backslash \sigma_{w}(T)$. Therefore T satisfies property (ab).
(4): Suppose that T satisfies property ($g a b$). Then $\sigma(T) \backslash \sigma_{B W}(T)=p_{0}^{a}(T)$. Let $\lambda \in \sigma(T) \backslash \sigma_{B W}(T)$. Then $\lambda \in p_{0}^{a}(T)$, and so λ is an isolated point of $\sigma_{a}(T)$. Therefore T has SVEP at λ. Since $T-\lambda$ is B-Weyl, it follows from [9, Lemma 4.1] that $T-\lambda=\left(\begin{array}{cc}T_{1} & 0 \\ 0 & T_{2}\end{array}\right)$, where T_{1} is Weyl and T_{2} is nilpotent. Since T_{1} has SVEP at $0, T_{1}$ is Browder by Remark 1.3. Hence $T-\lambda$ is Drazin invertible, and so T^{*} has SVEP at λ. Conversely, suppose that T^{*} has SVEP at every $\lambda \in\left[\sigma(T) \backslash \sigma_{B W}(T)\right] \cup p_{0}^{a}(T)$. Let $\lambda \in \sigma(T) \backslash \sigma_{B W}(T)$. Since $\lambda \notin \sigma_{B W}(T), T-\lambda$ is B-Weyl. But T^{*} has SVEP at λ, hence $T-\lambda$ is Drazin invertible. Therefore $\lambda \in p_{0}^{a}(T)$, and hence $\sigma(T) \backslash \sigma_{B W}(T) \subseteq p_{0}^{a}(T)$. Conversely, let $\lambda \in p_{0}^{a}(T)$. Then T and T^{*} have SVEP at λ. Since $T-\lambda$ is upper semi- B-Fredholm, it follows from [2, Theorems 2.7 and 2.11] that $T-\lambda$ is B-Weyl. So $\lambda \in \sigma(T) \backslash \sigma_{B W}(T)$, and hence $p_{0}^{a}(T) \subseteq \sigma(T) \backslash \sigma_{B W}(T)$. Therefore T satisfies property ($g a b$).

Now we introduce the concept of s-polaroid and compare it with the related notions of right polaroid and a-polaroid.

Definition 2.9. Let $T \in B(\mathcal{X})$. An operator T is called a-polaroid if iso $\sigma_{a}(T) \subseteq p_{0}(T)$. T is s-polaroid if iso $\sigma_{s}(T) \subseteq p_{0}(T)$. T is called polaroid if iso $\sigma(T) \subseteq p_{0}(T) . T$ is called isoloid if iso $\sigma(T) \subseteq \sigma_{p}(T)$. T is said to be left polaroid if iso $\sigma_{a}(T) \subseteq p_{0}^{a}(T)$ and T is said to be right polaroid if iso $\sigma_{s}(T) \subseteq p_{0}^{s}(T)$.

From these definitions, if $T \in B(\mathcal{X})$ then we have:

$$
T a \text {-polaroid } \Longrightarrow T \text { polaroid } \Longrightarrow T \text { isoloid }
$$

$T a$-polaroid $\Longrightarrow T$ left polaroid
T left polaroid or right polaroid $\Longrightarrow T$ polaroid
The concept of s-polaroid and a-polaroid are dual each other:
Theorem 2.10. Let $T \in B(\mathcal{X})$.
(1) Suppose T is s-polaroid. Then it is right polaroid.
(2) T is s-polaroid if and only if T^{*} is a-polaroid.

Proof. (1) Suppose T is s-polaroid. Let λ is an isolated point of $\sigma_{s}(T)$. Since T is s-polaroid, $0<p:=p(T-\lambda)=$ $q(T-\lambda)<\infty$. So $p=q(T-\lambda) \in \mathbb{N}$ and $(T-\lambda)^{p}(\mathcal{X})$ is closed. Therefore $\lambda \in p_{0}^{s}(T)$, and hence T is right polaroid.
(2) Recall that

$$
\sigma_{s}(T)=\sigma_{a}\left(T^{*}\right) \text { and } \sigma_{D}(T)=\sigma_{D}\left(T^{*}\right)
$$

Therefore $p_{0}(T)=p_{0}\left(T^{*}\right)$, and hence

$$
\text { iso } \sigma_{s}(T) \subseteq p_{0}(T) \Longleftrightarrow \text { iso } \sigma_{a}\left(T^{*}\right) \subseteq p_{0}\left(T^{*}\right)
$$

So T is s-polaroid if and only if T^{*} is a-polaroid.

The following example shows that the converse of the statement (1) of Theorem 2.10, in general, does not hold.

Example 2.11. Let U be the unilateral shift on ℓ_{2} and let $A \in B\left(\ell_{2}\right)$ be given by

$$
A\left(x_{1}, x_{2}, x_{3}, \ldots\right):=\left(0, x_{2}, x_{3}, x_{4}, \ldots\right)
$$

Define $T:=U^{*} \oplus A$. Then $\sigma_{s}(T)=\Gamma \cup\{0\}$, and so iso $\sigma_{s}(T)=\{0\}$. Since $q(T)=1$ and $R(T)$ is closed, $0 \in p_{0}^{s}(T)$. Therefore T is right polaroid. However, since $p(T)=\infty, T$ is not s-polaroid.

The following result gives a very simple framework for establishing property (gaw) if T is a-polaroid.
Theorem 2.12. Let $T \in B(X)$. Suppose T is a-polaroid. Then the following statements are equivalent:
(1) T has SVEP at every $\lambda \notin \sigma_{B W}(T)$;
(2) T satisfies property (gaw);
(3) T satisfies property ($g a b$);
(4) T satisfies property $(a b)$;
(5) T satisfies property (aw);
(6) Weyl's theorem holds for T;
(7) Generalized Browder's theorem holds for T.

Proof. (1) \Leftrightarrow (2): Suppose T has SVEP at every $\lambda \notin \sigma_{B W}(T)$. Let $\lambda \in \sigma(T) \backslash \sigma_{B W}(T)$. Then $T-\lambda$ is B-Weyl. Since T has SVEP at $\lambda, T-\lambda$ is Drazin invertible. So $\lambda \in$ iso $\sigma(T) \backslash \sigma_{D}(T)$, and hence $\lambda \in \pi_{0}^{a}(T)$. Conversely, let $\lambda \in \pi_{0}^{a}(T)$. Then λ is an isolated point of $\sigma_{a}(T)$ and $\alpha(T-\lambda)>0$. Since T is a-polaroid, $\lambda \in p_{0}(T)$. Therefore $T-\lambda$ is Drazin invertible, and hence $\lambda \in \sigma(T) \backslash \sigma_{B W}(T)$. Hence $\sigma(T) \backslash \sigma_{B W}(T)=\pi_{0}^{a}(T)$, and so T satisfies property (gaw).
Conversely, suppose T satisfies property ($g a w$). Then $\sigma(T) \backslash \sigma_{B W}(T)=\pi_{0}^{a}(T)$. If $\lambda \notin \sigma(T)$, then clearly, T has SVEP at λ. If $\lambda \in \sigma(T) \backslash \sigma_{B W}(T)$, then $\lambda \in \pi_{0}^{a}(T)$. Therefore λ is an isolated point of $\sigma_{a}(T)$, and hence T has SVEP at λ.
$(2) \Rightarrow(3)$ and $(3) \Rightarrow(4)$: These statements hold by $[13$, Theorems 3.5 and 2.2].
$(4) \Rightarrow(5)$: Suppose T satisfies property $(a b)$. Then $\sigma(T) \backslash \sigma_{w}(T)=p_{00}^{a}(T)$. To show that T satisfies property (aw) it is sufficient to show that $p_{00}^{a}(T)=\pi_{00}^{a}(T)$. Let $\lambda \in \pi_{00}^{a}(T)$. Then λ is an isolated point of $\sigma_{a}(T)$ and $0<\alpha(T-\lambda)<\infty$. Since T is a-polaroid, $\lambda \in p_{0}(T)$. Therefore $T-\lambda$ has finite ascent and descent, and hence $T-\lambda$ is Browder, which implies that $\lambda \in p_{00}^{a}(T)$. But $p_{00}^{a}(T) \subseteq \pi_{00}^{a}(T)$, hence $p_{00}^{a}(T)=\pi_{00}^{a}(T)$. So T satisfies property (aw).
(5) \Rightarrow (6): Suppose T satisfies property (aw). Then $\sigma(T) \backslash \sigma_{w}(T)=\pi_{00}^{a}(T)$. We first show that Browder's theorem holds for T. Let $\lambda \in \sigma(T) \backslash \sigma_{w}(T)$. Then $T-\lambda$ is Weyl and $\lambda \in \pi_{00}^{a}(T)$. So T has SVEP at λ, and so $p(T-\lambda)<\infty$. Since $0<\alpha(T-\lambda)=\beta(T-\lambda)<\infty, 0<p(T-\lambda)=q(T-\lambda)<\infty$. Therefore $T-\lambda$ is Browder, and hence $\lambda \in \sigma(T) \backslash \sigma_{b}(T)$. So $\sigma_{w}(T)=\sigma_{b}(T)$, and hence Browder's theorem holds for T. To show that Weyl's theorem holds for T it suffices to prove that the equality $\pi_{00}(T)=p_{00}(T)$ holds. Let $\lambda \in \pi_{00}(T)$. Since the inclusion $\pi_{00}(T) \subseteq \pi_{00}^{a}(T)$ is clear, $\lambda \in \pi_{00}^{a}(T)$. Since T satisfies property (aw), $\lambda \in \sigma(T) \backslash \sigma_{w}(T)$. But T has SVEP at λ, hence $0<p(T-\lambda)=q(T-\lambda)<\infty$. Therefore $\lambda \in p_{00}(T)$, and so $\pi_{00}(T) \subseteq p_{00}(T)$. Since the opposite inclusion holds for every $T \in B(X), \pi_{00}(T)=p_{00}(T)$. Therefore Weyl's theorem holds for T.
$(6) \Rightarrow(7)$: Suppose Weyl's theorem holds for T. Then Browder's theorem holds for T. Since T satisfies Browder's theorem if and only if T satisfies generalized Browder's theorem, hence generalized Browder's theorem holds for T.
$(7) \Rightarrow(1)$: Suppose generalized Browder's theorem holds for T. Then $\sigma(T) \backslash \sigma_{B W}(T)=p_{0}(T)$. Since $p_{0}(T)=\sigma(T) \backslash \sigma_{D}(T), \sigma_{B W}(T)=\sigma_{D}(T)$. Therefore T has SVEP at every $\lambda \notin \sigma_{B W}(T)$.

In Theorem 2.12, the condition " a-polaroid" cannot be replaced by the weaker condition "polaroid".
Example 2.13. Let U be the unilateral shift on ℓ_{2} and let $A \in B\left(\ell_{2}\right)$ be given by

$$
A\left(x_{1}, x_{2}, x_{3}, \ldots\right):=\left(0, x_{2}, x_{3}, x_{4}, \ldots\right)
$$

Define $T:=U \oplus A$. Then $\sigma(T)=\sigma_{w}(T)=\overline{\mathbb{D}}$, and hence $\tau_{00}(T)=\emptyset$. Moreover, since $\sigma_{a}(T)=\Gamma \cup\{0\}$, iso $\sigma_{a}(T)=\{0\}$. Since $N(T)=N(U) \oplus N(A)$ and $\alpha(A)=1, \alpha(T)=1$. Hence $\pi_{00}^{a}(T)=\{0\}$. Therefore Weyl's
theorem holds for T, while T does not satisfy property $(a w)$. Since $\sigma(T)=\overline{\mathbb{D}}, T$ is polaroid. However, since $p(T)=\infty, T$ is not a-polaroid.

In analogy with Theorem 2.12, we obtain the following.
Theorem 2.14. Let $T \in B(\mathcal{X})$. Suppose T is a-polaroid. Then the following statements are equivalent:
(1) T^{*} has SVEP at every $\lambda \in \sigma_{a}(T) \backslash \sigma_{\text {Bea }}(T)$;
(2) T satisfies property (gw);
(3) T satisfies property $(g b)$;
(4) Generalized a-Weyl's theorem holds for T;
(5) Generalized a-Browder's theorem holds for T;
(6) T satisfies property (b);
(7) T satisfies property (w).

Proof. (1) \Leftrightarrow (2): Suppose T^{*} has SVEP at every $\lambda \in \sigma_{a}(T) \backslash \sigma_{\text {Bea }}(T)$. Let $\lambda \in \sigma_{a}(T) \backslash \sigma_{\text {Bea }}(T)$. Then $T-\lambda$ is upper semi- B-Fredholm and $i(T-\lambda) \leq 0$. Since T^{*} has SVEP at $\lambda, i(T-\lambda) \geq 0$. Therefore $T-\lambda$ is B-Weyl, and hence $T-\lambda$ is Drazin invertible. So $\lambda \in \pi_{0}(T)$, and hence $\lambda \in \sigma_{a}(T) \backslash \sigma_{B e a}(T) \subseteq \pi_{0}(T)$. Conversely, let $\lambda \in \pi_{0}(T)$. Then λ is an isolated point of $\sigma(T)$ and $\alpha(T-\lambda)>0$. Since T is a-polaroid, $\lambda \in p_{0}(T)$, which implies that $T-\lambda$ is Drazin invertible. Therefore $\lambda \in \sigma_{a}(T) \backslash \sigma_{\text {Bea }}(T)$, and hence $\pi_{0}(T) \subseteq \sigma_{a}(T) \backslash \sigma_{\text {Bea }}(T)$. So T satisfies property $(g w)$. Conversely, suppose T satisfies property $(g w)$. Let $\lambda \in \sigma_{a}(T) \backslash \sigma_{\text {Bea }}(T)$. Then $\lambda \in \pi_{0}(T)$, and so λ is an isolated point of $\sigma\left(T^{*}\right)$. Therefore T^{*} has SVEP at λ.
(2) \Rightarrow (3): It follows form [12, Theorem 2.15].
(3) $\Rightarrow(4)$: Suppose T satisfies property $(g b)$. Then $\sigma_{a}(T) \backslash \sigma_{\text {Bea }}(T)=p_{0}(T)$. Let $\lambda \in \sigma_{a}(T) \backslash \sigma_{\text {Bea }}(T)$. Then $\lambda \in p_{0}(T)$, and so λ is an isolated point of $\sigma(T)$ and $T-\lambda$ is Drazin invertible. Therefore λ is an isolated point of $\sigma_{a}(T)$ and $\alpha(T-\lambda)>0$. Hence $\lambda \in \pi_{0}^{a}(T)$. Conversely, let $\lambda \in \pi_{0}^{a}(T)$. Then λ is an isolated point of $\sigma_{a}(T)$ and $\alpha(T-\lambda)>0$. Since T is a-polaroid, $\lambda \in p_{0}(T)$. Therefore $\lambda \in \sigma_{a}(T) \backslash \sigma_{\text {Bea }}(T)$, and hence generalized a-Weyl's theorem holds for T.
(4) \Rightarrow (5): It follows form [10, Corollary 3.3].
$(5) \Rightarrow(1)$: Suppose generalized a-Browder's theorem holds for T. Then $\sigma_{a}(T) \backslash \sigma_{B e a}(T)=p_{0}^{a}(T)$. Let $\lambda \in \sigma_{a}(T) \backslash \sigma_{\text {Bea }}(T)$. Then $\lambda \in p_{0}^{a}(T)$, and so $\lambda \in \sigma_{a}(T) \backslash \sigma_{L D}(T)$. Since $\sigma_{L D}(T)=\sigma_{\text {Bea }}(T) \cup$ acc $\sigma_{a}(T), \lambda$ is an isolated point of $\sigma_{a}(T)$. Since T is a-polaroid, $\lambda \in p_{0}(T)$. Therefore λ is an isolated point of $\sigma\left(T^{*}\right)$, and hence T^{*} has SVEP at λ.
(5) \Leftrightarrow (6): Suppose generalized a-Browder's theorem holds for T. Then $\sigma_{a}(T) \backslash \sigma_{\text {Bea }}(T)=p_{0}^{a}(T)$. Let $\lambda \in \sigma_{a}(T) \backslash \sigma_{e a}(T)$. Then $\lambda \in \sigma_{a}(T) \backslash \sigma_{L D}(T)$, and so λ is an isolated point of $\sigma_{a}(T)$. Since T is a-polaroid, $\lambda \in p_{0}(T)$. Therefore T is an isolated point of $\sigma(T)$. But $T-\lambda$ is upper semi-Fredholm, hence it is Browder. So $\lambda \in p_{00}(T)$, and hence $\sigma_{a}(T) \backslash \sigma_{e a}(T) \subseteq p_{00}(T)$. But $p_{00}(T) \subseteq \sigma_{a}(T) \backslash \sigma_{e a}(T)$ holds for any operator T, hence T satisfies property (b). Conversely, suppose T satisfies property (b). Then $\sigma_{a}(T) \backslash \sigma_{e a}(T)=p_{00}(T)$. Since $p_{00}(T) \subseteq p_{00}^{a}(T), \sigma_{a}(T) \backslash \sigma_{e a}(T) \subseteq p_{00}^{a}(T)$, which means that a-Browder's theorem holds for T. It follows form [5, Theorem 3.2] that generalized a-Browder's theorem holds for T.
(6) \Leftrightarrow (7): Suppose T satisfies property (b). Then $\sigma_{a}(T) \backslash \sigma_{e a}(T)=p_{00}(T)$. To show that T satisfies property (w) it suffices to prove that $\pi_{00}(T) \subseteq p_{00}(T)$. Let $\lambda \in \pi_{00}(T)$. Then λ is an isolated point of $\sigma(T)$ and $0<\alpha(T-\lambda)<\infty$. Since T is a-polaroid, $\lambda \in p_{0}(T)$. Therefore there exists a positive integer $p:=p(T-\lambda)=q(T-\lambda)$, and hence $R(T-\lambda)^{p}$ is closed. But $\alpha(T-\lambda)^{p}<\infty$, hence $(T-\lambda)^{p}$ is upper semi-Fredholm, which implies that $T-\lambda$ is upper semi-Fredholm. Since λ is an isolated point of $\sigma(T), T-\lambda$ is Browder. Therefore $\lambda \in p_{00}(T)$, and hence $\pi_{00}(T) \subseteq p_{00}(T)$. So T satisfies property (w).

Let $H_{1}(\sigma(T))$ denote the set of all analytic functions on an open neighborhood of $\sigma(T)$ such that f is nonconstant on each of the components of its domain. Let $T \in B(\mathcal{X})$. Then it is well known that the inclusion $\sigma_{w}(f(T)) \subseteq f\left(\sigma_{w}(T)\right)$ holds for every $f \in H(\sigma(T))$ with no other restriction on T.

Theorem 2.15. Let $T \in B(\mathcal{X})$ and $f \in H_{1}(\sigma(T))$.
(1) Suppose T satisfies property $(g b)$. Then $f(T)$ satisfies property $(g b) \Leftrightarrow f\left(\sigma_{\text {Bea }}(T)\right)=\sigma_{\text {Bea }}(f(T))$.
(2) Suppose T satisfies property (ab). Then $f(T)$ satisfies property $(a b) \Leftrightarrow f\left(\sigma_{w}(T)\right)=\sigma_{w}(f(T))$.
(3) Suppose T satisfies property $(g a b)$. Then $f(T)$ satisfies property $(g a b) \Rightarrow f\left(\sigma_{B W}(T)\right)=\sigma_{B W}(f(T))$.

Proof. (1): (\Rightarrow) Suppose $f(T)$ satisfies property ($g b$). Then $\sigma_{a}(f(T)) \backslash \sigma_{\text {Bea }}(f(T))=p_{0}(f(T))$. To show that $\sigma_{\text {Bea }}(f(T))=f\left(\sigma_{\text {Bea }}(T)\right)$ it suffices to show that $f\left(\sigma_{\text {Bea }}(T)\right) \subseteq \sigma_{\text {Bea }}(f(T))$. Suppose $\lambda \notin \sigma_{\text {Bea }}(f(T))$. Then $f(T)-\lambda$ is upper semi- B-Fredholm and $i(f(T)-\lambda) \leq 0$. We consider two cases.

Case I. Suppose $f(T)-\lambda$ is bounded below. Then $\lambda \notin \sigma_{a}(f(T))=f\left(\sigma_{a}(T)\right)$, and hence $\lambda \notin f\left(\sigma_{\text {Bea }}(T)\right)$.
Case II. Suppose $\lambda \in \sigma_{a}(f(T)) \backslash \sigma_{\text {Bea }}(f(T))$. Since $f(T)$ satisfies property $(g b), \lambda \in p_{0}(f(T))$, which implies that $\lambda \in \sigma(f(T)) \backslash \sigma_{D}(f(T))$. Since $\sigma_{D}(f(T))=f\left(\sigma_{D}(T)\right)$ by [14, Theorem 2.7], $\lambda \notin f\left(\sigma_{D}(T)\right)$. Therefore $\lambda \notin f\left(\sigma_{\text {Bea }}(T)\right)$, and hence $f\left(\sigma_{\text {Bea }}(T)\right) \subseteq \sigma_{\text {Bea }}(f(T))$. It follows from Cases I and II that $f\left(\sigma_{\text {Bea }}(T)\right)=\sigma_{\text {Bea }}(f(T))$.
(\Leftarrow) Suppose $f\left(\sigma_{\text {Bea }}(T)\right)=\sigma_{\text {Bea }}(f(T))$. Since T has property $(g b)$,

$$
\begin{aligned}
\sigma_{a}(f(T)) \backslash \sigma_{\text {Bea }}(f(T)) & =f\left(\sigma_{a}(T)\right) \backslash f\left(\sigma_{\text {Bea }}(T)\right) \\
& \subseteq f\left(\sigma_{a}(T) \backslash \sigma_{\text {Bea }}(T)\right) \\
& =f\left(p_{0}(T)\right) \\
& \subseteq p_{0}(f(T)) .
\end{aligned}
$$

Therefore $\sigma_{a}(f(T)) \backslash \sigma_{\text {Bea }}(f(T)) \subseteq p_{0}(f(T))$, and hence $f(T)$ satisfies property $(g b)$.
$(2):(\Rightarrow)$ Suppose $f(T)$ satisfies property (ab). Then $\sigma(f(T)) \backslash \sigma_{w}(f(T))=p_{00}^{a}(f(T))$. To show that $\sigma_{w}(f(T))=$ $f\left(\sigma_{w}(T)\right)$ it suffices to show that $f\left(\sigma_{w}(T)\right) \subseteq \sigma_{w}(f(T))$. Suppose $\lambda \notin \sigma_{w}(f(T))$. Then $f(T)-\lambda$ is Weyl. We consider two cases.

Case I. Suppose $f(T)-\lambda$ is invertible. Then $\lambda \notin \sigma(f(T))=f(\sigma(T))$, and hence $\lambda \notin f\left(\sigma_{w}(T)\right)$.
Case II. Suppose $\lambda \in \sigma(f(T)) \backslash \sigma_{w}(f(T))$. Since $f(T)$ satisfies property (ab), $\lambda \in p_{00}^{a}(f(T))$, which means that $\lambda \in \sigma_{a}(f(T)) \backslash \sigma_{a b}(f(T))$. Therefore $f(T)-\lambda$ is Weyl and $p(f(T)-\lambda)<\infty$. Therefore $f(T)-\lambda$ is Browder, and hence $\lambda \notin \sigma_{b}(f(T))=f\left(\sigma_{b}(T)\right)$. So $\lambda \notin f\left(\sigma_{w}(T)\right)$, and hence $f\left(\sigma_{w}(T)\right) \subseteq \sigma_{w}(f(T))$. It follows from Cases I and II that $f\left(\sigma_{w}(T)\right)=\sigma_{w}(f(T))$.
(\Leftarrow) Suppose $f\left(\sigma_{w}(T)\right)=\sigma_{w}(f(T))$. Let $\lambda \in \sigma(f(T)) \backslash \sigma_{w}(f(T))$. Write

$$
f(T)-\lambda=c_{0}\left(T-\lambda_{1}\right)\left(T-\lambda_{2}\right) \cdots\left(T-\lambda_{n}\right) g(T),
$$

where $c_{0}, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \in \mathbb{C}$ and $g(T)$ is invertible. Since $\lambda \notin \sigma_{w}(f(T))=f\left(\sigma_{w}(T)\right), T-\lambda_{i}$ is Weyl for each $i=1,2, \ldots, n$. Since T satisfies property ($a b$), Browder's theorem holds for T. Therefore $\sigma_{w}(T)=\sigma_{b}(T)$, and hence $T-\lambda_{i}$ is Browder for each $i=1,2, \ldots, n$. So $f(T)-\lambda$ is Browder, and hence $\lambda \in p_{00}^{a}(f(T))$.

Conversely, suppose $\lambda \in p_{00}^{a}(f(T))$. Then $\lambda \in \sigma_{a}(f(T)) \backslash \sigma_{a b}(f(T))$. Write

$$
f(T)-\lambda=c_{0}\left(T-\lambda_{1}\right)\left(T-\lambda_{2}\right) \cdots\left(T-\lambda_{n}\right) g(T),
$$

where $c_{0}, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \in \mathbb{C}$ and $g(T)$ is invertible. Since $\lambda \in f\left(\sigma_{a}(T)\right) \backslash f\left(\sigma_{a b}(T)\right), \lambda_{i} \in \sigma_{a}(T) \backslash \sigma_{a b}(T)$ for each $i=1,2, \ldots, n$. But T satisfies property (ab), hence every $T-\lambda_{i}$ is Weyl. So $\lambda \in \sigma(f(T)) \backslash \sigma_{w}(f(T))$. Therefore $f(T)$ satisfies property ($a b$).
(3): Suppose $f(T)$ satisfies property ($g a b$). Then $\sigma(f(T)) \backslash \sigma_{B W}(f(T))=p_{0}^{a}(f(T))$. Since T satisfies property ($g a b$), generalized Browder's theorem holds for T. So $\sigma_{B W}(f(T)) \subseteq f\left(\sigma_{B W}(T)\right.$) by [14, Corollary 2.8]. Now we show that $f\left(\sigma_{B W}(T)\right) \subseteq \sigma_{B W}(f(T))$. Suppose that $\lambda \notin \sigma_{B W}(f(T))$. Then $f(T)-\lambda$ is B-Weyl. We consider two cases.

Case I. Suppose $f(T)-\lambda$ is invertible. Then $\lambda \notin \sigma(f(T))=f(\sigma(T))$, and hence $\lambda \notin f\left(\sigma_{B W}(T)\right)$.
Case II. Suppose $\lambda \in \sigma(f(T)) \backslash \sigma_{B W}(f(T))$. Since $f(T)$ satisfies property ($g a b$), $\lambda \in p_{0}^{a}(f(T))$, which means that $\lambda \in \sigma_{a}(f(T)) \backslash \sigma_{L D}(f(T))$. Therefore $f(T)-\lambda$ is B-Weyl and $p(f(T)-\lambda)<\infty$. Therefore $f(T)-\lambda$ is Drazin invertible, and hence $\lambda \notin \sigma_{D}(f(T))=f\left(\sigma_{D}(T)\right)$. So $\lambda \notin f\left(\sigma_{B W}(T)\right)$, and hence $f\left(\sigma_{B W}(T)\right) \subseteq \sigma_{B W}(f(T))$. It follows from Cases I and II that $f\left(\sigma_{B W}(T)\right)=\sigma_{B W}(f(T))$.

In [3], it was shown that if T is left polaroid then $f(T)$ is also left polaroid for each $f \in H_{1}(\sigma(T))$. We obtain similar results for a-polaroid and s-polaroid, respectively.

Theorem 2.16. Let $T \in B(\mathcal{X})$ and $f \in H_{1}(\sigma(T))$.
(1) Suppose T is a-polaroid. Then $f(T)$ is a-polaroid.
(2) Suppose T is s-polaroid. Then $f(T)$ is s-polaroid.

Proof. (1) Suppose T is a-polaroid. We shall show that iso $\sigma_{a}(f(T)) \subseteq p_{0}(f(T))$. Let $\lambda_{0} \in$ iso $\sigma_{a}(f(T))$. Since the spectral mapping theorem holds for the approximate point spectrum, $\lambda_{0} \in$ iso $f\left(\sigma_{a}(T)\right)$. We let $\mu_{0} \in \sigma_{a}(T)$ such that $f\left(\mu_{0}\right)=\lambda_{0}$. Denote by Ω the connected component of the domain of f which contains μ_{0}. Now we show that $\mu_{0} \in$ iso $\sigma_{a}(T)$. Assume to the contrary that $\mu_{0} \in \operatorname{acc} \sigma_{a}(T)$. Then there exists a sequence $\left(\mu_{n}\right)$ in $\Omega \cap \sigma_{a}(T)$ of distinct scalars such that $\mu_{n} \longrightarrow \mu_{0}$ as $n \rightarrow \infty$. Since $C:=\left\{\mu_{0}, \mu_{1}, \mu_{2}, \mu_{3}, \ldots\right\}$ is a compact subset of Ω, f may assume the value $\lambda_{0}=f\left(\mu_{0}\right)$ only a finite number of points of C, so for n sufficiently large $f\left(\mu_{n}\right) \neq f\left(\mu_{0}\right)=\lambda_{0}$, and since $f\left(\mu_{n}\right) \longrightarrow f\left(\mu_{0}\right)=\lambda_{0}$ as $n \rightarrow \infty, \lambda_{0} \in \operatorname{acc} f\left(\sigma_{a}(T)\right)$. This is a contradiction. Therefore $\mu_{0} \in$ iso $\sigma_{a}(T)$. Since T is a-polaroid, $\mu_{0} \in p_{0}(T)$. It follows from [4, Theorem 2.9] that $\lambda_{0} \in p_{0}(f(T))$. Hence $f(T)$ is a-polaroid.
(2) Suppose T is s-polaroid. Then T^{*} is a-polaroid by Theorem 2.10. So $f(T)^{*}=f\left(T^{*}\right)$ is a-polaroid by (1), and hence $f(T)$ is s-polaroid.

From Theorem 2.12, if T is a-polaroid and T has SVEP, then T satisfies property (gaw). We can prove more:

Theorem 2.17. Let $T \in B(\mathcal{X})$ and $f \in H_{1}(\sigma(T))$.
(1) Suppose T is a-polaroid and has SVEP. Then $f(T)$ satisfies property (gaw).
(2) Suppose T is s-polaroid and T^{*} has SVEP. Then $f\left(T^{*}\right)$ satisfies property (gaw).

Proof. (1) Since T is a-polaroid, $f(T)$ is a-polaroid by Theorem 2.16. Also, since T has SVEP, $f(T)$ has SVEP. It follows from Theorem 2.12 that $f(T)$ satisfies property (gaw).
(2) Since T is s-polaroid, $f(T)$ is s-polaroid by theorem 2.16, which means that $f\left(T^{*}\right)=f(T)^{*}$ is a-polaroid. Since T^{*} has SVEP, $f\left(T^{*}\right)=f(T)^{*}$ has SVEP. Therefore $f\left(T^{*}\right)$ satisfies property (gaw) by Theorem 2.12.

References

[1] P. Aiena, Fredholm and Local Spectral Theory, with Applications to Multipliers, Kluwer, 2004.
[2] P. Aiena, Quasi Fredholm operators and localized SVEP, Acta Sci. Math. (Szeged), 73 (2007), 251-263.
[3] P. Aiena, E. Aponte and E. Balzan, Weyl type theorems for left and right polaroid operators, Integral Equations Operator Theory 66 (2010), 1-20.
[4] P. Aiena and J.E. Sanabria, On left and right poles of the resolvent, Acta Sci. Math. (Szeged), 74 (2008), 669-687.
[5] P. Aiena, M.T. Biondi. and C. Carpintero, On Drazin invertibility, Proc. Amer. Math. Soc. 136 (2008), no. 8, 2839-2848.
[6] M. Amouch and M. Berkani, On the property (gw), Mediterr. J. Math. 5 (2008), 371-378.
[7] M. Berkani, On a class of quasi-Fredholm operators, Integral Equations Operator Theory 34 (1999), no. 2, 244-249.
[8] M. Berkani, B-Weyl spectrum and poles of the resolvent, J. Math. Anal. Appl. 272 (2002), 596-603.
[9] M. Berkani, Index of B-Fredholm operators and generalization of a Weyl theorem, Proc. Amer. Math. Soc. 130 (2002), 1717-1723.
[10] M. Berkani and J.J. Koliha, Weyl type theorems for bounded linear operators, Acta Sci. Math. (Szeged) 69 (2003), 359-376.
[11] M. Berkani and M. Sarih, On semi B-Fredholm operators, Glasg. Math. J. 43 (2001), no. 3, 457-465.
[12] M. Berkani, Oujda, H. Zariouh and Meknes, Extended Weyl type theorems, Math. Bohemica. 134 (2009), no.4, 369-378.
[13] M. Berkani and H. Zariouh, New extended Weyl type theorems, Mat. Vesnik 62 (2010) 145-154.
[14] R.E. Curto and Y.M. Han, Generalized Browder's and Weyl's theorems for Banach spaces operators, J. Math. Anal. Appl. 336 (2007), 1424-1442.
[15] S.V. Djordjević and Y.M. Han, Browder's theorems and spectral continuity, Glasgow Math. J. 42 (2000), 479-486.
[16] R. Harte, Invertibility and Singularity for Bounded Linear Operators, Dekker, New York, 1988.
[17] V. Rakočević, On a class of operators, Mat. Vesnik 37 (1985) 423-426.
[18] C. Sun, X. Cao and L. Dai, Property $\left(\omega_{1}\right)$ and Weyl type theorem, J. Math. Anal. Appl. 363 (2010), 1-6.

[^0]: 2010 Mathematics Subject Classification. Primary 47A10, 47A53; Secondary 47B20
 Keywords. a-polaroid, s-polaroid, property (b), property ($g b$), SVEP
 Received: 10 September, 2012; Accepted: 20 March 2013
 Communicated by Dragana Cvetkovic Ilic
 Email addresses: dlfwn79@khu.ac.kr (Il Ju An), ymhan2004@khu.ac.kr (Young Min Han)

