New Extended Weyl Type Theorems and Polaroid Operators

Il Ju An^a, Young Min Han^b

^aDepartment of Mathematics, College of Sciences, Kyung Hee University, Seoul 130-701, Republic of Korea ^bDepartment of Mathematics, College of Sciences, Kyung Hee University, Seoul 130-701, Republic of Korea

Abstract. In this paper we introduce the notion of *s*-polaroid and compare it with the related notions of right polaroid and *a*-polaroid. We establish for a bounded linear operator defined on a Banach space several sufficient and necessary conditions for which properties (*b*), (*ab*), (*gb*), and (*gab*) hold.

1. Introduction

Throughout this note we assume that X is an infinite dimensional complex Banach space. Let B(X), $B_0(X)$ denote, respectively, the algebra of bounded linear operators, the ideal of compact operators acting on X. If $T \in B(X)$ we shall write N(T) and R(T) for the null space and range of T. Also, let $\alpha(T) := \dim N(T)$, $\beta(T) := \dim X/R(T)$, and let $\sigma(T)$, $\sigma_a(T)$, $\sigma_p(T)$, $\sigma_p(T)$, $\pi_0(T)$ denote the spectrum, approximate point spectrum, surjective spectrum, point spectrum of T, the set of poles of the resolvent of T, the set of all eigenvalues of T which are isolated in $\sigma(T)$, respectively. For $T \in B(X)$, the smallest nonnegative integer p such that $N(T^p) = N(T^{p+1})$ is called the *ascent* of T and denoted by p(T). If no such integer exists, we set $p(T) = \infty$. The smallest nonnegative integer q such that $R(T^q) = R(T^{q+1})$ is called the *descent* of T and denoted by q(T). If no such integer exists, we set $q(T) = \infty$. An operator $T \in B(X)$ is called *upper semi-Fredholm* if it has closed range and finite dimensional null space and is called *lower semi-Fredholm* if it has closed range has finite co-dimension. If $T \in B(X)$ is either upper or lower semi-Fredholm, then T is called *semi-Fredholm* operator $T \in B(X)$ is defined by

$$i(T) := \alpha(T) - \beta(T).$$

If both $\alpha(T)$ and $\beta(T)$ are finite, then *T* is called *Fredholm*. $T \in B(X)$ is called *Weyl* if it is Fredholm of index zero, and *Browder* if it is Fredholm of finite ascent and descent. The essential spectrum $\sigma_e(T)$, the Weyl spectrum $\sigma_w(T)$ and the Browder spectrum $\sigma_b(T)$ of $T \in B(X)$ are defined by ([16])

 $\sigma_e(T) := \{\lambda \in \mathbb{C} : T - \lambda \text{ is not Fredholm}\},\$ $\sigma_w(T) := \{\lambda \in \mathbb{C} : T - \lambda \text{ is not Weyl}\},\$

 $\sigma_b(T) := \{\lambda \in \mathbb{C} : T - \lambda \text{ is not Browder}\},\$

Keywords. a-polaroid, s-polaroid, property (b), property (gb), SVEP

²⁰¹⁰ Mathematics Subject Classification. Primary 47A10, 47A53; Secondary 47B20

Received: 10 September, 2012; Accepted: 20 March 2013

Communicated by Dragana Cvetkovic Ilic

Email addresses: dlfwn79@khu.ac.kr (Il Ju An), ymhan2004@khu.ac.kr (Young Min Han)

respectively. For $T \in B(X)$ and a nonnegative integer *n* define T_n to be the restriction of *T* to $R(T^n)$ viewed as a map from $R(T^n)$ into $R(T^n)$ (in particular $T_0 = T$). If for some integer *n* the range $R(T^n)$ is closed and T_n is upper (resp. lower) semi-Fredholm, then *T* is called *upper* (resp. *lower*) *semi-B-Fredholm*. Moreover, if T_n is Fredholm, then *T* is called *B-Fredholm*. *T* is called *semi-B-Fredholm* if it is upper or lower semi-*B*-Fredholm.

Definition 1.1. Let $T \in B(X)$ and let

$$\Delta(T) := \{ n \in \mathbb{N} : m \in \mathbb{N} \text{ and } m \ge n \Rightarrow (R(T^n) \cap N(T)) \subseteq (R(T^m) \cap N(T)) \}$$

Then the *degree of stable iteration* dis(*T*) of *T* is defined as dis(*T*) := inf $\Delta(T)$.

Let *T* be semi-*B*-Fredholm and let *d* be the degree of stable iteration of *T*. It follows from [11, Proposition 2.1] that T_m is semi-Fredholm and $i(T_m) = i(T_d)$ for each $m \ge d$. This enables us to define the *index of semi-B-Fredholm T* as the index of semi-Fredholm T_d . In [7] he studied this class of operators and he proved [7, Theorem 2.7] that an operator $T \in B(X)$ is *B*-Fredholm if and only if $T = T_1 \oplus T_2$, where T_1 is Fredholm and T_2 is nilpotent. It appears that the concept of Drazin invertibility plays an important role for the class of *B*-Fredholm operators. It is well known that *T* is Drazin invertible if and only if it has finite ascent and descent, which is also equivalent to the fact that

 $T = T_1 \oplus T_2$, where T_1 is invertible and T_2 is nilpotent.

An operator $T \in B(X)$ is called *B*-Weyl if it is *B*-Fredholm of index 0. The *B*-Fredholm spectrum $\sigma_{BF}(T)$, the *B*-Weyl spectrum $\sigma_{BW}(T)$, and the *Drazin spectrum* of *T* are defined by

$$\sigma_{BF}(T) := \{\lambda \in \mathbb{C} : T - \lambda \text{ is not } B\text{-Fredholm}\},\$$
$$\sigma_{BW}(T) := \{\lambda \in \mathbb{C} : T - \lambda \text{ is not } B\text{-Weyl}\},\$$
$$\sigma_{D}(T) := \{\lambda \in \mathbb{C} : T - \lambda \text{ is not Drazin invertible}\}.$$

Now we consider the following sets:

 $BF_{+}(X) := \{T \in B(X) : T \text{ is upper semi-}B\text{-}Fredholm\},\$ $BF_{+}^{-}(X) := \{T \in B(X) : T \in BF_{+}(X) \text{ and } i(T) \leq 0\},\$ $LD(X) := \{T \in B(X) : p(T) < \infty \text{ and } R(T^{p(T)+1}) \text{ is closed}\},\$ $RD(X) := \{T \in B(X) : q(T) < \infty \text{ and } R(T^{q(T)}) \text{ is closed}\}.\$

By definition,

$$\sigma_{Bea}(T) := \{\lambda \in \mathbb{C} : T - \lambda \notin BF_+^{-}(X)\}$$

is the upper semi-B-essential approximate point spectrum and

$$\sigma_{LD}(T) := \{\lambda \in \mathbb{C} : T - \lambda \notin LD(\mathcal{X})\}$$

is the left Drazin spectrum, and

$$\sigma_{RD}(T) := \{\lambda \in \mathbb{C} : T - \lambda \notin RD(\mathcal{X})\}$$

is the right Drazin spectrum. It is well known that

$$\sigma_{Bea}(T) \subseteq \sigma_{LD}(T) = [\sigma_{Bea}(T) \cup \operatorname{acc} \sigma_a(T)] \subseteq \sigma_D(T),$$

where we write acc *K* for the accumulation points of $K \subseteq \mathbb{C}$.

Definition 1.2. An operator $T \in B(X)$ has the *single valued extension property* at $\lambda_0 \in \mathbb{C}$ (abbreviated SVEP at λ_0) if for every open neighborhood U of λ_0 the only analytic function $f : U \longrightarrow X$ which satisfies the equation

$$(T - \lambda)f(\lambda) = 0$$

is the constant function $f \equiv 0$ on U. The operator T is said to have SVEP if T has SVEP at every $\lambda \in \mathbb{C}$.

Evidently, every operator *T*, as well as its dual T^* , has SVEP at every point of the boundary $\partial \sigma(T)$ of the spectrum $\sigma(T)$, in particular, at every isolated point of $\sigma(T)$. We also have (see [1, Theorem 3.8])

$$p(T - \lambda) < \infty \implies T \text{ has SVEP at } \lambda,$$
 (1.1)

and dually

$$q(T - \lambda) < \infty \implies T^* \text{ has SVEP at } \lambda.$$
 (1.2)

Remark 1.3. If $T - \lambda$ is semi-Fredholm then the implications (1.1) and (1.2) are equivalences, see [1, Chapter 3].

By definition,

$$\sigma_{ea}(T) := \cap \{\sigma_a(T+K) : K \in B_0(\mathcal{X})\}$$

is the essential approximate point spectrum, and

$$\sigma_{ab}(T) := \bigcap \{ \sigma_a(T+K) : TK = KT \text{ and } K \in B_0(X) \}$$

is the Browder essential approximate point spectrum. If we write iso $K := K \setminus \text{acc } K$ then we let

$$\begin{aligned} \pi_{00}(T) &:= \{\lambda \in \text{iso } \sigma(T) : 0 < \alpha(T - \lambda) < \infty \}, \\ \pi_{00}^{a}(T) &:= \{\lambda \in \text{iso } \sigma_{a}(T) : 0 < \alpha(T - \lambda) < \infty \}, \\ p_{00}(T) &:= \sigma(T) \setminus \sigma_{b}(T), \\ p_{00}^{a}(T) &:= \sigma_{a}(T) \setminus \sigma_{ab}(T), \\ p_{0}^{a}(T) &:= \{\lambda \in \sigma_{a}(T) : T - \lambda \in LD(X)\}, \\ p_{0}^{s}(T) &:= \{\lambda \in \sigma_{s}(T) : T - \lambda \in RD(X)\}, \\ \pi_{0}^{a}(T) &:= \{\lambda \in \text{iso } \sigma_{a}(T) : \lambda \in \sigma_{p}(T)\}. \end{aligned}$$

We say that Weyl's theorem holds for $T \in B(X)$, in symbol (W), if

$$\sigma(T) \setminus \sigma_w(T) = \pi_{00}(T),$$

Browder's theorem holds for $T \in B(X)$, in symbol (B), if

 $\sigma(T) \setminus \sigma_w(T) = p_{00}(T).$

The following variants of Weyl's theorem has been introduced by Rakočević, Berkani, and Zariouh in ([10],[11],[12],[13],[17]).

Definition 1.4. Let $T \in B(X)$.

(1) *a*-Weyl's theorem holds for *T*, in symbol (*aW*), if $\sigma_a(T) \setminus \sigma_{ea}(T) = \pi_{00}^a(T)$ and *a*-Browder's theorem holds for *T*, in symbol (*aB*), if $\sigma_a(T) \setminus \sigma_{ea}(T) = p_{00}^a(T)$.

(2) Generalized Weyl's theorem holds for T, in symbol (gW), if $\sigma(T) \setminus \sigma_{BW}(T) = \pi_0(T)$ and generalized Browder's theorem holds for T, in symbol (gB), if $\sigma(T) \setminus \sigma_{BW}(T) = p_0(T)$.

(3) Generalized a-Weyl's theorem holds for T, in symbol (gaW), if $\sigma_a(T) \setminus \sigma_{Bea}(T) = \pi_0^a(T)$ and generalized a-Browder's theorem holds for T, in symbol (gaB), if $\sigma_a(T) \setminus \sigma_{Bea}(T) = p_0^a(T)$.

(4) *T* satisfies property (*w*) if $\sigma_a(T) \setminus \sigma_{ea}(T) = \pi_{00}(T)$ and satisfies property (*b*) if $\sigma_a(T) \setminus \sigma_{ea}(T) = p_{00}(T)$.

(5) *T* satisfies property (*gw*) if $\sigma_a(T) \setminus \sigma_{Bea}(T) = \pi_0(T)$ and satisfies property (*gb*) if $\sigma_a(T) \setminus \sigma_{Bea}(T) = p_0(T)$.

(6) *T* satisfies property (*aw*) if $\sigma(T) \setminus \sigma_w(T) = \pi_{00}^a(T)$ and satisfies property (*ab*) if $\sigma(T) \setminus \sigma_w(T) = p_{00}^a(T)$.

(7) *T* satisfies property (gaw) if $\sigma(T) \setminus \sigma_{BW}(T) = \pi_0^a(T)$ and satisfies property (gab) if $\sigma(T) \setminus \sigma_{BW}(T) = p_0^a(T)$.

It is well known ([5],[6],[10],[11],[12],[13],[15],[17]) that if $T \in B(X)$ then we have:

(gW)		(gaB)		(gaw)	\Rightarrow	(aw)						(gB)
↑		€		↓								↑
(gw)	\Rightarrow	(<i>gb</i>)	\Rightarrow	(gab)	\Rightarrow	(gB)	\Leftarrow	(gW)	\Leftarrow	(gaW)	\Rightarrow	(gaB)
↓		\Downarrow		\Downarrow		(\Downarrow		↓		(
(w)	\Rightarrow	(b)	\Rightarrow	(<i>ab</i>)	\Rightarrow	(<i>B</i>)	\Leftarrow	(W)	\Leftarrow	(aW)	\Rightarrow	(<i>aB</i>)
↓		\Downarrow		↑								\Downarrow
(W)		(<i>aB</i>)		(aw)								(B)

In the next section we give the structural properties for operators satisfying properties (*b*), (*ab*), (*gb*), and (*gab*), respectively. Also, we show that properties (*b*), (*ab*), (*gb*), and (*gab*) can be characterized by means of localized SVEP.

2. New extended Weyl type theorems

Theorem 2.1. Let $T \in B(X)$. Then the following statements are equivalent:

- (1) *T* satisfies property (*ab*);
- (2) $\sigma_{ab}(T) = \sigma_a(T) \cap \sigma_w(T)$.

Proof. (1) \Rightarrow (2): Suppose that property (*ab*) holds for *T*. Then Browder's theorem holds for *T* by [13, Theorem 2.4], and so $\sigma_w(T) = \sigma_b(T)$. Therefore $\sigma_{ab}(T) \subseteq \sigma_a(T) \cap \sigma_w(T)$. Conversely, let $\lambda \notin \sigma_{ab}(T)$. Then either $\lambda \in \sigma_a(T) \setminus \sigma_{ab}(T)$ or $\lambda \notin \sigma_a(T)$. Since *T* satisfies property (*ab*), we know that if $\lambda \in \sigma_a(T) \setminus \sigma_{ab}(T)$, then $\lambda \in \sigma(T) \setminus \sigma_w(T)$, which means that $\lambda \notin \sigma_a(T) \cap \sigma_w(T)$. Therefore $\sigma_a(T) \cap \sigma_w(T) \subseteq \sigma_{ab}(T)$, and hence $\sigma_{ab}(T) = \sigma_a(T) \cap \sigma_w(T)$.

(2) \Rightarrow (1): Suppose that $\sigma_{ab}(T) = \sigma_a(T) \cap \sigma_w(T)$. Let $\lambda \in \sigma(T) \setminus \sigma_w(T)$. Then $\lambda \in \sigma(T) \setminus \sigma_{ab}(T)$. Since $T - \lambda$ is Weyl but not invertible, it is not bounded below. Therefore $\lambda \in p_{00}^a(T)$. Conversely, let $\lambda \in p_{00}^a(T)$. Then $\lambda \in \sigma_a(T) \setminus \sigma_{ab}(T)$. Since $\sigma_{ab}(T) = \sigma_a(T) \cap \sigma_w(T)$, $\lambda \notin \sigma_w(T)$. Therefore $\lambda \in \sigma(T) \setminus \sigma_w(T)$, and hence T satisfies property (*ab*). \Box

We give necessary and sufficient conditions for a Banach space operator T to satisfy property (b).

Theorem 2.2. Let $T \in B(X)$. Then the following statements are equivalent:

- (1) *T* satisfies property (*b*);
- (2) $\sigma_{ea}(T) = \sigma_b(T) \cap \sigma_a(T);$
- (3) $\sigma_a(T) \setminus \sigma_{ea}(T) \subseteq p_{00}(T);$
- (4) $\sigma_a(T) = \sigma_{ea}(T) \cup \partial \sigma(T);$
- (5) $\sigma_a(T) \setminus \sigma_{ea}(T) \subseteq \text{iso } \sigma(T);$

(6) $\sigma_a(T) \cap \operatorname{acc} \sigma(T) \subseteq \sigma_{ea}(T)$.

Proof. The statements (1), (2), and (3) are equivalent from [18, Theorem 2.2]. Now we show that $(1) \Rightarrow (4) \Rightarrow (5) \Rightarrow (1)$ and $(5) \Leftrightarrow (6)$.

(1) \Rightarrow (4): Suppose that *T* satisfies property (*b*). Then $\sigma_a(T) \setminus \sigma_{ea}(T) = p_{00}(T)$. Let $\lambda \in \sigma_a(T) \setminus \sigma_{ea}(T)$. Then $\lambda \in p_{00}(T)$, and so $\lambda \in \text{iso } \sigma(T) \subseteq \partial \sigma(T)$. Therefore $\sigma_a(T) \subseteq \sigma_{ea}(T) \cup \partial \sigma(T)$. But $\sigma_{ea}(T) \cup \partial \sigma(T) \subseteq \sigma_a(T)$, hence $\sigma_a(T) = \sigma_{ea}(T) \cup \partial \sigma(T)$.

(4) \Rightarrow (5): Suppose that $\sigma_a(T) = \sigma_{ea}(T) \cup \partial \sigma(T)$. Let $\lambda \in \sigma_a(T) \setminus \sigma_{ea}(T)$. Then $\lambda \in \partial \sigma(T)$, and so *T* and *T*^{*} have SVEP at λ . Since $T - \lambda$ is upper semi-Fredholm, $T - \lambda$ is Browder by Remark 1.3. Therefore $\lambda \in \text{iso } \sigma(T)$, and hence $\sigma_a(T) \setminus \sigma_{ea}(T) \subseteq \text{iso } \sigma(T)$.

(5) \Rightarrow (1): Suppose that $\sigma_a(T) \setminus \sigma_{ea}(T) \subseteq \text{iso } \sigma(T)$. Let $\lambda \in \sigma_a(T) \setminus \sigma_{ea}(T)$. Then λ is an isolated point of $\sigma(T)$, and so T and T^* have SVEP at λ . Therefore $\lambda \in \sigma(T) \setminus \sigma_b(T) = p_{00}(T)$ by Remark 1.3. Conversely, let $\lambda \in p_{00}(T)$. Then λ is an isolated point of $\sigma(T)$ and $T - \lambda$ is Browder. So $\lambda \in \sigma_a(T) \setminus \sigma_{ea}(T)$, and hence $\sigma_a(T) \setminus \sigma_{ea}(T) = p_{00}(T)$. Therefore T satisfies property (*b*).

(5) \Leftrightarrow (6): Suppose that $\sigma_a(T) \setminus \sigma_{ea}(T) \subseteq$ iso $\sigma(T)$. Let $\lambda \notin \sigma_{ea}(T)$. If $\lambda \notin \sigma_a(T)$, then clearly, $\lambda \notin \sigma_a(T) \cap \operatorname{acc} \sigma(T)$. If $\lambda \in \sigma_a(T)$, then $\lambda \in \sigma_a(T) \setminus \sigma_{ea}(T)$, which means that λ is an isolated point of $\sigma(T)$. Therefore $\lambda \notin \sigma_a(T) \cap \operatorname{acc} \sigma(T)$.

Conversely, suppose that $\sigma_a(T) \cap \operatorname{acc} \sigma(T) \subseteq \sigma_{ea}(T)$. Let $\lambda \in \sigma_a(T) \setminus \sigma_{ea}(T)$. Then $\lambda \notin \operatorname{acc} \sigma(T)$, and hence $\lambda \in \operatorname{iso} \sigma(T)$. Therefore $\sigma_a(T) \setminus \sigma_{ea}(T) \subseteq \operatorname{iso} \sigma(T)$. \Box

Corollary 2.3. Let *T* be quasinilpotent. Then *T* satisfies property (*b*).

Proof. Straightforward from Theorem 2.2 and the fact that $\operatorname{acc} \sigma(T) = \emptyset$ whenever *T* is quasinilpotent. \Box

Theorem 2.4. Let $T \in B(X)$. Then the following statements are equivalent:

- (1) *T* satisfies property (*gab*) ;
- (2) $\sigma_{LD}(T) = \sigma_a(T) \cap \sigma_{BW}(T)$.

Proof. (1) \Rightarrow (2): Suppose that property (*gab*) holds for *T*. Then *T* satisfies generalized Browder's theorem by [13, Corollary 2.6], and so $\sigma_{BW}(T) = \sigma_D(T)$. Therefore $\sigma_{LD}(T) \subseteq \sigma_a(T) \cap \sigma_{BW}(T)$. Conversely, let $\lambda \notin \sigma_{LD}(T)$. Then either $\lambda \in \sigma_a(T) \setminus \sigma_{LD}(T)$ or $\lambda \notin \sigma_a(T)$. If $\lambda \notin \sigma_a(T)$, then clearly $\lambda \notin \sigma_a(T) \cap \sigma_{BW}(T)$. Since *T* satisfies property (*gab*), we know that if $\lambda \in \sigma_a(T) \setminus \sigma_{LD}(T)$, then $\lambda \in \sigma(T) \setminus \sigma_{BW}(T)$, which means that $\lambda \notin \sigma_a(T) \cap \sigma_{BW}(T)$. Therefore $\sigma_a(T) \cap \sigma_{BW}(T) \subseteq \sigma_{LD}(T)$, and hence $\sigma_{LD}(T) = \sigma_a(T) \cap \sigma_{BW}(T)$.

(2) \Rightarrow (1): Suppose that $\sigma_{LD}(T) = \sigma_a(T) \cap \sigma_{BW}(T)$. Let $\lambda \in \sigma(T) \setminus \sigma_{BW}(T)$. Then $\lambda \in \sigma(T) \setminus \sigma_{LD}(T)$. Since $T - \lambda$ is *B*-Weyl but not invertible, it is not bounded below. Therefore $\lambda \in p_0^a(T)$. Conversely, let $\lambda \in p_0^a(T)$. Then $\lambda \in \sigma_a(T) \setminus \sigma_{LD}(T)$. Since $\sigma_{LD}(T) = \sigma_a(T) \cap \sigma_{BW}(T)$, $\lambda \notin \sigma_{BW}(T)$. Therefore $\lambda \in \sigma(T) \setminus \sigma_{BW}(T)$, and hence *T* satisfies property (*gab*). \Box

In analogy with Theorem 2.2, we obtain the following.

Theorem 2.5. Let $T \in B(X)$. Then the following statements are equivalent:

- (1) *T* satisfies property (*gb*);
- (2) $\sigma_{Bea}(T) = \sigma_D(T) \cap \sigma_a(T);$
- (3) $\sigma_a(T) = \sigma_{Bea}(T) \cup p_0(T);$
- (4) $\sigma_a(T) \setminus \sigma_{Bea}(T) \subseteq \pi_0(T);$
- (5) $\sigma_a(T) \setminus \sigma_{Bea}(T) \subseteq \text{iso } \sigma(T);$
- (6) $\sigma_a(T) = \sigma_{Bea}(T) \cup \partial \sigma(T).$

Proof. (1) \Rightarrow (2) : Suppose that *T* satisfies property (*gb*). Since $\sigma_{Bea}(T) \subseteq \sigma_{LD}(T) \subseteq \sigma_D(T)$ and $\sigma_{Bea}(T) \subseteq \sigma_a(T)$, $\sigma_{Bea}(T) \subseteq \sigma_D(T) \cap \sigma_a(T)$. Conversely, let $\lambda \notin \sigma_{Bea}(T)$. If $\lambda \notin \sigma_a(T)$, then clearly, $\lambda \notin \sigma_D(T) \cap \sigma_a(T)$. If $\lambda \in \sigma_a(T)$, then $\lambda \in \sigma_a(T) \setminus \sigma_{Bea}(T)$. Since *T* satisfies property (*gb*), $\lambda \in \sigma(T) \setminus \sigma_D(T)$. Therefore $\lambda \notin \sigma_D(T) \cap \sigma_a(T)$, and hence $\sigma_D(T) \cap \sigma_a(T) \subseteq \sigma_{Bea}(T)$.

(2) \Rightarrow (3): Suppose that $\sigma_{Bea}(T) = \sigma_D(T) \cap \sigma_a(T)$. Let $\lambda \in \sigma_a(T) \setminus \sigma_{Bea}(T)$. Then $\lambda \notin \sigma_D(T)$, and so $\lambda \in p_0(T)$. But $\sigma_{Bea}(T) \cup p_0(T) \subseteq \sigma_a(T)$, hence $\sigma_a(T) = \sigma_{Bea}(T) \cup p_0(T)$.

(3) \Rightarrow (4): Since $p_0(T) \subseteq \pi_0(T)$, it is clear.

(4) \Rightarrow (5): Since $\pi_0(T) \subseteq$ iso $\sigma(T)$, it is clear.

(5) \Rightarrow (6): Let $\lambda \in \sigma_a(T) \setminus \sigma_{Bea}(T)$. Then λ is an isolated point of $\sigma(T)$, and so $\lambda \in \partial \sigma(T)$. Conversely, since $\sigma_{Bea}(T) \subseteq \sigma_a(T)$ and $\partial \sigma(T) \subseteq \sigma_a(T)$, $\sigma_{Bea}(T) \cup \partial \sigma(T) \subseteq \sigma_a(T)$. Therefore $\sigma_a(T) = \sigma_{Bea}(T) \cup \partial \sigma(T)$.

(6) \Rightarrow (1): Suppose that $\sigma_a(T) = \sigma_{Bea}(T) \cup \partial \sigma(T)$. Let $\lambda \in \sigma_a(T) \setminus \sigma_{Bea}(T)$. Then λ is a boundary point of $\sigma(T)$, and so T and T^* have SVEP at λ . Therefore $T - \lambda$ is B-Weyl. But $\lambda \in \partial \sigma(T)$, hence $T - \lambda$ is Drazin invertible by [8, Theorem 2.3], which implies that $\lambda \in p_0(T)$. Conversely, let $\lambda \in p_0(T)$. Then $\lambda \in i$ so $\sigma(T) \setminus \sigma_D(T)$, and hence $\lambda \in \sigma_a(T) \setminus \sigma_{Bea}(T)$. Therefore T satisfies property (*gb*). \Box

Let $H(\sigma(T))$ denote the set of all analytic functions defined on an open neighborhood of $\sigma(T)$. From Theorem 2.5, we obtain the following corollary.

Corollary 2.6. Suppose T^* has SVEP. Then f(T) satisfies property (*gb*) for each $f \in H(\sigma(T))$.

Proof. Since T^* has SVEP, $\sigma_{Bea}(T) = \sigma_D(T)$ and $\sigma_a(T) = \sigma(T)$. So $\sigma_{Bea}(T) = \sigma_D(T) \cap \sigma_a(T)$, and hence T satisfies property (*gb*) by Theorem 2.5. Since $f(T^*) = f(T)^*$, $f(T)^*$ has SVEP for each $f \in H(\sigma(T))$. Therefore f(T) satisfies property (*gb*) for each $f \in H(\sigma(T))$. \Box

The following example shows that the converse of Corollary 2.6 does not hold in general.

Example 2.7. Let $U \in B(\ell_2)$ be the unilateral shift. Then $\sigma_{Bea}(U) = \sigma_a(U) = \Gamma$ and $\sigma_D(U) = \overline{\mathbb{D}}$, where Γ is the unit circle and \mathbb{D} is the open unit disk. Therefore $\sigma_{Bea}(U) = \sigma_D(U) \cap \sigma_a(U)$, and hence U satisfies property (*qb*) by Theorem 2.5. However, U^* does not have SVEP.

Now we characterize the bounded linear operators T satisfying properties (*b*), (*gb*), (*ab*), and (*gab*) by means of localized SVEP.

Theorem 2.8. Let $T \in B(X)$. Then the following equivalences hold:

- (1) *T* satisfies property (*b*) \Leftrightarrow *T*^{*} has SVEP at every $\lambda \in \sigma_a(T) \setminus \sigma_{ea}(T)$.
- (2) *T* satisfies property (*gb*) \Leftrightarrow *T*^{*} has SVEP at every $\lambda \in \sigma_a(T) \setminus \sigma_{Bea}(T)$.
- (3) *T* satisfies property (*ab*) \Leftrightarrow *T*^{*} has SVEP at every $\lambda \in [\sigma(T) \setminus \sigma_w(T)] \cup p_{00}^a(T)$.
- (4) *T* satisfies property (*gab*) \Leftrightarrow *T*^{*} has SVEP at every $\lambda \in [\sigma(T) \setminus \sigma_{BW}(T)] \cup p_0^a(T)$.

Proof. (1): Suppose that *T* satisfies property (*b*). Then $\sigma_a(T) \setminus \sigma_{ea}(T) = p_{00}(T)$. Let $\lambda \in \sigma_a(T) \setminus \sigma_{ea}(T)$. Then $\lambda \in p_{00}(T)$, and so λ is an isolated point of $\sigma(T^*)$. Therefore T^* has SVEP at λ . Conversely, suppose that T^* has SVEP at every $\lambda \in \sigma_a(T) \setminus \sigma_{ea}(T)$. Let $\lambda \in \sigma_a(T) \setminus \sigma_{ea}(T)$. Since $\lambda \notin \sigma_{ea}(T)$, $T - \lambda$ is upper semi-Fredholm and $i(T - \lambda) \leq 0$. But T^* has SVEP at λ , hence $i(T - \lambda) \geq 0$. So $T - \lambda$ is Weyl. Since $q(T - \lambda) < \infty$ by Remark 1.3, $T - \lambda$ is Browder. Therefore $\lambda \in p_{00}(T)$, and hence $\sigma_a(T) \setminus \sigma_{ea}(T) \subseteq p_{00}(T)$. But $p_{00}(T) \subseteq \sigma_a(T) \setminus \sigma_{ea}(T)$ for any *T*, hence $\sigma_a(T) \setminus \sigma_{ea}(T) = p_{00}(T)$. Therefore *T* satisfies property (*b*).

(2): Suppose that *T* satisfies property (*gb*). Then $\sigma_a(T) \setminus \sigma_{Bea}(T) = p_0(T)$. Let $\lambda \in \sigma_a(T) \setminus \sigma_{Bea}(T)$. Then $\lambda \in p_0(T)$, and so λ is an isolated point of $\sigma(T^*)$. Therefore T^* has SVEP at λ . Conversely, suppose that T^* has SVEP at every $\lambda \in \sigma_a(T) \setminus \sigma_{Bea}(T)$. Let $\lambda \in \sigma_a(T) \setminus \sigma_{Bea}(T)$. Since $\lambda \notin \sigma_{Bea}(T)$, $T - \lambda$ is upper semi-B-Fredholm and $i(T - \lambda) \leq 0$. But T^* has SVEP at λ , hence $i(T - \lambda) \geq 0$. So $T - \lambda$ is B-Weyl, and hence $T - \lambda$ is quasi-Fredholm. It follows form [2, Theorem 2.11] that $q(T - \lambda) < \infty$. Since $T - \lambda = \begin{pmatrix} T_1 & 0 \\ 0 & T_2 \end{pmatrix}$, where T_1 is Weyl and T_2 is nilpotent by [9, Lemma 4.1], T_1 is Browder and T_2 is nilpotent. Therefore $T - \lambda$ is Drazin invertible, and hence $\lambda \in p_0(T)$. So we have $\sigma_a(T) \setminus \sigma_{Bea}(T) \subseteq p_0(T)$. Conversely, let $\lambda \in p_0(T)$. Then $\lambda \in \sigma(T) \setminus \sigma_D(T)$, and so $\lambda \in$ iso $\sigma(T)$ and $T - \lambda$ is Drazin invertible. Therefore $\lambda \in \sigma_a(T) \setminus \sigma_{Bea}(T)$, and hence $p_0(T) \subseteq \sigma_a(T) \setminus \sigma_{Bea}(T)$.

(3): Suppose that *T* satisfies property (*ab*). Then $\sigma(T) \setminus \sigma_w(T) = p_{00}^a(T)$. Let $\lambda \in \sigma(T) \setminus \sigma_w(T)$. Then $\lambda \in p_{00}^a(T)$, and so λ is an isolated point of $\sigma_a(T)$, which implies that *T* has SVEP at λ . Since $T - \lambda$ is Weyl, it follows from Remark 1.3 that $p(T - \lambda) < \infty$. Therefore $T - \lambda$ is Browder, and so λ is an isolated point of $\sigma(T^*)$. Hence T^* has SVEP at λ . Conversely, suppose that T^* has SVEP at every $\lambda \in [\sigma(T) \setminus \sigma_w(T)] \cup p_{00}^a(T)$. Let $\lambda \in \sigma(T) \setminus \sigma_w(T)$. Since $\lambda \notin \sigma_w(T)$, $T - \lambda$ is Weyl. Since T^* has SVEP at λ , it follows from Remark 1.3 that $q(T - \lambda) < \infty$. Therefore $T - \lambda$ is Browder, and hence $\lambda \in p_{00}^a(T)$. So $\sigma(T) \setminus \sigma_w(T) \subseteq p_{00}^a(T)$. Conversely, let $\lambda \in p_{00}^a(T)$. Then *T* and T^* have SVEP at λ . Since $T - \lambda$ is upper semi-Fredholm, it follows from Remark 1.3 that $T - \lambda$ is Weyl. So $\lambda \in \sigma(T) \setminus \sigma_w(T)$, and hence $p_{00}^a(T) \subseteq \sigma(T) \setminus \sigma_w(T)$. Therefore *T* satisfies property (*ab*).

(4): Suppose that *T* satisfies property (*gab*). Then $\sigma(T) \setminus \sigma_{BW}(T) = p_0^a(T)$. Let $\lambda \in \sigma(T) \setminus \sigma_{BW}(T)$. Then $\lambda \in p_0^a(T)$, and so λ is an isolated point of $\sigma_a(T)$. Therefore *T* has SVEP at λ . Since $T - \lambda$ is *B*-Weyl, it follows from [9, Lemma 4.1] that $T - \lambda = \begin{pmatrix} T_1 & 0 \\ 0 & T_2 \end{pmatrix}$, where T_1 is Weyl and T_2 is nilpotent. Since T_1 has SVEP at 0, T_1 is Browder by Remark 1.3. Hence $T - \lambda$ is Drazin invertible, and so T^* has SVEP at λ . Conversely, suppose that T^* has SVEP at every $\lambda \in [\sigma(T) \setminus \sigma_{BW}(T)] \cup p_0^a(T)$. Let $\lambda \in \sigma(T) \setminus \sigma_{BW}(T)$. Since $\lambda \notin \sigma_{BW}(T)$, $T - \lambda$ is *B*-Weyl. But T^* has SVEP at λ , hence $T - \lambda$ is Drazin invertible. Therefore $\lambda \in p_0^a(T)$, and hence $\sigma(T) \setminus \sigma_{BW}(T) \subseteq p_0^a(T)$. Conversely, let $\lambda \in p_0^a(T)$. Then *T* and T^* have SVEP at λ . Since $T - \lambda$ is upper semi-*B*-Fredholm, it follows from [2, Theorems 2.7 and 2.11] that $T - \lambda$ is *B*-Weyl. So $\lambda \in \sigma(T) \setminus \sigma_{BW}(T)$, and hence $p_0^a(T) \subseteq \sigma(T) \setminus \sigma_{BW}(T)$.

Now we introduce the concept of *s*-polaroid and compare it with the related notions of right polaroid and *a*-polaroid.

1067

Definition 2.9. Let $T \in B(X)$. An operator T is called *a-polaroid* if iso $\sigma_a(T) \subseteq p_0(T)$. T is *s-polaroid* if iso $\sigma_s(T) \subseteq p_0(T)$. T is called *polaroid* if iso $\sigma(T) \subseteq p_0(T)$. T is called *polaroid* if iso $\sigma(T) \subseteq \sigma_p(T)$. T is said to be *left polaroid* if iso $\sigma_a(T) \subseteq p_0^a(T)$ and T is said to be *right polaroid* if iso $\sigma_s(T) \subseteq p_0^s(T)$.

From these definitions, if $T \in B(X)$ then we have:

T a-polaroid $\implies T$ polaroid $\implies T$ isoloid

T a-polaroid $\implies T$ left polaroid

T left polaroid or right polaroid \implies T polaroid

The concept of *s*-polaroid and *a*-polaroid are dual each other:

Theorem 2.10. Let $T \in B(X)$.

(1) Suppose *T* is *s*-polaroid. Then it is right polaroid.

(2) *T* is *s*-polaroid if and only if T^* is *a*-polaroid.

Proof. (1) Suppose *T* is *s*-polaroid. Let λ is an isolated point of $\sigma_s(T)$. Since *T* is *s*-polaroid, $0 . So <math>p = q(T - \lambda) \in \mathbb{N}$ and $(T - \lambda)^p(X)$ is closed. Therefore $\lambda \in p_0^s(T)$, and hence *T* is right polaroid.

(2) Recall that

$$\sigma_s(T) = \sigma_a(T^*)$$
 and $\sigma_D(T) = \sigma_D(T^*)$

Therefore $p_0(T) = p_0(T^*)$, and hence

iso
$$\sigma_s(T) \subseteq p_0(T) \iff$$
 iso $\sigma_a(T^*) \subseteq p_0(T^*)$.

So *T* is *s*-polaroid if and only if T^* is *a*-polaroid. \Box

The following example shows that the converse of the statement (1) of Theorem 2.10, in general, does not hold.

Example 2.11. Let *U* be the unilateral shift on ℓ_2 and let $A \in B(\ell_2)$ be given by

$$A(x_1, x_2, x_3, \dots) := (0, x_2, x_3, x_4, \dots).$$

Define $T := U^* \oplus A$. Then $\sigma_s(T) = \Gamma \cup \{0\}$, and so iso $\sigma_s(T) = \{0\}$. Since q(T) = 1 and R(T) is closed, $0 \in p_0^s(T)$. Therefore *T* is right polaroid. However, since $p(T) = \infty$, *T* is not *s*-polaroid.

The following result gives a very simple framework for establishing property (*gaw*) if *T* is *a*-polaroid.

Theorem 2.12. Let $T \in B(X)$. Suppose *T* is *a*-polaroid. Then the following statements are equivalent:

- (1) *T* has SVEP at every $\lambda \notin \sigma_{BW}(T)$;
- (2) *T* satisfies property (*gaw*);
- (3) *T* satisfies property (*gab*);

- (4) *T* satisfies property (*ab*);
- (5) *T* satisfies property (*aw*);
- (6) Weyl's theorem holds for *T*;
- (7) Generalized Browder's theorem holds for T.

Proof. (1) \Leftrightarrow (2): Suppose *T* has SVEP at every $\lambda \notin \sigma_{BW}(T)$. Let $\lambda \in \sigma(T) \setminus \sigma_{BW}(T)$. Then $T - \lambda$ is *B*-Weyl. Since *T* has SVEP at λ , $T - \lambda$ is Drazin invertible. So $\lambda \in \text{iso } \sigma(T) \setminus \sigma_D(T)$, and hence $\lambda \in \pi_0^a(T)$. Conversely, let $\lambda \in \pi_0^a(T)$. Then λ is an isolated point of $\sigma_a(T)$ and $\alpha(T - \lambda) > 0$. Since *T* is *a*-polaroid, $\lambda \in p_0(T)$. Therefore $T - \lambda$ is Drazin invertible, and hence $\lambda \in \sigma(T) \setminus \sigma_{BW}(T)$. Hence $\sigma(T) \setminus \sigma_{BW}(T) = \pi_0^a(T)$, and so *T* satisfies property (*gaw*).

Conversely, suppose *T* satisfies property (*gaw*). Then $\sigma(T) \setminus \sigma_{BW}(T) = \pi_0^a(T)$. If $\lambda \notin \sigma(T)$, then clearly, *T* has SVEP at λ . If $\lambda \in \sigma(T) \setminus \sigma_{BW}(T)$, then $\lambda \in \pi_0^a(T)$. Therefore λ is an isolated point of $\sigma_a(T)$, and hence *T* has SVEP at λ .

 $(2) \Rightarrow (3)$ and $(3) \Rightarrow (4)$: These statements hold by [13, Theorems 3.5 and 2.2].

(4) \Rightarrow (5): Suppose *T* satisfies property (*ab*). Then $\sigma(T) \setminus \sigma_w(T) = p_{00}^a(T)$. To show that *T* satisfies property (*aw*) it is sufficient to show that $p_{00}^a(T) = \pi_{00}^a(T)$. Let $\lambda \in \pi_{00}^a(T)$. Then λ is an isolated point of $\sigma_a(T)$ and $0 < \alpha(T - \lambda) < \infty$. Since *T* is *a*-polaroid, $\lambda \in p_0(T)$. Therefore $T - \lambda$ has finite ascent and descent, and hence $T - \lambda$ is Browder, which implies that $\lambda \in p_{00}^a(T)$. But $p_{00}^a(T) \subseteq \pi_{00}^a(T)$, hence $p_{00}^a(T) = \pi_{00}^a(T)$. So *T* satisfies property (*aw*).

(5) \Rightarrow (6): Suppose *T* satisfies property (*aw*). Then $\sigma(T) \setminus \sigma_w(T) = \pi_{00}^a(T)$. We first show that Browder's theorem holds for *T*. Let $\lambda \in \sigma(T) \setminus \sigma_w(T)$. Then $T - \lambda$ is Weyl and $\lambda \in \pi_{00}^a(T)$. So *T* has SVEP at λ , and so $p(T - \lambda) < \infty$. Since $0 < \alpha(T - \lambda) = \beta(T - \lambda) < \infty$, $0 < p(T - \lambda) = q(T - \lambda) < \infty$. Therefore $T - \lambda$ is Browder, and hence $\lambda \in \sigma(T) \setminus \sigma_b(T)$. So $\sigma_w(T) = \sigma_b(T)$, and hence Browder's theorem holds for *T*. To show that Weyl's theorem holds for *T* it suffices to prove that the equality $\pi_{00}(T) = p_{00}(T)$ holds. Let $\lambda \in \pi_{00}(T)$. Since the inclusion $\pi_{00}(T) \subseteq \pi_{00}^a(T)$ is clear, $\lambda \in \pi_{00}^a(T)$. Since *T* satisfies property (*aw*), $\lambda \in \sigma(T) \setminus \sigma_w(T)$. But *T* has SVEP at λ , hence $0 < p(T - \lambda) = q(T - \lambda) < \infty$. Therefore $\lambda \in p_{00}(T)$, and so $\pi_{00}(T) \subseteq p_{00}(T)$. Since the opposite inclusion holds for every $T \in B(X)$, $\pi_{00}(T) = p_{00}(T)$. Therefore Weyl's theorem holds for *T*.

(6) \Rightarrow (7): Suppose Weyl's theorem holds for *T*. Then Browder's theorem holds for *T*. Since *T* satisfies Browder's theorem if and only if *T* satisfies generalized Browder's theorem, hence generalized Browder's theorem holds for *T*.

(7) \Rightarrow (1): Suppose generalized Browder's theorem holds for *T*. Then $\sigma(T) \setminus \sigma_{BW}(T) = p_0(T)$. Since $p_0(T) = \sigma(T) \setminus \sigma_D(T), \sigma_{BW}(T) = \sigma_D(T)$. Therefore *T* has SVEP at every $\lambda \notin \sigma_{BW}(T)$. \Box

In Theorem 2.12, the condition "a-polaroid" cannot be replaced by the weaker condition "polaroid".

Example 2.13. Let *U* be the unilateral shift on ℓ_2 and let $A \in B(\ell_2)$ be given by

$$A(x_1, x_2, x_3, \dots) := (0, x_2, x_3, x_4, \dots).$$

Define $T := U \oplus A$. Then $\sigma(T) = \sigma_w(T) = \overline{\mathbb{D}}$, and hence $\pi_{00}(T) = \emptyset$. Moreover, since $\sigma_a(T) = \Gamma \cup \{0\}$, iso $\sigma_a(T) = \{0\}$. Since $N(T) = N(U) \oplus N(A)$ and $\alpha(A) = 1$, $\alpha(T) = 1$. Hence $\pi_{00}^a(T) = \{0\}$. Therefore Weyl's

theorem holds for *T*, while *T* does not satisfy property (*aw*). Since $\sigma(T) = \overline{\mathbb{D}}$, *T* is polaroid. However, since $p(T) = \infty$, *T* is not *a*-polaroid.

In analogy with Theorem 2.12, we obtain the following.

Theorem 2.14. Let $T \in B(X)$. Suppose *T* is *a*-polaroid. Then the following statements are equivalent:

- (1) T^* has SVEP at every $\lambda \in \sigma_a(T) \setminus \sigma_{Bea}(T)$;
- (2) *T* satisfies property (*gw*);
- (3) *T* satisfies property (*gb*);
- (4) Generalized *a*-Weyl's theorem holds for *T*;
- (5) Generalized *a*-Browder's theorem holds for *T*;
- (6) *T* satisfies property (*b*);
- (7) *T* satisfies property (*w*).

Proof. (1) \Leftrightarrow (2): Suppose T^* has SVEP at every $\lambda \in \sigma_a(T) \setminus \sigma_{Bea}(T)$. Let $\lambda \in \sigma_a(T) \setminus \sigma_{Bea}(T)$. Then $T - \lambda$ is upper semi-*B*-Fredholm and $i(T - \lambda) \leq 0$. Since T^* has SVEP at λ , $i(T - \lambda) \geq 0$. Therefore $T - \lambda$ is *B*-Weyl, and hence $T - \lambda$ is Drazin invertible. So $\lambda \in \pi_0(T)$, and hence $\lambda \in \sigma_a(T) \setminus \sigma_{Bea}(T) \subseteq \pi_0(T)$. Conversely, let $\lambda \in \pi_0(T)$. Then λ is an isolated point of $\sigma(T)$ and $\alpha(T - \lambda) > 0$. Since T is *a*-polaroid, $\lambda \in p_0(T)$, which implies that $T - \lambda$ is Drazin invertible. Therefore $\lambda \in \sigma_a(T) \setminus \sigma_{Bea}(T)$, and hence $\pi_0(T) \subseteq \sigma_a(T) \setminus \sigma_{Bea}(T)$. So T satisfies property (*gw*). Conversely, suppose T satisfies property (*gw*). Let $\lambda \in \sigma_a(T) \setminus \sigma_{Bea}(T)$. Then $\lambda \in \pi_0(T)$, and so λ is an isolated point of $\sigma(T^*)$. Therefore T^* has SVEP at λ .

(2) \Rightarrow (3): It follows form [12, Theorem 2.15].

(3) \Rightarrow (4): Suppose *T* satisfies property (*gb*). Then $\sigma_a(T) \setminus \sigma_{Bea}(T) = p_0(T)$. Let $\lambda \in \sigma_a(T) \setminus \sigma_{Bea}(T)$. Then $\lambda \in p_0(T)$, and so λ is an isolated point of $\sigma(T)$ and $T - \lambda$ is Drazin invertible. Therefore λ is an isolated point of $\sigma_a(T)$ and $\alpha(T - \lambda) > 0$. Hence $\lambda \in \pi_0^a(T)$. Conversely, let $\lambda \in \pi_0^a(T)$. Then λ is an isolated point of $\sigma_a(T)$ and $\alpha(T - \lambda) > 0$. Since *T* is *a*-polaroid, $\lambda \in p_0(T)$. Therefore $\lambda \in \sigma_a(T) \setminus \sigma_{Bea}(T)$, and hence generalized *a*-Weyl's theorem holds for *T*.

 $(4) \Rightarrow (5)$: It follows form [10, Corollary 3.3].

(5) \Rightarrow (1): Suppose generalized *a*-Browder's theorem holds for *T*. Then $\sigma_a(T) \setminus \sigma_{Bea}(T) = p_0^a(T)$. Let $\lambda \in \sigma_a(T) \setminus \sigma_{Bea}(T)$. Then $\lambda \in p_0^a(T)$, and so $\lambda \in \sigma_a(T) \setminus \sigma_{LD}(T)$. Since $\sigma_{LD}(T) = \sigma_{Bea}(T) \cup \text{acc } \sigma_a(T)$, λ is an isolated point of $\sigma_a(T)$. Since *T* is *a*-polaroid, $\lambda \in p_0(T)$. Therefore λ is an isolated point of $\sigma(T^*)$, and hence T^* has SVEP at λ .

(5) \Leftrightarrow (6): Suppose generalized *a*-Browder's theorem holds for *T*. Then $\sigma_a(T) \setminus \sigma_{Bea}(T) = p_0^a(T)$. Let $\lambda \in \sigma_a(T) \setminus \sigma_{ea}(T)$. Then $\lambda \in \sigma_a(T) \setminus \sigma_{LD}(T)$, and so λ is an isolated point of $\sigma_a(T)$. Since *T* is *a*-polaroid, $\lambda \in p_0(T)$. Therefore *T* is an isolated point of $\sigma(T)$. But $T - \lambda$ is upper semi-Fredholm, hence it is Browder. So $\lambda \in p_{00}(T)$, and hence $\sigma_a(T) \setminus \sigma_{ea}(T) \subseteq p_{00}(T)$. But $p_{00}(T) \subseteq \sigma_a(T) \setminus \sigma_{ea}(T)$ holds for any operator *T*, hence *T* satisfies property (*b*). Conversely, suppose *T* satisfies property (*b*). Then $\sigma_a(T) \setminus \sigma_{ea}(T) = p_{00}(T)$. Since $p_{00}(T) \subseteq p_{00}^a(T)$, $\sigma_a(T) \setminus \sigma_{ea}(T) \subseteq p_{00}^a(T)$, which means that *a*-Browder's theorem holds for *T*. It follows form [5, Theorem 3.2] that generalized *a*-Browder's theorem holds for *T*. (6) \Leftrightarrow (7): Suppose *T* satisfies property (*b*). Then $\sigma_a(T) \setminus \sigma_{ea}(T) = p_{00}(T)$. To show that *T* satisfies property (*w*) it suffices to prove that $\pi_{00}(T) \subseteq p_{00}(T)$. Let $\lambda \in \pi_{00}(T)$. Then λ is an isolated point of $\sigma(T)$ and $0 < \alpha(T - \lambda) < \infty$. Since *T* is *a*-polaroid, $\lambda \in p_0(T)$. Therefore there exists a positive integer $p := p(T - \lambda) = q(T - \lambda)$, and hence $R(T - \lambda)^p$ is closed. But $\alpha(T - \lambda)^p < \infty$, hence $(T - \lambda)^p$ is upper semi-Fredholm, which implies that $T - \lambda$ is upper semi-Fredholm. Since λ is an isolated point of $\sigma(T), T - \lambda$ is Browder. Therefore $\lambda \in p_{00}(T)$, and hence $\pi_{00}(T) \subseteq p_{00}(T)$. So *T* satisfies property (*w*).

Let $H_1(\sigma(T))$ denote the set of all analytic functions on an open neighborhood of $\sigma(T)$ such that f is nonconstant on each of the components of its domain. Let $T \in B(X)$. Then it is well known that the inclusion $\sigma_w(f(T)) \subseteq f(\sigma_w(T))$ holds for every $f \in H(\sigma(T))$ with no other restriction on T.

Theorem 2.15. Let $T \in B(X)$ and $f \in H_1(\sigma(T))$.

- (1) Suppose *T* satisfies property (*gb*). Then f(T) satisfies property (*gb*) \Leftrightarrow $f(\sigma_{Bea}(T)) = \sigma_{Bea}(f(T))$.
- (2) Suppose *T* satisfies property (*ab*). Then f(T) satisfies property (*ab*) \Leftrightarrow $f(\sigma_w(T)) = \sigma_w(f(T))$.
- (3) Suppose *T* satisfies property (*gab*). Then f(T) satisfies property (*gab*) $\Rightarrow f(\sigma_{BW}(T)) = \sigma_{BW}(f(T))$.

Proof. (1):(\Rightarrow) Suppose f(T) satisfies property (*gb*). Then $\sigma_a(f(T)) \setminus \sigma_{Bea}(f(T)) = p_0(f(T))$. To show that $\sigma_{Bea}(f(T)) = f(\sigma_{Bea}(T))$ it suffices to show that $f(\sigma_{Bea}(T)) \subseteq \sigma_{Bea}(f(T))$. Suppose $\lambda \notin \sigma_{Bea}(f(T))$. Then $f(T) - \lambda$ is upper semi-*B*-Fredholm and $i(f(T) - \lambda) \leq 0$. We consider two cases.

Case I. Suppose $f(T) - \lambda$ is bounded below. Then $\lambda \notin \sigma_a(f(T)) = f(\sigma_a(T))$, and hence $\lambda \notin f(\sigma_{Bea}(T))$.

Case II. Suppose $\lambda \in \sigma_a(f(T)) \setminus \sigma_{Bea}(f(T))$. Since f(T) satisfies property (gb), $\lambda \in p_0(f(T))$, which implies that $\lambda \in \sigma(f(T)) \setminus \sigma_D(f(T))$. Since $\sigma_D(f(T)) = f(\sigma_D(T))$ by [14, Theorem 2.7], $\lambda \notin f(\sigma_D(T))$. Therefore $\lambda \notin f(\sigma_{Bea}(T))$, and hence $f(\sigma_{Bea}(T)) \subseteq \sigma_{Bea}(f(T))$. It follows from Cases I and II that $f(\sigma_{Bea}(T)) = \sigma_{Bea}(f(T))$. (\Leftarrow) Suppose $f(\sigma_{Bea}(T)) = \sigma_{Bea}(f(T))$. Since *T* has property (gb),

(-) Suppose f(0 Bea(1)) = 0 Bea(f(1)). Since 1 has property (

$$\sigma_a(f(T)) \setminus \sigma_{Bea}(f(T)) = f(\sigma_a(T)) \setminus f(\sigma_{Bea}(T))$$
$$\subseteq f(\sigma_a(T) \setminus \sigma_{Bea}(T))$$
$$= f(p_0(T))$$
$$\subseteq p_0(f(T)).$$

Therefore $\sigma_a(f(T)) \setminus \sigma_{Bea}(f(T)) \subseteq p_0(f(T))$, and hence f(T) satisfies property (*gb*).

(2):(\Rightarrow) Suppose f(T) satisfies property (*ab*). Then $\sigma(f(T)) \setminus \sigma_w(f(T)) = p_{00}^a(f(T))$. To show that $\sigma_w(f(T)) = f(\sigma_w(T))$ it suffices to show that $f(\sigma_w(T)) \subseteq \sigma_w(f(T))$. Suppose $\lambda \notin \sigma_w(f(T))$. Then $f(T) - \lambda$ is Weyl. We consider two cases.

Case I. Suppose $f(T) - \lambda$ is invertible. Then $\lambda \notin \sigma(f(T)) = f(\sigma(T))$, and hence $\lambda \notin f(\sigma_w(T))$.

Case II. Suppose $\lambda \in \sigma(f(T)) \setminus \sigma_w(f(T))$. Since f(T) satisfies property (*ab*), $\lambda \in p_{00}^a(f(T))$, which means that $\lambda \in \sigma_a(f(T)) \setminus \sigma_{ab}(f(T))$. Therefore $f(T) - \lambda$ is Weyl and $p(f(T) - \lambda) < \infty$. Therefore $f(T) - \lambda$ is Browder, and hence $\lambda \notin \sigma_b(f(T)) = f(\sigma_b(T))$. So $\lambda \notin f(\sigma_w(T))$, and hence $f(\sigma_w(T)) \subseteq \sigma_w(f(T))$. It follows from Cases I and II that $f(\sigma_w(T)) = \sigma_w(f(T))$.

(\Leftarrow) Suppose $f(\sigma_w(T)) = \sigma_w(f(T))$. Let $\lambda \in \sigma(f(T)) \setminus \sigma_w(f(T))$. Write

$$f(T) - \lambda = c_0(T - \lambda_1)(T - \lambda_2) \cdots (T - \lambda_n)g(T),$$

where $c_0, \lambda_1, \lambda_2, ..., \lambda_n \in \mathbb{C}$ and g(T) is invertible. Since $\lambda \notin \sigma_w(f(T)) = f(\sigma_w(T)), T - \lambda_i$ is Weyl for each i = 1, 2, ..., n. Since *T* satisfies property (*ab*), Browder's theorem holds for *T*. Therefore $\sigma_w(T) = \sigma_b(T)$, and hence $T - \lambda_i$ is Browder for each i = 1, 2, ..., n. So $f(T) - \lambda$ is Browder, and hence $\lambda \in p_{00}^a(f(T))$.

Conversely, suppose $\lambda \in p_{00}^a(f(T))$. Then $\lambda \in \sigma_a(f(T)) \setminus \sigma_{ab}(f(T))$. Write

$$f(T) - \lambda = c_0(T - \lambda_1)(T - \lambda_2) \cdots (T - \lambda_n)g(T),$$

where $c_0, \lambda_1, \lambda_2, ..., \lambda_n \in \mathbb{C}$ and g(T) is invertible. Since $\lambda \in f(\sigma_a(T)) \setminus f(\sigma_{ab}(T)), \lambda_i \in \sigma_a(T) \setminus \sigma_{ab}(T)$ for each i = 1, 2, ..., n. But *T* satisfies property (*ab*), hence every $T - \lambda_i$ is Weyl. So $\lambda \in \sigma(f(T)) \setminus \sigma_w(f(T))$. Therefore f(T) satisfies property (*ab*).

(3): Suppose f(T) satisfies property (*gab*). Then $\sigma(f(T)) \setminus \sigma_{BW}(f(T)) = p_0^a(f(T))$. Since *T* satisfies property (*gab*), generalized Browder's theorem holds for *T*. So $\sigma_{BW}(f(T)) \subseteq f(\sigma_{BW}(T))$ by [14, Corollary 2.8]. Now we show that $f(\sigma_{BW}(T)) \subseteq \sigma_{BW}(f(T))$. Suppose that $\lambda \notin \sigma_{BW}(f(T))$. Then $f(T) - \lambda$ is *B*-Weyl. We consider two cases.

Case I. Suppose $f(T) - \lambda$ is invertible. Then $\lambda \notin \sigma(f(T)) = f(\sigma(T))$, and hence $\lambda \notin f(\sigma_{BW}(T))$.

Case II. Suppose $\lambda \in \sigma(f(T)) \setminus \sigma_{BW}(f(T))$. Since f(T) satisfies property $(gab), \lambda \in p_0^a(f(T))$, which means that $\lambda \in \sigma_a(f(T)) \setminus \sigma_{LD}(f(T))$. Therefore $f(T) - \lambda$ is *B*-Weyl and $p(f(T) - \lambda) < \infty$. Therefore $f(T) - \lambda$ is Drazin invertible, and hence $\lambda \notin \sigma_D(f(T)) = f(\sigma_D(T))$. So $\lambda \notin f(\sigma_{BW}(T))$, and hence $f(\sigma_{BW}(T)) \subseteq \sigma_{BW}(f(T))$. It follows from Cases I and II that $f(\sigma_{BW}(T)) = \sigma_{BW}(f(T))$. \Box

In [3], it was shown that if *T* is left polaroid then f(T) is also left polaroid for each $f \in H_1(\sigma(T))$. We obtain similar results for *a*-polaroid and *s*-polaroid, respectively.

Theorem 2.16. Let $T \in B(X)$ and $f \in H_1(\sigma(T))$.

- (1) Suppose *T* is *a*-polaroid. Then f(T) is *a*-polaroid.
- (2) Suppose *T* is *s*-polaroid. Then f(T) is *s*-polaroid.

Proof. (1) Suppose *T* is *a*-polaroid. We shall show that iso $\sigma_a(f(T)) \subseteq p_0(f(T))$. Let $\lambda_0 \in \text{iso } \sigma_a(f(T))$. Since the spectral mapping theorem holds for the approximate point spectrum, $\lambda_0 \in \text{iso } f(\sigma_a(T))$. We let $\mu_0 \in \sigma_a(T)$ such that $f(\mu_0) = \lambda_0$. Denote by Ω the connected component of the domain of *f* which contains μ_0 . Now we show that $\mu_0 \in \text{iso } \sigma_a(T)$. Assume to the contrary that $\mu_0 \in \text{acc } \sigma_a(T)$. Then there exists a sequence (μ_n) in $\Omega \cap \sigma_a(T)$ of distinct scalars such that $\mu_n \longrightarrow \mu_0$ as $n \to \infty$. Since $C := {\mu_0, \mu_1, \mu_2, \mu_3, ...}$ is a compact subset of Ω , *f* may assume the value $\lambda_0 = f(\mu_0)$ only a finite number of points of *C*, so for *n* sufficiently large $f(\mu_n) \neq f(\mu_0) = \lambda_0$, and since $f(\mu_n) \longrightarrow f(\mu_0) = \lambda_0$ as $n \to \infty$, $\lambda_0 \in \text{acc } f(\sigma_a(T))$. This is a contradiction. Therefore $\mu_0 \in \text{iso } \sigma_a(T)$. Since *T* is *a*-polaroid, $\mu_0 \in p_0(T)$. It follows from [4, Theorem 2.9] that $\lambda_0 \in p_0(f(T))$. Hence f(T) is *a*-polaroid.

(2) Suppose *T* is *s*-polaroid. Then *T*^{*} is *a*-polaroid by Theorem 2.10. So $f(T)^* = f(T^*)$ is *a*-polaroid by (1), and hence f(T) is *s*-polaroid. \Box

From Theorem 2.12, if *T* is *a*-polaroid and *T* has SVEP, then *T* satisfies property (*gaw*). We can prove more:

Theorem 2.17. Let $T \in B(X)$ and $f \in H_1(\sigma(T))$.

- (1) Suppose *T* is *a*-polaroid and has SVEP. Then f(T) satisfies property (*gaw*).
- (2) Suppose *T* is *s*-polaroid and *T*^{*} has SVEP. Then $f(T^*)$ satisfies property (*qaw*).

Proof. (1) Since *T* is *a*-polaroid, f(T) is *a*-polaroid by Theorem 2.16. Also, since *T* has SVEP, f(T) has SVEP. It follows from Theorem 2.12 that f(T) satisfies property (*gaw*).

(2) Since *T* is *s*-polaroid, f(T) is *s*-polaroid by theorem 2.16, which means that $f(T^*) = f(T)^*$ is *a*-polaroid. Since *T*^{*} has SVEP, $f(T^*) = f(T)^*$ has SVEP. Therefore $f(T^*)$ satisfies property (*gaw*) by Theorem 2.12.

References

- [1] P. Aiena, Fredholm and Local Spectral Theory, with Applications to Multipliers, Kluwer, 2004.
- [2] P. Aiena, Quasi Fredholm operators and localized SVEP, Acta Sci. Math. (Szeged), 73 (2007), 251–263.
- [3] P. Aiena, E. Aponte and E. Balzan, Weyl type theorems for left and right polaroid operators, Integral Equations Operator Theory 66 (2010), 1–20.
- [4] P. Aiena and J.E. Sanabria, On left and right poles of the resolvent, Acta Sci. Math. (Szeged), 74 (2008), 669–687.
- [5] P. Aiena, M.T. Biondi. and C. Carpintero, On Drazin invertibility, Proc. Amer. Math. Soc. 136 (2008), no. 8, 2839–2848.
- [6] M. Amouch and M. Berkani, On the property (gw), Mediterr. J. Math. 5 (2008), 371–378.
- [7] M. Berkani, On a class of quasi-Fredholm operators, Integral Equations Operator Theory 34 (1999), no. 2, 244–249.
- [8] M. Berkani, B-Weyl spectrum and poles of the resolvent, J. Math. Anal. Appl. 272 (2002), 596–603.
- [9] M. Berkani, Index of B-Fredholm operators and generalization of a Weyl theorem, Proc. Amer. Math. Soc. 130 (2002), 1717–1723.
- [10] M. Berkani and J.J. Koliha, Weyl type theorems for bounded linear operators, Acta Sci. Math. (Szeged) 69 (2003), 359-376.
- [11] M. Berkani and M. Sarih, On semi B-Fredholm operators, Glasg. Math. J. 43 (2001), no. 3, 457–465.
- [12] M. Berkani, Oujda, H. Zariouh and Meknes, Extended Weyl type theorems, Math. Bohemica. 134 (2009), no.4, 369-378.
- [13] M. Berkani and H. Zariouh, *New extended Weyl type theorems*, Mat. Vesnik **62** (2010) 145–154.
- [14] R.E. Curto and Y.M. Han, Generalized Browder's and Weyl's theorems for Banach spaces operators, J. Math. Anal. Appl. 336 (2007), 1424–1442.
- [15] S.V. Djordjević and Y.M. Han, Browder's theorems and spectral continuity, Glasgow Math. J. 42 (2000), 479-486.
- [16] R. Harte, Invertibility and Singularity for Bounded Linear Operators, Dekker, New York, 1988.
- [17] V. Rakočević, On a class of operators, Mat. Vesnik 37 (1985) 423-426.
- [18] C. Sun, X. Cao and L. Dai, Property (ω_1) and Weyl type theorem, J. Math. Anal. Appl. 363 (2010), 1–6.