Filomat 27:6 (2013), 1107–1111 DOI 10.2298/FIL1306107C Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

On the cardinality of the θ -closed hull of sets II

Filippo Cammaroto^a, Andrei Catalioto^b, Bruno Antonio Pansera^c, Jack Porter^d

^aDepartment of Mathematics, University of Messina, Italy ^bDepartment of Mathematics, University of Messina, Italy ^cDepartment of Mathematics, University of Messina, Italy ^dDepartment of Mathematics, University of Kansas, USA

Abstract. The research in this paper is a continuation of the investigation of the cardinality of the θ -closed hull of subsets of spaces. This research obtains new upper bounds of the cardinality of the θ -closed hull of subsets using cardinal functions of θ -bitightness ([8]), finite θ -bitightness ([7]) and θ -bitightness small number ([7]) of spaces. In the final section, examples of spaces are presented including one that answers a question posed in [4] and [6].

1. Introduction, notation and terminology

Throughout this paper, *X* is used to denote a topological space and *A* is an arbitrary subset of *X*. All spaces are assume to be Hausdorff unless specifically mentioned otherwise. Also, the Greek letters α , β , γ ,... are used to denote infinite ordinal numbers and κ , λ , μ ,... infinite cardinal numbers. The family of open sets of *X* is denoted by $\tau(X)$, and N_x (resp. cN_x) is used to denote the collection of open (resp. closed) neighborhoods of $x \in X$. Our notation and terminology are mainly as in [9] (for general topological notions) and [10] (for cardinal functions). We start by recalling some basic concepts that are used in the sequel.

The *semiregularization* of a space *X*, denoted by X_s (or X(s)), is the set *X* with the topology generated by the family $RO(X) = \{U \in \tau(X) : U = int_X(cl_X(U))\}$ of regular open sets of *X*. A space *X* is called *semiregular* when $X = X_s$.

The θ -closure of A, denoted by $cl_{\theta}(A)$, is the set of all elements of $x \in X$ such that $cl_X U \cap A \neq \emptyset$, whenever $x \in U \in \tau(X)$. A is said θ -closed if $A = cl_{\theta}(A)$. The θ -closed hull of A, denoted by $[A]_{\theta}$, is the smallest θ -closed subset of X containing A (i.e. $[A]_{\theta} := \bigcap \{C \subseteq X : A \subseteq C \text{ and } C = cl_{\theta}(C)\}$).

Recall that for $x \in X$, $\chi(x, X)$ denotes the smallest cardinality of a local base of X at x, and the character $\chi(X)$ of the space X is the maximum of \aleph_0 and $\sup_{x \in X} \chi(x, X)$. Also, for $x \in X$, $\chi_{\theta}(x, X)$ denotes the smallest cardinal κ for which there is a collection $\mathcal{V}_x \subseteq c\mathcal{N}_x$ such that $|\mathcal{V}_x| \leq \kappa$ and if $W \in c\mathcal{N}_x$, then W contains a member of \mathcal{V}_x , and the *closed character* $\chi_{\theta}(X)$ of the space X is the maximum of \aleph_0 and $\sup_{x \in X} \chi_{\theta}(x, X)$.

It follows that $\chi_{\theta}(X) = \chi(X_s)$ (see Proposition 1 below); thus $\chi_{\theta}(X) \leq \chi(X)$ and $\chi_{\theta}(X)$ may be strictly smaller than $\chi(X)$. In [1], it is shown that for a subset *A* of a Urysohn space *X*, $|cl_{\theta}(A)| \leq |A|^{\chi_{\theta}(X)}$.

²⁰¹⁰ Mathematics Subject Classification. Primary: 54A25; Secondary: 54A20, 54D10, 54D25

Keywords. Urysohn space, *n*-Úrysohn space, Úrysohn number, θ -closure, θ -closed hull, character, closed character, θ -bitightness, finite θ -bitightness, θ -bitightness small number, cardinal inequalities

Received: 05 October 2012; Revised: 07 January 2013; Accepted: 07 January 2013

Communicated by Ljubiša D.R. Kočinac

Research supported by a Grant from the C.N.R. (G.N.S.A.G.A.) and M.I.U.R. (Italy) through "Fondi 40%"

Email addresses: camfil@unime.it (Filippo Cammaroto), acatalioto@unime.it (Andrei Catalioto), bpansera@unime.it (Bruno Antonio Pansera), porter@math.ku.edu (Jack Porter)

A space *X* is *Urysohn* if for two distinct points $x, y \in X$ there are neighborhoods *U* of *x* and *V* of *y* such that $cl_XU \cap cl_XV = \emptyset$. In [4] Bonanzinga, Cammaroto and Matveev defined the following cardinal function and used it to extend the definition of Urysohn.

 $U(X) = \min\{\kappa : \text{ for every } A \in [X]^{\geq \kappa} \text{ one can find neighborhoods } U_a \text{ of } a \text{ for } a \in A \text{ such that } \bigcap_{a \in A} \overline{U}_a = \emptyset\}.$

The cardinal function U(X) is called the *Urysohn number* of *X*. For $2 \le n < \omega$, the space *X* is *n*-*Urysohn* whenever U(X) = n; in particular, *X* is Urysohn if and only if U(X) = 2.

In 1993, Cammaroto and Kočinac ([8]; see also [11]) introduced the concept of θ -bitightness for a space X, denoted by $bt_{\theta}(X)$, as the smallest cardinal κ such that for each non- θ -closed set $A \subseteq X$ there are $x \in cl_{\theta}(A) \setminus A$ and $S \in [[A]^{\leq \kappa}]^{\leq \kappa}$ such that $\{x\} = \bigcap_{S \in S} cl_{\theta}(S)$. They showed, for Urysohn spaces, that $bt_{\theta}(X)$ is defined, $bt_{\theta}(X) \leq \chi(X)$, and the inequality is strict.

Recently, Cammaroto, Catalioto, Pansera and Tsaban ([7]) introduced

(1) the concept of *finite* θ -*bitightness* for a space X, denoted by $fbt_{\theta}(X)$, as the smallest cardinal κ such that for each non- θ -closed $A \subseteq X$, there is $S \in [[A]^{\leq \kappa}]^{\leq \kappa}$ such that $\bigcap_{S \in S} cl_{\theta}(S) \setminus A$ is finite nonempty, and

(2) the concept of θ -bitightness small number for any space X, denoted by $bt_{\theta}(X)$, as the smallest cardinal κ such that for each non- θ -closed $A \subseteq X$ that is not a singleton (true for Hausdorff spaces), there is $S \in [[A]^{\leq \kappa}]^{\leq \kappa}$ such that $\bigcap_{S \in S} cl_{\theta}(S) \setminus A$ is nonempty and $|\bigcap_{S \in S} cl_{\theta}S| \leq |A|^{\kappa}$.

It is clear that when $bt_{\theta}(X)$ is defined, so is $fbt_{\theta}(X)$ and $bts_{\theta}(X) \leq fbt_{\theta}(X) \leq bt_{\theta}(X)$ and that $bts_{\theta}(X)$ is defined for any space.

In 1988, Bella and Cammaroto ([2]) proved that $|[A_{\theta}]| \leq |A|^{\chi(X)}$ for every subset *A* of an Urysohn space *X*. This result was improved, for Urysohn spaces, to $|[A]_{\theta}| \leq |A|^{bt_{\theta}(X)}$, in 1993, by Cammaroto and Kočinac ([8]). Recently, Bonanzinga, Cammaroto, Matveev and Pansera ([4, 6]) improved Bella and Cammaroto's result to $|[A]_{\theta}| \leq |A|^{\chi_{\theta}(X))}$ when U(X) is finite, and Cammaroto, Catalioto, Pansera, and Tsaban ([7]) improved Cammaroto and Kočinac's result to $|[A]_{\theta}| \leq |A|^{bt_{\theta}(X)}$ for any space *X*.

In this paper we give some results concerning the relationship between $bt_{\theta}(X)$ and $fbt_{\theta}(X)$ and several examples are showed including a negative answer to a problem of Bonanzinga-Cammaroto-Matveev ([4]) and Bonanzinga-Pansera ([6]).

2. Cardinal properties of the θ -bitightness, the finite θ -bitightness and the θ -bitightness small number

In [7] the authors defined for any space *X*, a new topological cardinal invariant called the θ -*bitightness small number* of *X*, denoted as $bts_{\theta}(X)$, as defined above. They also proved that, for every topological space *X*, the cardinality of $[A]_{\theta}$ is at most $|A|^{bt_{\theta}(X)}$ where $A \subseteq X$.

For completeness of our exposition, we provide a proof of the following widely accepted lemma.

Lemma 1. For any space X and $A \subseteq X$, $cl_{A}^{X}(A) = cl_{A}^{X_{s}}(A)$ as sets.

Proof. Let $p \in cl_{\theta}^{X}(A)$ and $p \in U \in \tau(X_{s})$ and $U \in RO(X)$. Then, $cl_{X_{s}}U = cl_{X}U$ (see [12]), then $cl_{X_{s}}U \cap A \neq \emptyset$ and $p \in cl_{\theta}^{X_{s}}(A)$. Conversely, suppose $p \in cl_{\theta}^{X_{s}}(A)$ and $p \in U \in \tau(X)$. Then $p \in int_{X}cl_{X}U$ and $int_{X}cl_{X}U \in \tau(X_{s})$. Now $cl_{X}int_{X}cl_{X}U = cl_{X}U$ and $\emptyset \neq cl_{X}int_{X}cl_{X}U \cap A = cl_{X}U \cap A$. So, $p \in cl_{\theta}^{X}(A)$.

So, we also have the following result concerning the θ -closed hull.

Corollary 1. If $A \subseteq X$, then $|[A]^X_{\theta}| = |[A]^{X_s}_{\theta}|$.

Now, we will study the relationships among the cardinal functions.

Proposition 1. For a space X, $\chi_{\theta}(X) = \chi_{\theta}(X_s) = \chi(X_s) \le \chi(X)$.

Proof. Let *C* be a family of closed neighborhoods of $p \in X$ such that $|C| = \chi_{\theta}(p, X)$. Then $\mathcal{R} = \{int_X A : A \in C\}$ is a family of regular open sets, each containing *p* and $|\mathcal{R}| \leq |C|$. To show that \mathcal{R} is a $\tau(X_s)$ -open base for *p*, let $p \in U \in \tau(X_s)$ where *U* is a regular open subset of *X*. Then, there is some $A \in C$ such that $A \subseteq cl_X U$. Now, $int_X A \subseteq int_X cl_X U = U$, and it follows that $\chi(p, X_s) \leq \chi_{\theta}(p, X)$ for each $p \in X$. Thus, $\chi(X_s) \leq \chi_{\theta}(X)$. Moreover, Let \mathcal{R} be a $\tau(X_s)$ -open base for $p \in X$ such that $|\mathcal{R}| = \chi(p, X_s)$ and each $U \in \mathcal{R}$ is regular open in *X*. Let $C = \{cl_X U : U \in \mathcal{R}\}$. To show that the family *C* of closed neighborhoods of *p* is a base for the closed neighborhoods of *p*, let *A* be a closed neighborhood of *p* in *X*. Then $int_X A$ is a regular open subset in *X* and contains *p*. There is some $U \in \mathcal{R}$ such that $p \in U \subseteq int_X A$. Thus, $cl_X U \subseteq A$ and $cl_X U \in C$. As *C* is a base for the closed neighborhoods of *p* in *X*, $\chi_{\theta}(p, X) \leq \chi(p, X_s)$. This completes the proof that $\chi_{\theta}(X) \leq \chi(X_s)$. By Lemma 1, we have that $\chi_{\theta}(X) = \chi(X_s)$ and $\chi_{\theta}(X_s) = \chi((X_s)_s) = \chi(X_s)$.

The inequalities in Proposition 1 hold for any space and supplement the following inequalities established in [7] that hold in Urysohn spaces.

Proposition 2. If X is Urysohn, then $bts_{\theta}(X) \leq fbt_{\theta}(X) \leq bt_{\theta}(X) \leq \chi_{\theta}(X) \leq \chi(X)$.

The inequalities in Proposition 2 hold whenever $bt_{\theta}(X)$ is defined $(fbt_{\theta}(X))$ is defined whenever $bt_{\theta}(X)$ is defined and $bt_{\theta}(X)$, $\chi_{\theta}(X)$, and $\chi(X)$ are defined for any space). As $bt_{\theta}(X)$ and $\chi_{\theta}(X)$ are defined for any space, it is natural to ask if $bt_{\theta}(X) \leq \chi_{\theta}(X)$ holds for any space. It is interesting that it is not true that $bt_{\theta}(X) \leq \chi_{\theta}(X)$ holds for any space. A counterexample is a part of Example 1.

An immediate consequence of Proposition 2 and the Cammaroto, Catalioto, Pansera, and Tsaban's inequality for a subset *A* of an Urysohn space $X(|[A]_{\theta}| \le |A|^{bt_{\theta}(X)})$ is that $|[A]_{\theta}| \le |A|^{fbt_{\theta}(X)}$. A direct proof of this consequence is provided by the next result.

Theorem 1. If X is a Urysohn space and $A \subseteq X$, then $|[A]_{\theta}| \le |A|^{fbt_{\theta}(X)}$.

Proof. Let $fbt_{\theta}(X) = \kappa$. It suffices to consider only non- θ -closed subsets A of X. Let $|A| \le \mu$. By induction, we will construct an increasing sequence $\{A_{\alpha} : \alpha < \kappa^+\}$ of subsets of X such that $A_0 = A$, $|A_{\alpha}| \le \mu^{\kappa}$, and for $\alpha < \beta < \kappa^+$, $A_{\alpha} \subseteq A_{\beta}$. Suppose $\beta < \kappa^+$ and A_{α} is defined for $\alpha < \beta$.

If β is a limit ordinal, then define $A_{\beta} = \bigcup_{\alpha < \beta} A_{\alpha}$ and A_{β} has the desired properties. Suppose $\beta = \gamma + 1$ is a successor ordinal. Define $A_{\beta} = A_{\gamma} \cup C_{\gamma}$ where $C_{\gamma} = \{x \in X \setminus A_{\gamma} : \exists S \in [[A_{\gamma}]^{\leq \kappa}]^{\leq \kappa}$ such that $\{x\} = \bigcap_{S \in S} cl_{\theta}(S) \setminus A_{\gamma}\}$. For each $x \in C_{\gamma}$, select one $S_x \in [[A_{\gamma}]^{\leq \kappa}]^{\leq \kappa}$ such that $\{x\} = \bigcap_{S \in S_x} cl_{\theta}(S) \setminus A_{\gamma}$. Note that $|[[A_{\gamma}]^{\leq \kappa}]^{\leq \kappa}| \leq (\mu^{\kappa})^{\kappa} = \mu^{\kappa}$. Thus, $|A_{\beta}| \leq \mu^{\kappa}$. This completes the induction. For $B = \bigcup_{\alpha \in \kappa^+} A_{\alpha}$, we have that $|B| \leq \mu^{\kappa}$. The final step is to show that B is θ -closed. Suppose $cl_{\theta}B \setminus B \neq \emptyset$. Then B is non- θ -closed and, by $[7, \operatorname{Prop.} 2.4]$, there is $S \in [[B]^{\leq \kappa}]^{\leq \kappa}$ such that $\{x\} = \bigcap_{S \in S} cl_{\theta}(S) \setminus B$. So, there is $\beta < \kappa^+$ such that $\bigcup S \subseteq A_{\beta}$. By the construction of $A_{\beta+1}, x \in A_{\beta+1} \subseteq B$, a contradiction. Thus, B is θ -closed. \Box

Now, we provide a lower and upper bound of $bt_{\theta}(X)$ in terms of $fbt_{\theta}(X)$.

Theorem 2. If X is Urysohn, then $fbt_{\theta}(X) \leq bt_{\theta}(X) \leq 2^{fbt_{\theta}(X)}$.

Proof. Let $fbt_{\theta}(X) = \kappa$ and A be a non- θ -closed subset of X. By [7, Prop. 2.4], there is $x \in cl_{\theta}(A) \setminus A$ and $S \in [[A]^{\leq \kappa}]^{\leq \kappa}$ such that $\{x\} = \bigcap_{S \in S} cl_{\theta}(S) \setminus A$. We can write $S = \{S_{\alpha} : \alpha < \kappa\}$ and assume that $S_0 \supseteq S_{\alpha}$ for all $\alpha < \kappa$. By Theorem 1, $|A \cap cl_{\theta}S_0| \leq |cl_{\theta}S_0| \leq |S_0|^{\kappa} = 2^{\kappa}$. For each $y \in A$, let $U_y, V_y \in \tau(X)$ such that $x \in U_y$, $y \in V_y$, and $clU_y \cap clV_y = \emptyset$. Note that $x \in cl_{\theta}(S_0 \setminus cl(V_y)) \subseteq X \setminus \{y\}$. For $S' = S \cup \{S_0 \setminus cl(V_y) : y \in A \cap cl_{\theta}S_0\}$, we have that $\{x\} = \bigcap_{S \in S'} cl_{\theta}(S)$ and $|S'| \leq 2^{\kappa}$. So, $bt_{\theta}(X) \leq 2^{\kappa}$. \Box

Remark 1. In Example 3, we provide a Hausdorff space *X* such that $U(X) = \omega$ and $|[A]_{\theta}| > |A|^{\chi(X)}$; however, we know that $|[A]_{\theta}| \le |A|^{\chi_{\theta}(X)}$ when *X* is Hausdorff and finitely Urysohn. The future research goal is to identify those spaces *X* for which U(X) is infinite and $|[A]_{\theta}| \le |A|^{\chi_{\theta}(X)}$. This research project is simplified by using that $U(X) = U(X_s)$ for any space *X* and then applying corollary 1: to obtain that $|[A]_{\theta}| \le |A|^{\chi_{\theta}(X)}$ is reduced to verifying $|[A]_{\theta}| \le |A|^{\chi_{\theta}(X)}$ for a semiregular Hausdorff space *X* for which U(X) is infinite.

3. Examples

Spaces are presented to show the existence of non-Urysohn spaces, where $bt_{\theta}(X)$ is not defined, $fbt_{\theta}(X) = \omega$, and $bts_{\theta}(X) > \chi_{\theta}(X)$ (Example 1) and where $bt_{\theta}(X)$ and $fbt_{\theta}(X)$ are defined and $fbt_{\theta}(X) = bt_{\theta}(X) = \omega$ (Example 2). Finally, Example 3 gives a negative answer to a question present in [4] and in [6]. What remains open is the existence of a space *X* where $bt_{\theta}(X)$ and $fbt_{\theta}(X)$ are defined and $fbt_{\theta}(X) < bt_{\theta}(X)$.

Example 1. A first countable, Hausdorff space X for which $bt_{\theta}(X)$ is not defined, $fbt_{\theta}(X) = \omega$, and $bt_{\theta}(X) > \chi_{\theta}(X)$.

Let $\mathbb{Q} = \{r_n : n \in \omega\}$ denote the space of rational numbers with the usual topology and $\mathbb{D} = \mathbb{Q} + \sqrt{2}$ denote the dense subspace of irrational numbers. Let Λ be nonempty set and $X(\Lambda) = \mathbb{Q} \cup (\mathbb{D} \times \Lambda)$. A set $U \subseteq X(\Lambda)$ is defined to be open if:

(1) $p \in U \cap \mathbb{Q}$ implies there is $\epsilon > 0$ such that $((p - \epsilon, p + \epsilon) \cap \mathbb{Q}) \cup ((p - \epsilon, p + \epsilon) \cap \mathbb{D}) \times \Lambda) \subseteq U$, and

(2) $(p, \alpha) \in U \cap (\mathbb{D} \times \{\alpha\})$ for some $\alpha \in \Lambda$ implies there is $\epsilon > 0$ such that $((p - \epsilon, p + \epsilon) \cap \mathbb{D}) \times \{\alpha\} \subseteq U$.

For $|\Lambda| \ge 2$, the space $X(\Lambda)$ is Hausdorff, semiregular, and first countable but not Urysohn. Points in \mathbb{Q} have clopen neighborhoods and for each $\alpha \in \Lambda$, a pair of points in $\mathbb{D} \times \{\alpha\}$ are contained in disjoint closed neighborhoods. In particular, it follows that if $|\Lambda| \in \omega$, $U(X(\Lambda)) = |\Lambda| + 1$. To compute $U(X(\Lambda))$ when $|\Lambda| \ge \omega$, let $p \in \mathbb{D}$ and $B = \{(p, \alpha_n) : n \in \omega\}$. For each $n \in \omega$, choose $\epsilon_n > 0$ such that $r_n \notin [p - \epsilon_n, p + \epsilon_n]$. Let $U_n = ((p - \epsilon_n, p + \epsilon_n) \cap \mathbb{D}) \times \{\alpha_n\}$. Then $\bigcap_{n \in \omega} cl_X U_n = \emptyset$. Thus, $U(X(\Lambda)) = \omega$.

Let $B = \{r_n : n \in \omega\}$ be a sequence in \mathbb{Q} that converges to $\sqrt{2}$ and $C \subseteq B$ be an infinite subset. Note that $cl_{\theta}(C) = C \cup (\{\sqrt{2}\} \times \Lambda)$. If $S \in [[B]^{\leq \kappa}]^{\kappa}$ for some cardinal κ , then $\{\sqrt{2}\} \times \Lambda \subseteq \bigcap_{S \in S} cl_{\theta}S \subseteq B \cup (\{\sqrt{2}\} \times \Lambda)$. It follows that if $|\Lambda| \in \omega$, $bt_{\theta}(X(\Lambda)) = \omega$ and if $|\Lambda| \geq \omega$, $bt_{\theta}(X(\Lambda)) = \log_2(|\Lambda|)$. In particular, if $|\Lambda| = 2^{\mathfrak{c}}$, then $bt_{\theta}(X(\Lambda)) = \mathfrak{c} > \chi_{\theta}(X(\Lambda))$.

For $|\Lambda| = 2$ (i.e. $\Lambda = \{0, 1\}$), U(X) = 3 and the set \mathbb{Q} is not θ -closed and $cl_{\theta}(\mathbb{Q}) = X$. If fact, the points $\{(\sqrt{2}, 0), (\sqrt{2}, 1)\}$ can not be separated by disjoint closed neighborhoods. Again, let $B = \{r_n : n \in \omega\}$ is a sequence in \mathbb{Q} that converges to $\sqrt{2}$ and $C \subseteq B$ be an infinite subset. As $cl_{\theta}(C) = C \cup \{(\sqrt{2}, 0), (\sqrt{2}, 1)\}$, $bt_{\theta}(X)$ is not defined. On the other hand, it is easy to show that $fbt_{\theta}(X) = \omega$. [It is straightforward to show that if Y is the irrational slope space, then U(Y) = 3, $fbt_{\theta}(X) = \omega$, and $bt_{\theta}(X)$ is not defined.]

For each $n \in \mathbb{N}$, let Λ_n be a set with n elements and $X_n = X(\Lambda_n)$. The topological sum space $Y = \bigsqcup_{n \in \mathbb{N}} X_n$ is Hausdorff but not n-Urysohn for any $n \in \mathbb{N}$ even though $U(Y) = \omega$. However, $fbt_{\theta}(Y) = \omega$ and $bt_{\theta}(Y)$ is not defined.

Example 2. ([CH]) A Urysohn space *X* for which $fbt_{\theta}(X) = bt_{\theta}(X) = \omega$.

This example is like Example 2.3 in [8]. Let $\tau(\mathbb{R})$ be the usual topology on \mathbb{R} and let the underlying set of *X* be \mathbb{R} with this finer topology:

 $\tau(X)$ is generated by $\{U \setminus C : U \in \tau(\mathbb{R}), C \in [\mathbb{R}]^{\leq \omega_1}\}.$

Now, we have $C \in [\mathbb{R}]^{\leq \omega_1}$ in the above definition whereas, the example in [8], it is $C \in [\mathbb{R}]^{\leq \omega}$. So, we need that $\mathfrak{c} > \omega_1$ (i.e., $\neg \mathbf{CH}$).

Anyway, let's look at the example where $\kappa < c$. That is, *X* is \mathbb{R} with this finer topology:

 $\tau(X)$ is generated by $\{U \setminus C : U \in \tau(\mathbb{R}), C \in [\mathbb{R}]^{\leq \kappa}\}$.

Let $A \subseteq X$. Now $x \in cl_{\theta,X}A$ if and only if for $x \in U \in \tau(X)$, $cl_X U \cap A \neq \emptyset$ if and only if for $x \in U \setminus C$, where $U \in \tau(\mathbb{R})$ and $C \in [\mathbb{R}]^{\leq \kappa}$, $cl_X(U \setminus C) \cap A \neq \emptyset$. Note that $cl_X(U \setminus C) = cl_{\mathbb{R}}U$ as $X(s) = \mathbb{R}$. That is, $x \in cl_{\theta,X}A$ if and only if $x \in cl_{\theta,\mathbb{R}}A$ if and only if $x \in cl_{\theta,\mathbb{R}}A$.

Let *A* be a non- θ -closed subset of *X* and $x \in cl_{\theta,X}A \setminus A = cl_{\mathbb{R}}A \setminus A$. Let $(x_n)_{n \in \mathbb{N}} \subseteq A$ such that $(x_n)_{n \in \mathbb{N}} \to x$ in \mathbb{R} and for $m \in \mathbb{N}$, let $S_m = \{x_n : n \ge m\}$. Then $cl_{\theta,X}S_m = cl_{\mathbb{R}}S_m = S_m \cup \{x\}$ and $\bigcap_{n \in \mathbb{N}} S_m = \{x\}$. So, $bt_{\theta}(X) = \omega$ and it follows, by the above fact, that $fbt_{\theta}(X) = bt_{\theta}(X) = \omega$.

The question asked in both [4, 6] is whether $|[A]_{\theta}| \le |A|^{\chi_{\theta}(X)} \cdot U(X)$ is true for all Hausdorff spaces *X*, i.e., when U(X) is infinite. A negative answer is presented in the next example using a space described in Example 1.

Example 3. A Hausdorff space X with $U(X) = \chi(X) = \omega$ for which $|[A]_{\theta}| > |A|^{\chi(X)} \cdot U(X)$ and $|[A]_{\theta}| > |A|^{\chi(X)U(X)}$.

Let Λ be a set such that $|\Lambda| > \mathfrak{c}$ and $X(\Lambda)$ be defined as in Example 1. As noted in Example 1, $X(\Lambda)$ is a first countable Hausdorff space with $U(X) = \omega$. As $cl_{\theta}\mathbb{Q} = X(\Lambda)$, $|cl_{\theta}\mathbb{Q}| = |\Lambda| > \mathfrak{c}$. However, $|\mathbb{Q}|^{\chi(X(\Lambda))} \cdot U(X(\Lambda)) = \omega^{\omega} \cdot \omega = 2^{\omega}$. Thus, $|cl_{\theta}\mathbb{Q}| > |\mathbb{Q}|^{\chi(X(\Lambda))} \cdot U(X(\Lambda))$. Analogously, as $|\mathbb{Q}|^{\chi(X(\Lambda))} \cdot U(X(\Lambda)) = \omega^{\omega \cdot \omega} = 2^{\omega}$, we also have that $|cl_{\theta}\mathbb{Q}| > |\mathbb{Q}|^{\chi(X(\Lambda))} \cdot U(X(\Lambda))$.

4. Open problems

Here are two interesting research problems still open:

Question 1. An unsolved problem is to characterize those Hausdorff spaces X for which $bt_{\theta}(X)$ and $fbt_{\theta}(X)$ are defined?

Question 2. Does there exist a Hausdorff (or Urysohn) space X for which $bt_{\theta}(X)$ and $fbt_{\theta}(X)$ are defined and $fbt_{\theta}(X) < bt_{\theta}(X)$?

Acknowledgements. We thank the referee for his suggestions and comments, especially concerning Theorem 1 and Example 3.

References

- [1] O.T. Alas, Lj.D. Kočinac, More cardinal inequalities on Urysohn spaces, Math. Balkanica 14 (2000) 247-252.
- [2] A. Bella, F. Cammaroto, On the cardinality of Urysohn spaces, Canad. Math. Bull. 31 (1988) 153–158.
- [3] A. Bella, I.V. Yaschenko, Embeddings into first countable spaces with H-closed like properties, Topolopgy Appl. 83 (1998) 53-61.
- [4] M. Bonanzinga, F. Cammaroto, M. Matveev, On the Urysohn number of a topological space, Quaest. Math. 34 (2011) 441–446.
- [5] M. Bonanzinga, F. Cammaroto, M. Matveev, B. Pansera, On weaker forms of separability, Quaest. Math. 31 (2008) 387-395.
- [6] M. Bonanzinga, B.A. Pansera, On the Urysohn number of a topological space II, Quaest. Math. (2012), in press.
- [7] F. Cammaroto, A. Catalioto. B.A. Pansera, B. Tsaban, On the cardinality of the θ -closed hull of sets, preprint.
- [8] F. Cammaroto, Lj.D. Kočinac, On θ-tightness, Facta Universitatis (Niš), Ser. Math. Inform. 8 (1993) 77–85.
- [9] R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989.
- [10] I. Juhász, Cardinal Functions in Topology Ten Years Later, Math. Centre Tracts 123, Amsterdam, 1980.
- [11] Lj.D. Kočinac, On the cardinality of Urysohn spaces, Quest. Answers Gen. Topology 13 (1995) 211–216.
- [12] J.R. Porter, R.G. Woods, Extensions and Absolutes of Hausdorff Spaces, Springer-Verlag, New York, 1988.
- [13] L.A. Steen, J.A. Seebach, Counterexamples in Topology, Dover Publications, New York, 1995.