A note on dimension-like functions of the type Ind defined by big bases

D.N. Georgiou ${ }^{\text {a }}$, A.C. Megaritis ${ }^{\text {b }}$
${ }^{a}$ University of Patras, Department of Mathematics, 26504 Patras, Greece
${ }^{b}$ Technological Educational Institute of Messolonghi, Department of Accounting, 30200 Messolonghi, Greece

Abstract

This paper introduces new dimension-like functions of the type Ind defined by big bases. Relations between them are investigated. It is shown that these dimension-like functions satisfy subspace, partition, and sum theorems.

1. Introduction and preliminaries

The origin of a notion of the classical dimension Ind goes back to L. Brouwer and was formally defined for normal spaces by E. Čech. Its transfinite extension was introduced by Yu. Smirnov (see, for example, $[1,2,10,14,15]$). First of all, for the purpose of its reasonable usage in the broader than normal classes of spaces different dimension-like functions appeared. V. Filippov and M. Charalambous introduced dimension Ind $_{0}, \mathrm{M}$. Charalambous uniform dimension μ-Ind, A. Chigogidze relative dimension I, S. Iliadis base-normal dimension I, S. Bogatyı̆ and G. Himšiašvili uniform large dimension (see [3-5, 7, 8, 11]). The latter is based on the G. Toulmin's idea in the case of small inductive dimension: to fix a base on a space and examine dimensions of its closed subsets being equipped with the trace of this fixed base (see [16, 17]).

Another generalized approach to the investigation of inductive dimension-like functions belongs to A . Lelek (see [12]). It allows, for example, to examine dimension Ind and dimension-like invariant Cmp from one point of view. This approach is developed in the works of M. Charalambous, V. Chatyrko, Y. Hattory and others (see, for example, [6]). The paper is devoted to the investigation of dimension-like functions of the type Ind and generalizes both approaches of G. Toulmin and A. Lelek.

We denote by ω the first infinite cardinal, by O the class of all ordinals, and by $(+)$ the natural sum of Hessenberg (see [13]). We also consider two extra symbols, " -1 " and " ∞ " such that $-1<\alpha<\infty$ for every $\alpha \in O,-1(+) \alpha=\alpha(+)(-1)=\alpha$ for every $\alpha \in O \cup\{-1, \infty\}$, and $\infty(+) \alpha=\alpha(+) \infty=\infty$ for every $\alpha \in O \cup\{\infty\}$. We recall some properties of natural sum. Let α and β be ordinals. Then,
(1) $\alpha(+) \beta=\beta(+) \alpha$,
(2) if $\alpha_{1}<\alpha_{2}$, then $\alpha_{1}(+) \beta<\alpha_{2}(+) \beta$, and
(3) $\alpha(+) n=\alpha+n$ for $n<\omega$.

Let U be a subset of a space X. We denote by $\mathrm{Cl}_{X}(U)$ and $\mathrm{Bd}_{X}(U)$ the closure and the boundary of U in X, respectively.

[^0]Recall that a family B of open subsets of a space X is called a big base for X if for every pair (F, U) of subsets of X, where F is closed, U is open, and $F \subseteq U$, there exists $V \in B$ such that $F \subseteq V \subseteq U$.

The large inductive dimension of a space X (see for example [10] and [15]), denoted by $\operatorname{Ind}(X)$, is defined as follows:
(i) $\operatorname{Ind}(X)=-1$ if and only if $X=\emptyset$.
(ii) $\operatorname{Ind}(X) \leq \alpha$, where $\alpha \in O$, if and only if there exists a big base B for X such that for every $V \in B$ we have $\operatorname{Ind}\left(\operatorname{Bd}_{X}(V)\right)<\alpha$.
(iii) $\operatorname{Ind}(X)=\infty$ if and only if the inequality $\operatorname{Ind}(X) \leq \alpha$ does not hold for every $\alpha \in O \cup\{-1\}$.

By a class of big bases we mean a class consisting of pairs (B, X), where B is a big base for the space X containing the sets \emptyset and X. Let \mathbb{B} be a class of big bases. A big base B of a space X is said to be a \mathbb{B}-big base if $(B, X) \in \mathbb{B}$.

In [11] base dimension-like functions of the type Ind were introduced. In Section 2 we introduce and study new dimension-like functions of the type Ind. In Sections 3, 4, and 5 we give for these dimension-like functions subspace, partition, and sum theorems. Finally, in Section 6 we give some questions concerning these functions.

2. New dimension-like functions of the type Ind

Definition 2.1. A class \mathbb{L} of big bases is said to be b-rim-hereditary if for every $(A, X) \in \mathbb{L}$ and $U \in A$ we have

$$
\left(\left\{\operatorname{Bd}_{X}(U) \cap V: V \in A\right\}, \operatorname{Bd}_{X}(U)\right) \in \mathbb{L}
$$

Definition 2.2. Let \mathbb{L} be a b-rim-hereditary class of big bases. We denote by b-Ind ${ }_{\mathbb{L}}$ the base dimension-like function with domain the class of all big bases and range the class $O \cup\{-1, \infty\}$ satisfying the following conditions:
(i) $b-\operatorname{Ind}_{\mathbb{L}}(A, X)=-1$ if and only if $(A, X) \in \mathbb{L}$.
(ii) b-Ind ${ }_{\mathbb{L}}(A, X) \leq \alpha$, where $\alpha \in O$, if and only if for every $U \in A$ we have

$$
\operatorname{b-Ind}_{\mathbb{L}}\left(\left\{\operatorname{Bd}_{X}(U) \cap V: V \in A\right\}, \operatorname{Bd}_{X}(U)\right)<\alpha
$$

(iii) $b-\operatorname{Ind}_{\mathbb{L}}(A, X)=\infty$ if and only if the inequality $b-\operatorname{Ind}_{\mathbb{L}}(A, X) \leq \alpha$ does not hold for every $\alpha \in O \cup\{-1\}$.

Definition 2.3. Let \mathbb{B} be a class of big bases. A class \mathbb{L} of big bases is said to be \mathbb{B} - b_{0}-rim-hereditary if for every $(A, X) \in \mathbb{L}$ there exists a \mathbb{B}-big base B for X such that for every $U \in B$ we have

$$
\left(\left\{\operatorname{Bd}_{X}(U) \cap V: V \in A\right\}, \operatorname{Bd}_{X}(U)\right) \in \mathbb{L}
$$

Definition 2.4. Let \mathbb{B} be a class of big bases and \mathbb{L} a \mathbb{B} - b_{0}-rim-hereditary class of big bases. We denote by $\mathrm{b}_{0}-\mathrm{Ind}_{\mathbb{L}}^{\mathbb{B}}$ the base dimension-like function with domain the class of all big bases and range the class $O \cup\{-1, \infty\}$ satisfying the following conditions:
(i) $\mathrm{b}_{0}-\operatorname{Ind}_{\mathbb{L}}^{\mathbb{B}}(A, X)=-1$ if and only if $(A, X) \in \mathbb{L}$.
(ii) b_{0} - $\operatorname{Ind}_{\mathbb{L}}^{\mathbb{B}}(A, X) \leq \alpha$, where $\alpha \in O$, if and only if there exists a \mathbb{B}-big base B for X such that for every $U \in B$ we have

$$
\mathrm{b}_{0}-\operatorname{Ind}_{\mathbb{L}}^{\mathbb{B}}\left(\left\{\operatorname{Bd}_{X}(U) \cap V: V \in A\right\}, \operatorname{Bd}_{X}(U)\right)<\alpha
$$

(iii) $\mathrm{b}_{0}-\operatorname{Ind}_{\mathbb{L}}^{\mathbb{B}}(A, X)=\infty$ if and only if the inequality $\mathrm{b}_{0}-\operatorname{Ind}_{\mathbb{L}}^{\mathbb{B}}(A, X) \leq \alpha$ does not hold for every $\alpha \in O \cup\{-1\}$.

Remark 2.5. If $\mathbb{L}=\{(\{\emptyset\}, \emptyset)\}$, then the base dimension-like functions $b-\operatorname{Ind}_{\mathbb{L}}$ and $b_{0}-\operatorname{Ind}_{\mathbb{L}}^{\mathbb{B}}$ are denoted by b-Ind and $b_{0}-\operatorname{Ind}^{\mathbb{B}}$, respectively. Moreover, if the class \mathbb{B} consists of all pairs (B, X), where B is a big base for the space X containing the sets \emptyset and X, then the base dimension-like function $b_{0}-$ Ind $^{\mathbb{B}}$ is denoted by b_{0}-Ind.

The proof of the following theorems are straightforward verifications of the inductive definitions.

Theorem 2.6. For every big base A of a space X the following relations are true:
(1) $\operatorname{Ind}(X) \leq b-\operatorname{Ind}(A, X)$.
(2) $\operatorname{Ind}(X)=b_{0}-\operatorname{Ind}(A, X)$.

Theorem 2.7. Let \mathbb{B} be a class of big bases. The following propositions are true:
(1) For every big base A of a space $X, \operatorname{Ind}(X) \leq b_{0}-\operatorname{Ind}^{\mathbb{B}}(A, X)$.
(2) For every \mathbb{B}-big base A of a space $X, b_{0}-\operatorname{Ind}^{\mathbb{B}}(A, X) \leq b-\operatorname{Ind}(A, X)$.

Example 2.8. (1) Let \mathbb{Q} be the space of the rational numbers with the natural topology. It is known that $\operatorname{Ind}(\mathbb{Q})=0$ (see for example [10] and [15]). We consider the big base

$$
A=\left\{\cup\left\{\left(a_{n}, b_{n}\right) \cap \mathbb{Q}: n=1,2, \ldots\right\}: a_{n}, b_{n} \in \mathbb{Q}\right\}
$$

for \mathbb{Q}. Then, $\operatorname{b-Ind}(A, \mathbb{Q}) \geq 1$. Indeed, for the element

$$
U=\cup\left\{\left(\frac{1}{n+1}, \frac{1}{n}\right) \cap \mathbb{Q}: n=1,2, \ldots\right\} \in A
$$

we have

$$
\operatorname{Bd}_{\mathbb{Q}}(U)=\left\{\frac{1}{n}: n=1,2, \ldots\right\} \cup\{0\} .
$$

Since $\mathrm{Bd}_{\mathbb{Q}}(U) \neq \emptyset$, we have

$$
\text { b-Ind }\left(\left\{\operatorname{Bd}_{\mathbb{Q}}(U) \cap V: V \in A\right\}, \operatorname{Bd}_{\mathbb{Q}}(U)\right) \geq 0
$$

Thus, $\mathrm{b}-\operatorname{Ind}(A, \mathbb{Q}) \geq 1$ and, therefore, $\operatorname{Ind}(\mathbb{Q})<\mathrm{b}-\operatorname{Ind}(A, \mathbb{Q})$. Also, if we consider as \mathbb{B} the class of all pairs (B, X), where B is a big base for the space X containing the sets \emptyset and X, then by Theorem $2.6(2)$ we have

$$
\mathrm{b}_{0}-\operatorname{Ind}^{\mathbb{B}}(A, \mathbb{Q})=\mathrm{b}_{0}-\operatorname{Ind}(A, \mathbb{Q})=\operatorname{Ind}(\mathbb{Q})=0
$$

Thus, $\mathrm{b}_{0}-\operatorname{Ind}^{\mathbb{B}}(A, \mathbb{Q})<\mathrm{b}-\operatorname{Ind}(A, \mathbb{Q})$.
(2) Let $\mathbb{B}=\{(\{\emptyset\}, \emptyset),(B, \mathbb{Q})\}$, where \mathbb{Q} is the space of the rational numbers with the natural topology and

$$
B=\left\{\cup\left\{\left(a_{n}, b_{n}\right) \cap \mathbb{Q}: n=1,2, \ldots\right\}: a_{n}, b_{n} \in \mathbb{R} \backslash \mathbb{Q}\right\}
$$

For every big base A for \mathbb{Q} we have $b_{0}-\operatorname{Ind}^{\mathbb{B}}(A, \mathbb{Q}) \geq 1$. Indeed, the only \mathbb{B}-big base for \mathbb{Q} is B. For the element

$$
U=\cup\left\{\left(\frac{\pi}{n+1}, \frac{\pi}{n}\right) \cap \mathbb{Q}: n=1,2, \ldots\right\} \in B
$$

we have $\operatorname{Bd}_{\mathbb{Q}}(U)=\{0\}$. Since $\operatorname{Bd}_{\mathbb{Q}}(U) \neq \emptyset$, we have

$$
\mathrm{b}_{0}-\operatorname{Ind}^{\mathbb{B}}\left(\left\{\operatorname{Bd}_{\mathbb{Q}}(U) \cap V: V \in A\right\}, \operatorname{Bd}_{\mathbb{Q}}(U)\right) \geq 0
$$

Thus, $\mathrm{b}_{0}-\operatorname{Ind}^{\mathbb{B}}(A, \mathbb{Q}) \geq 1$ and, therefore, $\operatorname{Ind}(\mathbb{Q})<\mathrm{b}_{0}-\operatorname{Ind}^{\mathbb{B}}(A, \mathbb{Q})$.
Remark 2.9. The relations between base dimension-like functions of the type Ind are summarized in the following diagram, where for dimension-like functions $d f_{1}, d f_{2}$ " $d f_{1} \rightarrow d f_{2}$ " stands for $d f_{1} \leq d f_{2}$ and " $d f_{1} \rightarrow d f_{2}$ " stands for $d f_{1} \nsubseteq d f_{2}$.

Definition 2.10. Let A_{1} be a big base of a space X_{1} and A_{2} a big base of a space X_{2}. The pairs $\left(A_{1}, X_{1}\right)$ and $\left(A_{2}, X_{2}\right)$ are homeomorphic if there exists a homeomorphism $h: X_{1} \rightarrow X_{2}$ such that $A_{2}=\left\{h(U): U \in A_{1}\right\}$.

Definition 2.11. A class \mathbb{B} of big bases is said to be topological if for every homeomorphism $h: X \rightarrow Y$ the condition $(B, X) \in \mathbb{B}$ implies that $(\{h(U): U \in B\}, Y) \in \mathbb{B}$.

Theorem 2.12. Let \mathbb{L} be a b -rim-hereditary topological class of big bases. If the pairs $\left(A_{1}, X_{1}\right)$ and $\left(A_{2}, X_{2}\right)$ are homeomorphic, then $\mathrm{b}-\operatorname{Ind}_{\mathbb{L}}\left(A_{1}, X_{1}\right)=\mathrm{b}-\operatorname{Ind}_{\mathbb{L}}\left(A_{2}, X_{2}\right)$.

Proof. Let $\left(A_{1}, X_{1}\right)$ and $\left(A_{2}, X_{2}\right)$ be two homeomorphic pairs. We prove that

$$
\mathrm{b}_{\mathrm{-Ind}}^{\mathbb{L}}\left(A_{1}, X_{1}\right) \leq \mathrm{b}-\operatorname{Ind}_{\mathbb{L}}\left(A_{2}, X_{2}\right)
$$

Let $h: X_{1} \rightarrow X_{2}$ be a homeomorphism such that $A_{2}=\left\{h(U): U \in A_{1}\right\}$ and b-Ind ${ }_{\mathbb{L}}\left(A_{2}, X_{2}\right)=\alpha \in O \cup\{-1, \infty\}$. The inequality is clear if $\alpha=-1$ or $\alpha=\infty$. We suppose that $\alpha \in O$ and the inequality is true for every homeomorphic pairs $\left(A^{X}, X\right)$ and $\left(A^{Y}, Y\right)$ with b-Ind $_{\mathbb{L}}\left(A^{Y}, Y\right)<\alpha$. Since b-Ind $\mathbb{I}_{\mathbb{L}}\left(A_{2}, X_{2}\right)=\alpha$, for every $U \in A_{2}$ we have

$$
\operatorname{bb-Ind}_{\mathbb{L}}\left(\left\{\operatorname{Bd}_{X_{2}}(U) \cap V: V \in A_{2}\right\}, \operatorname{Bd}_{X_{2}}(U)\right)<\alpha .
$$

We prove that

$$
\operatorname{b-Ind}_{\mathbb{L}}\left(\left\{\operatorname{Bd}_{X_{1}}\left(h^{-1}(U)\right) \cap h^{-1}(V): V \in A_{2}\right\}, \operatorname{Bd}_{X_{1}}\left(h^{-1}(U)\right)\right)<\alpha
$$

for every $U \in A_{2}$. Indeed, let $U \in A_{2}$. Since

$$
\operatorname{Bd}_{X_{1}}\left(h^{-1}(U)\right)=\mathrm{Cl}_{X_{1}}\left(h^{-1}(U)\right) \backslash h^{-1}(U)=h^{-1}\left(\mathrm{Cl}_{X_{2}}(U) \backslash U\right)=h^{-1}\left(\operatorname{Bd}_{X_{2}}(U)\right)
$$

we have $h\left(\operatorname{Bd}_{X_{1}}\left(h^{-1}(U)\right)\right)=h\left(h^{-1}\left(\operatorname{Bd}_{X_{2}}(U)\right)\right)=\operatorname{Bd}_{X_{2}}(U)$.
Moreover, for $V \in A_{2}$ we have

$$
h\left(\operatorname{Bd}_{X_{1}}\left(h^{-1}(U)\right) \cap h^{-1}(V)\right)=h\left(h^{-1}\left(\operatorname{Bd}_{X_{2}}(U)\right) \cap h^{-1}(V)\right)=\operatorname{Bd}_{X_{2}}(U) \cap V
$$

Thus, the pairs

$$
\left(\left\{\operatorname{Bd}_{X_{2}}(U) \cap V: V \in A_{2}\right\}, \operatorname{Bd}_{X_{2}}(U)\right)
$$

and

$$
\left(\left\{\operatorname{Bd}_{X_{1}}\left(h^{-1}(U)\right) \cap h^{-1}(V): V \in A_{2}\right\}, \operatorname{Bd}_{X_{1}}\left(h^{-1}(U)\right)\right)
$$

are homeomorphic. By inductive assumption, we have
$\operatorname{b}^{-\operatorname{Ind}_{\mathbb{L}}}\left(\left\{\operatorname{Bd}_{X_{1}}\left(h^{-1}(U)\right) \cap h^{-1}(V): V \in A_{2}\right\}, \operatorname{Bd}_{X_{1}}\left(h^{-1}(U)\right)\right) \leq \mathrm{b}-\operatorname{Ind}_{\mathbb{L}}\left(\left\{\operatorname{Bd}_{X_{2}}(U) \cap V: V \in A_{2}\right\}, \operatorname{Bd}_{X_{2}}(U)\right)<\alpha$.

The following theorem is proved similar to Theorem 2.12.
Theorem 2.13. Let \mathbb{B} be a topological class of big bases and $\mathbb{L} a \mathbb{B}$ - b_{0}-rim-hereditary topological class of big bases. If the pairs $\left(A_{1}, X_{1}\right)$ and $\left(A_{2}, X_{2}\right)$ are homeomorphic, then $\mathrm{b}_{0}-\operatorname{Ind}_{\mathbb{L}}^{\mathbb{B}}\left(A_{1}, X_{1}\right)=\mathrm{b}_{0}-\operatorname{Ind}_{\mathbb{L}}^{\mathbb{B}}\left(A_{2}, X_{2}\right)$.

3. Subspace theorems

Theorem 3.1. (The first subspace theorem) Let \mathbb{B} be a class of bases and A_{1}, A_{2} two bases of a space X with $A_{1} \subseteq A_{2}$. Then, we have
(1) $\mathrm{b}-\operatorname{Ind}\left(A_{1}, X\right) \leq \mathrm{b}-\operatorname{Ind}\left(A_{2}, X\right)$,
(2) $b_{0}-\operatorname{Ind}^{\mathbb{B}}\left(A_{1}, X\right) \leq b_{0}-\operatorname{Ind}^{\mathbb{B}}\left(A_{2}, X\right)$.

Proof. (1) Let $b-\operatorname{Ind}\left(A_{2}, X\right)=\alpha \in O \cup\{-1, \infty\}$. The inequality is clear if $\alpha=-1$ or $\alpha=\infty$. We suppose that $\alpha \in O$ and the inequality is true if $b-\operatorname{Ind}\left(A_{2}, X\right)<\alpha$. Since $b-\operatorname{Ind}\left(A_{2}, X\right)=\alpha$, for every $U \in A_{2}$ we have

$$
\text { b-Ind }\left(\left\{\operatorname{Bd}_{X}(U) \cap V: V \in A_{2}\right\}, \operatorname{Bd}_{X}(U)\right)<\alpha
$$

Also, for every $U \in A_{1}$ we have

$$
\left\{\operatorname{Bd}_{X}(U) \cap V: V \in A_{1}\right\} \subseteq\left\{\operatorname{Bd}_{X}(U) \cap V: V \in A_{2}\right\}
$$

Hence, by inductive assumption, for every $U \in A_{1}$ we have

$$
\mathrm{b}-\operatorname{Ind}\left(\left\{\operatorname{Bd}_{X}(U) \cap V: V \in A_{1}\right\}, \operatorname{Bd}_{X}(U)\right) \leq \mathrm{b}-\operatorname{Ind}\left(\left\{\operatorname{Bd}_{X}(U) \cap V: V \in A_{2}\right\}, \operatorname{Bd}_{X}(U)\right) .
$$

Thus, $\mathrm{b}-\operatorname{Ind}\left(A_{1}, X\right) \leq \alpha$.
Similar we can prove the relation (2).
Definition 3.2. A class \mathbb{B} of big bases is said to be closed with respect to the subspaces if for every $(A, X) \in \mathbb{B}$ and for every closed subset X_{1} of X we have $\left(A_{1}, X_{1}\right) \in \mathbb{B}$, where $A_{1}=\left\{X_{1} \cap U: U \in A\right\}$.

The following theorem is proved similar to Theorem 3.1.
Theorem 3.3. (The second subspace theorem) Let \mathbb{B} be a class of big bases, closed with respect to the subspaces, X_{1} a closed subspace of a space X, A a big base for X, and $A_{1}=\left\{X_{1} \cap U: U \in A\right\}$. Then, we have
(1) $b-\operatorname{Ind}\left(A_{1}, X_{1}\right) \leq b-\operatorname{Ind}(A, X)$,
(2) $b_{0}-\operatorname{Ind}^{\mathbb{B}}\left(A_{1}, X_{1}\right) \leq b_{0}-\operatorname{Ind}^{\mathbb{B}}(A, X)$.

4. Partition theorems

Definition 4.1. (See [9]) Let A and B be two disjoint subsets of a space X. A subset L of X is said to be a partition between A and B if there exist two open subsets O_{1} and O_{2} of X such that $A \subseteq O_{1}, B \subseteq O_{2}, O_{1} \cap O_{2}=\emptyset$, and $X \backslash L=O_{1} \cup O_{2}$.

Theorem 4.2. Let \mathbb{L} be a b-rim-hereditary class of big bases and A a big base of a normal space X. $\operatorname{Ifb}^{\operatorname{b}-\operatorname{Ind}_{\mathbb{L}}(A, X) \leq \alpha \text {, }, ~}$ where $\alpha \in O$, then for every pair (F, K) of disjoint closed subsets of X there exists $U \in A$ such that the set $\mathrm{Bd}_{X}(U)$ is a partition between F and K and $b-\operatorname{Ind}_{\mathbb{L}}\left(\left\{\operatorname{Bd}_{X}(U) \cap V: V \in A\right\}, \operatorname{Bd}_{X}(U)\right)<\alpha$.

Proof. Let $\mathrm{b}-\operatorname{Ind}_{\mathbb{L}}(A, X) \leq \alpha$, where $\alpha \in O$, and (F, K) be a pair of disjoint closed subsets of X. Since the space X is normal, there exists an open subset W of X such that $F \subseteq W \subseteq \mathrm{Cl}_{X}(W) \subseteq X \backslash K$. Therefore, there exists $U \in A$ such that

$$
F \subseteq U \subseteq W \subseteq \mathrm{Cl}_{X}(W) \subseteq X \backslash K
$$

and

$$
\operatorname{b-Ind}_{\mathbb{L}}\left(\left\{\operatorname{Bd}_{X}(U) \cap V: V \in A\right\}, \operatorname{Bd}_{X}(U)\right)<\alpha .
$$

We observe that the set $\mathrm{Bd}_{X}(U)$ is the required partition between F and K.
The following theorem is proved similar to Theorem 4.2.
Theorem 4.3. Let \mathbb{B} be a class of big bases, $\mathbb{L} a \mathbb{B}$ - b_{0}-rim-hereditary class of big bases, and A a big base of a normal space X. If $\mathrm{b}_{0}-\operatorname{Ind}_{\mathbb{L}}^{\mathbb{B}}(A, X) \leq \alpha$, where $\alpha \in O$, then for every pair (F, K) of disjoint closed subsets of X there exist a \mathbb{B}-base B for X and $U \in B$ such that the set $\operatorname{Bd}_{X}(U)$ is a partition between F and K and $\mathrm{b}_{0}-\operatorname{Ind}_{\mathbb{L}}^{\mathbb{B}}\left(\left\{\operatorname{Bd}_{X}(U) \cap V: V \in A\right\}, \operatorname{Bd}_{X}(U)\right)<\alpha$.

5. Sum theorems

Definition 5.1. A class \mathbb{B} of big bases is said to be closed with respect to the unions if we have $\left(A_{1} \cup A_{2}, X\right) \in \mathbb{B}$ for every $\left(A_{1}, X\right) \in \mathbb{B}$ and $\left(A_{2}, X\right) \in \mathbb{B}$.

Theorem 5.2. Let \mathbb{B} be a class of big bases, closed with respect to the unions and subspaces, and A_{1}, A_{2} two big bases of a space X. Then, we have
(1) $\operatorname{b-Ind}\left(A_{1} \cup A_{2}, X\right) \leq \operatorname{b}-\operatorname{Ind}\left(A_{1}, X\right)(+) b-\operatorname{Ind}\left(A_{2}, X\right)$,
(2) $\mathrm{b}_{0}-\operatorname{Ind}^{\mathbb{B}}\left(A_{1} \cup A_{2}, X\right) \leq \mathrm{b}_{0}-\operatorname{Ind}^{\mathbb{B}}\left(A_{1}, X\right)(+) \mathrm{b}_{0}-\operatorname{Ind}^{\mathbb{B}}\left(A_{2}, X\right)$.

Proof. (1) If b-Ind $\left(A_{1}, X\right)=\infty$ or $b-\operatorname{Ind}\left(A_{2}, X\right)=\infty$, then the inequality holds. Also, if $b-\operatorname{Ind}\left(A_{1}, X\right)=-1$ or $\operatorname{b}-\operatorname{Ind}\left(A_{2}, X\right)=-1$, then $X=\emptyset$ and, therefore, $\mathrm{b}-\operatorname{Ind}\left(A_{1} \cup A_{2}, X\right)=-1$. We suppose that the inequality is true for every pairs $\left(B_{1}, Y\right)$ and $\left(B_{2}, Y\right)$ with $\mathrm{b}-\operatorname{Ind}\left(B_{1}, Y\right)(+) \mathrm{b}-\operatorname{Ind}\left(B_{2}, Y\right)<\alpha$, where α is a fixed ordinal and let $\left(A_{1}, X\right)$ and $\left(A_{2}, X\right)$ be two pairs with $b-\operatorname{Ind}\left(A_{1}, X\right)(+) b-\operatorname{Ind}\left(A_{2}, X\right)=\alpha$. We need to prove that b$\operatorname{Ind}\left(A_{1} \cup A_{2}, X\right) \leq \alpha$. Let $b-\operatorname{Ind}\left(A_{1}, X\right)=\alpha_{1}$ and $b-\operatorname{Ind}\left(A_{2}, X\right)=\alpha_{2}$, where $\alpha_{1}, \alpha_{2} \in O$. Since $b-\operatorname{Ind}\left(A_{1}, X\right)=\alpha_{1}$, for every $U \in A_{1}$ we have

$$
\mathrm{b}-\operatorname{Ind}\left(\left\{\operatorname{Bd}_{X}(U) \cap V: V \in A_{1}\right\}, \operatorname{Bd}_{X}(U)\right)<\alpha_{1}
$$

Since b-ind $\left(A_{2}, X\right)=\alpha_{2}$, for every $U \in A_{2}$ we have

$$
\mathrm{b}-\operatorname{Ind}\left(\left\{\operatorname{Bd}_{X}(U) \cap V: V \in A_{2}\right\}, \operatorname{Bd}_{X}(U)\right)<\alpha_{2}
$$

Let $U \in A_{1} \cup A_{2}$. Without loss of generality we can assume that $U \in A_{1}$. Then,

$$
\text { b-Ind }\left(\left\{\operatorname{Bd}_{X}(U) \cap V: V \in A_{1}\right\}, \operatorname{Bd}_{X}(U)\right)<\alpha_{1}
$$

Also, by Theorem 3.3(1) we have

$$
\mathrm{b}-\operatorname{Ind}\left(\left\{\operatorname{Bd}_{X}(U) \cap V: V \in A_{2}\right\}, \operatorname{Bd}_{X}(U)\right) \leq \mathrm{b}-\operatorname{Ind}\left(A_{2}, X\right)=\alpha_{2}
$$

Thus,

$$
\operatorname{b-Ind}\left(\left\{\operatorname{Bd}_{X}(U) \cap V: V \in A_{1}\right\}, \operatorname{Bd}_{X}(U)\right)(+) \operatorname{b-Ind}\left(\left\{\operatorname{Bd}_{X}(U) \cap V: V \in A_{2}\right\}, \operatorname{Bd}_{X}(U)\right)<\alpha_{1}+\alpha_{2}=\alpha
$$

Therefore, by inductive assumption, we have
$b-\operatorname{Ind}\left(\left\{\operatorname{Bd}_{X}(U) \cap V: V \in A_{1} \cup A_{2}\right\}, \operatorname{Bd}_{X}(U)\right)=\mathrm{b}-\operatorname{Ind}\left(\left\{\operatorname{Bd}_{X}(U) \cap V: V \in A_{1}\right\} \cup\left\{\operatorname{Bd}_{X}(U) \cap V: V \in A_{2}\right\}, \operatorname{Bd}_{X}(U)\right)<\alpha$.
This means that b-Ind $\left(A_{1} \cup A_{2}, X\right) \leq \alpha$.
Similar we can prove the relation (2).
Definition 5.3. A class \mathbb{B} of big bases is said to be closed with respect to the free unions if we have $\left(A_{1} \cup A_{2}, X_{1} \uplus\right.$ $\left.X_{2}\right) \in \mathbb{B}$ for every $\left(A_{1}, X_{1}\right) \in \mathbb{B}$ and $\left(A_{2}, X_{2}\right) \in \mathbb{B}$, where the symbol \uplus denotes the free union of topological spaces.

The following two theorems are straightforward verifications of the inductive definitions.
Theorem 5.4. Let A_{1} be a big base of a space X_{1} and A_{2} a big base of a space X_{2}. If $b-\operatorname{Ind}\left(A_{1}, X_{1}\right) \leq \alpha$ and $\mathrm{b}-\operatorname{Ind}\left(A_{2}, X_{2}\right) \leq \alpha$, where $\alpha \in O \cup\{-1, \infty\}$, then

$$
\mathrm{b}-\operatorname{Ind}\left(A_{1} \cup A_{2}, X_{1} \uplus X_{2}\right) \leq \alpha .
$$

Theorem 5.5. Let \mathbb{B} be a class of big bases, closed with respect to the free unions, A_{1} a big base of X_{1}, and A_{2} a big base of X_{2}. If $\mathrm{b}_{0}-\operatorname{Ind}^{\mathbb{B}}\left(A_{1}, X_{1}\right) \leq \alpha$ and $\mathrm{b}_{0}-\operatorname{Ind}^{\mathbb{B}}\left(A_{2}, X_{2}\right) \leq \alpha$, where $\alpha \in O \cup\{-1, \infty\}$, then

$$
\mathrm{b}_{0}-\operatorname{Ind}^{\mathbb{B}}\left(A_{1} \cup A_{2}, X_{1} \uplus X_{2}\right) \leq \alpha .
$$

Theorem 5.6. Let A be a big base of a space X, X_{1} and X_{2} two closed subsets of $X, A_{1}=\left\{X_{1} \cap U: U \in A\right\}$, and $A_{2}=\left\{X_{2} \cap U: U \in A\right\}$ such that $X=X_{1} \cup X_{2}, b-\operatorname{Ind}\left(A_{1}, X_{1}\right) \leq \alpha$, and $b-\operatorname{Ind}\left(A_{2}, X_{2}\right) \leq \alpha$, where $\alpha \in O \cup\{-1, \infty\}$. Then, $\mathrm{b}-\operatorname{Ind}(A, X) \leq \alpha$.

Proof. Obviously, the theorem is true if $\alpha=-1$ or $\alpha=\infty$. Let $\alpha \in O$. We suppose that the theorem is true for every ordinal less than α and we prove the theorem for the ordinal α. Let $b-\operatorname{Ind}\left(A_{1}, X_{1}\right) \leq \alpha$ and $b-\operatorname{Ind}\left(A_{2}, X_{2}\right) \leq \alpha$. We prove that b-Ind $(A, X) \leq \alpha$. Since b-Ind $\left(A_{1}, X_{1}\right) \leq \alpha$, for every $U \in A$ we have

$$
\text { b-Ind }\left(\left\{\operatorname{Bd}_{X_{1}}\left(U \cap X_{1}\right) \cap V: V \in A\right\}, \operatorname{Bd}_{X_{1}}\left(U \cap X_{1}\right)\right)=\beta_{1}<\alpha
$$

Since b-Ind $\left(A_{2}, X_{2}\right) \leq \alpha$, for every $U \in A$ we have

$$
\mathrm{b}-\operatorname{Ind}\left(\left\{\operatorname{Bd}_{X_{2}}\left(U \cap X_{2}\right) \cap V: V \in A\right\}, \operatorname{Bd}_{X_{2}}\left(U \cap X_{2}\right)\right)=\beta_{2}<\alpha
$$

Without loss of generality we can suppose that $\beta_{1} \leq \beta_{2}$. Let $U \in A$. Then,

$$
\operatorname{Bd}_{X}(U)=\operatorname{Bd}_{X}\left(\left(U \cap X_{1}\right) \cup\left(U \cap X_{2}\right)\right) \subseteq \operatorname{Bd}_{X_{1}}\left(U \cap X_{1}\right) \cup \operatorname{Bd}_{X_{2}}\left(U \cap X_{2}\right)
$$

Therefore, by Theorem 3.3(1), we have

```
b-Ind}({\mp@subsup{\operatorname{Bd}}{X}{}(U)\capV:V\inA},\mp@subsup{\operatorname{Bd}}{X}{}(U))=b-\operatorname{Ind}({\mp@subsup{\operatorname{Bd}}{X}{}((U\cap\mp@subsup{X}{1}{})\cup(U\cap\mp@subsup{X}{2}{}))\capV:V\inA}
Bd
b-Ind({(Bd
b-Ind({\mp@subsup{Bd}{\mp@subsup{X}{1}{}}{}(U\cap\mp@subsup{X}{1}{})\capV:V\inA}\cup{\mp@subsup{Bd}{\mp@subsup{X}{2}{}}{}(U\cap\mp@subsup{X}{2}{}))\capV:V\inA}, Bd
```

Also, by inductive assumption, we have

$$
\left.\operatorname{b-Ind}\left(\left\{\operatorname{Bd}_{X_{1}}\left(U \cap X_{1}\right) \cap V: V \in A\right\} \cup\left\{\operatorname{Bd}_{X_{2}}\left(U \cap X_{2}\right)\right) \cap V: V \in A\right\}, \operatorname{Bd}_{X_{1}}\left(U \cap X_{1}\right) \cup \operatorname{Bd}_{X_{2}}\left(U \cap X_{2}\right)\right) \leq \beta_{2}<\alpha
$$

Thus, $\mathrm{b}-\operatorname{Ind}(A, X) \leq \alpha$.

6. Questions

(1) Is it true the converse of theorems 4.2 and 4.3 ?
(2) Is it true the sum theorem (Theorems 5.6) for the base dimension-like function $b_{0}-\operatorname{Ind}_{\mathbb{L}}$?
(3) Is it true the following product theorem:

Let A^{X} be a big base of a space X and A^{Y} a big base of a space Y such that the family

$$
A^{X \times Y}=\left\{U \times V: U \in A^{X}, V \in A^{\Upsilon}\right\}
$$

is a big base for $X \times Y$. Then, $\mathrm{b}-\operatorname{Ind}\left(A^{X \times Y}, X \times Y\right) \leq \mathrm{b}-\operatorname{Ind}\left(A^{X}, X\right)(+) \mathrm{b}-\operatorname{Ind}\left(A^{Y}, Y\right)$.
(4) Let $d f$ be one of the following base dimension like functions b-Ind $\mathbb{L}_{\mathbb{L}}$ and $b_{0}-\operatorname{Ind}_{\mathbb{L}}{ }^{\mathbb{B}}$. For every space X we consider the class of ordinals

$$
S p_{d f}(X)=\{d f(A, X): A \text { is a big base for } X\}
$$

(a) Find the class of all spaces X such that $S p_{d f}(X)=\{0,1,2, \ldots, n\}$, where $n \in \omega$.
(b) Find the class of all spaces X such that $S p_{d f}(X)=\{\infty\}$.
(c) Find the class of all spaces X such that $S p_{d f}(X)=\omega$.

Acknowledgements. We are grateful to the referee for a number of helpful suggestions for improvements in the article.

References

[1] J.M. Aarts, T. Nishiura, Dimension and Extensions, North-Holland 1993.
[2] P.S. Alexandroff, B.A. Pasynkov, Introduction to dimension theory, Nauka, Moscow, 1973 (Russian).
[3] S.A. Bogaty1̆, G.N. Himšiašvili, Large inductive uniform dimension (Russian), Sakharth. SSR Mecn. Akad. Moambe 70 (1973) 25-28.
[4] M. Charalambous, Inductive dimension theory for uniform spaces, Annales Univ. Sci. Budapest, Sectio Math. Soc. 17 (1974) 21-28.
[5] M.G. Charalambous, V.A. Chatyrko, Notes on the inductive dimension Ind $_{0}$, (Proc. 17th Summer Conf. Topology Appl.) Topology Proc. 27 (2003) 395-410.
[6] M.G. Charalambous, V.A. Chatyrko, Y. Hattori, The behaviour of dimension functions on unions of closed subsets, J. Math. Soc. Japan 56 (2004) 489-501.
[7] A. Chigogidze, Inductive dimensions of completely regular spaces, Comment. Math. Univ. Carolinae 18 (1977) 623-637.
[8] A. Chigogidze, Relative dimensions (Russian), General Topology. Spaces of functions and dimension, Moskov. Gos. Univ., Moscow, 1985, 67-117.
[9] R. Engelking, General Topology, Sigma Series in Pure Mathematics 6, Heldermann Verlag, Berlin, 1989.
[10] R. Engelking, Theory of dimensions, finite and infinite, Sigma Series in Pure Mathematics 10, Heldermann Verlag, Lemgo, 1995.
[11] S.D. Iliadis, Universal spaces and mappings, North-Holland Mathematics Studies 198, Elsevier Science B.V., Amsterdam, 2005.
[12] A. Lelek, Dimension and mappings of spaces with finite deficiency, Colloq. Math. 12 (1964) 221-227.
[13] K. Kuratowski, A. Mostowski, Set Theory with an introduction to descriptive set theory, Studies in Logic and the Foundations of Mathematics, Vol. 86, North-Holland Publishing Co., Amsterdam-New York-Oxford; PWN—Polish Scientific Publishers, Warsaw, 1976.
[14] B.A. Pasynkov, V.V. Fedorcuk, V.V. Filippov, Dimension theory (Russian), In: Algebra. Topology. Geometry, Vol. 17, pp. 229-306, 308, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii, Moscow, 1979.
[15] A.R. Pears, Dimension theory of general spaces, Cambridge University Press, Cambridge, England-New York-Melbourne, 1975.
[16] G.H. Toulmin, Shuffling ordinals and transfinite dimension, Proc. London Math. Soc. (3) 4 (1954) 177-195.
[17] G.H. Toulmin, Uniform dimension and the product theorem, Quart. J. Math., Oxford Ser. (2) 4 (1953) 198-203.

[^0]: 2010 Mathematics Subject Classification. Primary 54B99; Secondary 54C25
 Keywords. Dimension theory, dimension-like function of the type Ind, big base
 Received: 29 October 2012; Revised: 17 January 2013; Accepted: 18 January 2013
 Communicated by Ljubiša D.R. Kočinac
 Email addresses: georgiou@math.upatras.gr (D.N. Georgiou), megariti@master.math.upatras.gr (A.C. Megaritis)

